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ABSTRACT

This paper details a software implementation of an acoustic
camera, which utilises a spherical microphone array and a spher-
ical camera. The software builds on the Cross Pattern Coherence
(CroPaC) spatial filter, which has been shown to be effective in
reverberant and noisy sound field conditions. It is based on de-
termining the cross spectrum between two coincident beamform-
ers. The technique is exploited in this work to capture and analyse
sound scenes by estimating a probability-like parameter of sounds
appearing at specific locations. Current techniques that utilise con-
ventional beamformers perform poorly in reverberant and noisy
conditions, due to the side-lobes of the beams used for the power-
map. In this work we propose an additional algorithm to suppress
side-lobes based on the product of multiple CroPaC beams. A
Virtual Studio Technology (VST) plug-in has been developed for
both the transformation of the time-domain microphone signals
into the spherical harmonic domain and the main acoustic camera
software; both of which can be downloaded from the companion
web-page.

1. INTRODUCTION

Acoustic cameras are tools developed in the spatial audio commu-
nity which are utilised for the capture and analysis of sound fields.
In principle, an acoustic camera imitates the audiovisual aspect
of how humans perceive a sound scene by visualising the sound
field as a power-map. Incorporating this visual information within
a power-map can significantly improve the understanding of the
surrounding environment, such as the location and spatial spread
of sound sources and potential reflections arriving from different
surfaces. Essentially, any system that incorporates a video of the
sound scene in addition to a power-map overlay can be labelled
as an acoustic camera, of which several commercial systems are
available today.

Capturing, analysing and tracking the position of sound
sources is a useful technique with application in a variety of
fields, which include reflection tracking in architectural acoustics
[1, 2, 3], sonar navigation and object detection [4, 5], espionage
and the military [6, 7]. An acoustic camera can also be used to
identify sound insulation issues and faults in electrical and me-
chanical equipment. This is due to the fact that in many of these
scenarios, the fault can be identified as an area that emits the most
sound energy. Therefore, calculating the energy in multiple direc-
tions and subsequently generating a power-map that depicts their
energies relative to each-other is an effective method of identifying

∗ The research leading to these results has received funding from the
Aalto ELEC school.

the problem area. There have also been instances which incorpo-
rate a spherical video. One example is in [8], where a parabolic
mirror with a single camera sensor is utilised and the image is then
obtained after unwrapping. For a study using single and multiple
cameras, the reader is directed to [9].

One approach to developing an acoustic camera is to utilise
a rectangular or circular microphone array and then apply beam-
forming in several directions to generate the power-map. How-
ever, a more common approach is to use a spherical microphone
array, as it conveniently allows for the decomposition of the sound
scene into individual spatial components, referred to as spherical
harmonics [10]. Using these spherical harmonics, it is possible to
carry out beamforming with similar spatial resolution for all direc-
tions on the sphere. Therefore, these are preferred for use-cases
in which a large field of view has to be analysed. The most com-
mon signal-independent beamformer in the spherical harmonic do-
main is based on the plane wave decomposition (PWD) algorithm,
which (as the name would suggest) relies on the assumption that
the sound sources are received as plane-waves, which makes it
suited only for far-field sound sources [11]. These beam patterns
can be further manipulated using in-phase [12], Dolph-Chebyshev
[10] or maximum energy weightings [13].

Signal-dependent beamformers can also be utilised in acoustic
cameras with the penalty of higher computational cost. A com-
mon solution is the minimum-variance distortion-less response
(MVDR) algorithm [14]. This approach takes into account the
inter-channel dependencies between the microphone array signals,
in an attempt to enhance the beamformers performance by placing
nulls to the interferers. However, the performance of such an al-
gorithm is relatively sensitive in scenarios where high background
noise and/or reverberation are present in the sound scene [15]. An
alternative approach, proposed in [16], is to apply pre-processing
in order to separate the direct components from the diffuse field.
This subspace-based separation has been shown to dramatically
improve the performance of existing super-resolution imaging al-
gorithms [17]. Another popular subspace-based approach is the
multiple signal classification (MUSIC) algorithm [18], which has
been orientated as a multiple speaker localisation method in [19],
by incorporating a direct-path dominance test.

A recent spatial filtering technique, which can potentially be
applied to spherical microphone arrays, is the cross-pattern coher-
ence (CroPaC) algorithm [20]. It is based on measuring the cor-
relation between coincident beamformers and providing a post fil-
ter that will suppress noise, interferers and reverberation. The ad-
vantage of CroPaC, when compared to other spatial filtering tech-
niques, is that it does not require the direct estimation of the mi-
crophone noise. The algorithm has recently been extended in the
spherical harmonic domain for arbitrary combinations of beam-
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formers in [21].
The purpose of this work is to detail a scalable acoustic cam-

era system that utilises a spherical microphone array and a spher-
ical video camera, which are placed in a near-coincident fashion.
Several different static and adaptive beamforming techniques have
been implemented within the system and care has been taken to
ensure that the proposed system is accessible to a wide range of
acoustic practitioners. Additionally, we investigate the use of a
coherence-based parameter to generate the power-maps. The main
contributions of this work can be summarised as:

• The capture and analysis of a sound scene using a micro-
phone array and subsequently estimating a parameter to de-
termine sound source activity in specific directions.

• The development of a real-time VST plug-in, for spatially
encoding the microphone array signals into spherical har-
monic signals.

• Devising a real-time acoustic camera, also implemented as
a VST plug-in, by utilising a commercially available spher-
ical microphone array and spherical camera.

• The use of vector-base amplitude panning (VBAP) [22], in
order to interpolate the power-map grid.

• Optimal side-lobe suppression of the CroPaC spatial filters
for analysis purposes.

This paper is organised as follows. In Section 2 we provide the
necessary background on spherical microphone array processing,
which includes the encoding of the microphone signals into spher-
ical harmonic signals and common signal-dependent and signal-
independent beamforming techniques. In Section 3 we elaborate
the proposed theoretical background for generating the power-
maps. In Section 4 the details of the hardware and software are
shown in detail. Finally, in Section 5 we present our conclusions.

2. SPHERICAL MICROPHONE ARRAY PROCESSING

Spherical microphone arrays (SMA) are commonly utilised for
sound field analysis for three-dimensional (3-D) spaces, as they
provide a similar performance in all directions when sensors are
placed uniformly or nearly-uniformly on the sphere. In this sec-
tion we provide a brief overview of how to estimate the spherical
harmonic signals from the microphone signals and how to perform
adaptive and non-adaptive beamforming in the spherical harmonic
domain. Only the details required for the current implementation
are included here. For a detailed overview of these methods, the
reader is referred to [12, 23, 10, 24, 25].

Note that matrices, M, have been denoted using bold upper-
case letters and vectors, v, are denoted with bold lower-case let-
ters.

2.1. Spatial encoding

The SMA may be denoted with Q sensors at Ωq = (θ, φ, r) loca-
tions with θ ∈ [−π/2, π/2] denoting elevation angle, φ ∈ [−π, π]
azimuthal angle and r the radius. A common approach is to de-
compose the microphone input signal, x ∈ CQ×1, into a set of
spherical harmonic signals for each frequency. The accuracy of
this decomposition depends on the microphone distribution on the
sphere, the type of the array and the radius [10]. The total num-
ber of microphones defines the highest order of spherical harmonic

signals L that can be estimated. Please note that the frequency and
time indexes are omitted for the brevity of notation.

The spherical harmonic signals can be estimated as

s = Wx, (1)

where

s = [s00, s1−1, s10, . . . , sLL−1, sLL]T ∈ C(L+1)2×1, (2)

are the spherical harmonic signals and W ∈ C(L+1)2×Q is the
frequency-dependent spatial encoding matrix. For uniform or
nearly-uniform microphone arrangements, it can be calculated as

W = αqWlY
†, (3)

where αq are the sampling weights, which depend on the micro-
phone distribution on the sphere [10]. The sampling weights can
be calculated as αq = 4π

Q
. Furthermore, Wl ∈ C(L+1)2×(L+1)2

is an equalisation matrix that eliminates the effect of the sphere,
defined as

Wl =



w0

w1

w1

w1

. . .
wL


, (4)

where

wl =
1

bl

|bl|2

|bl|2 + λ2
, (5)

where bl are frequency and order-dependent modal coefficients,
which contain the information of the type of the array, open
or rigid, and the type of sensors, omnidirectional or directional.
Lastly, λ is a regularisation parameter that influences the micro-
phone noise amplification. For details of some alternative options
for calculating the equalisation matrix Wl, the reader is referred
to [26, 27], or for a signal-dependent encoder [28]. Y(Ωq) ∈
RQ×(L+1)2 is a matrix containing the spherical harmonics

Y(Ωq) =



Y00(Ω1) Y00(Ω2) . . . Y00(ΩQ)
Y−11(Ω1) Y−11(Ω2) . . . Y−11(ΩQ)
Y10(Ω1) Y10(Ω2) . . . Y10(ΩQ)
Y11(Ω1) Y11(Ω2) . . . Y11(ΩQ)

...
...

...
...

YLL(Ω1) YLL(Ω2) . . . YLL(ΩQ)



T

, (6)

where Ylm are the individual spherical harmonics of order l ≥ 0
and degree m ∈ [−l, l].

2.2. Generating power-maps and pseudo-spectrums in the
spherical harmonic domain

A power-map can be generated by steering beamformers in multi-
ple directions, as dictated by some form of pre-defined grid. The
energy of these beamformed signals can then be calculated and
subsequently plotted with an appropriate colour gradient.

Static beamformers in the spherical harmonic domain can be
generated using

y(Ωj) = wH
PWDs, (7)
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where y denotes the output signal for direction Ωj and wPWD ∈
C(L+1)2×1 is a vector containing the beamforming weights, cal-
culated as

wPWD = y(Ωj)� d, (8)

where y(Ωj) ∈ C1×(L+1)2 are the spherical harmonics for di-
rection Ωj , � denotes the Hadamard product and d is a vector of
weights, defined as

d = [d0, d1, d1, d1, . . . , dL]T ∈ R(L+1)2×1. (9)

The weights d can be adjusted to synthesise different types of axis
symmetric beamformers: regular [10], in-phase [12], maximum
energy [13, 23] and Dolph-Chebyshev [10]. A comparison of the
performance of these beamformers as DOA estimators is given
in [21]. The spherical harmonic signals or a spherical harmonic-
domain beamformer can be steered to an arbitrary angle. Steering
matrices for rotationally symmetric functions can be obtained us-
ing real multipliers [29]. Rotations for arbitrary angles can also be
performed by utilising the Wigner-D weighting [30], or by utilis-
ing projection methods [31].

Adaptive beamformers may also be utilised for generating
power-maps. Typically, these signal-dependent methods oper-
ate on the covariance matrix of the spherical harmonic signals
Clm ∈ C(L+1)2×(L+1)2 , which can be estimated as

Clm = WCxW
H , (10)

where Cx = E
[
xxH

]
∈ CQ×Q is the covariance matrix of the

microphone input signals and E [·] represents a statistical expec-
tation operator. The covariance matrix can be estimated using an
average over finite time frames, typically in the range of tens of
milliseconds, or by employing recursive schemes.

A popular signal-dependent beamforming approach is to solve
the MVDR minimisation problem, which aims to synthesise a
beam that adaptively changes according to the input signal. The
response of this beamformer is constrained to have unity gain in
the look direction, while the variance of the output is minimised
[10]. This minimisation problem is defined as

minimise wClmwH

subject to y(Ωj)w
H = 1,

(11)

which can be solved to obtain the beamforming weights using

w =
y(Ωj)C

−1
lm

y(Ωj)C
−1
lm yH(Ωj)

. (12)

The main advantage of applying the MVDR algorithm in the
spherical harmonic domain, instead of utilising the microphone
signals directly, is that the steering vectors are simply the spheri-
cal harmonics for different angles.

Alternatively, instead of generating a traditional power-map
using beamformers, a pseudo-spectrum may be obtained by utilis-
ing subspace methods, such as the MUSIC algorithm described
in [19]. First, the signal Us ∈ C1×1 and noise Un ∈
C(L+1)2−1×(L+1)2−1 subspaces are obtained via a singular-value
decomposition (SVD) of the spherical harmonic covariance matrix

Clm = UΣUH = [UsUn]

[
Σs 0
0 Σn

] [
Us

Un

]
, (13)

Figure 1: Visualisation of a CroPac beam for L = 2 before and
after half-wave rectification, shown in the left and right plots, re-
spectively.

where Σ denotes the singular values and Clm is of unit effective
rank.

A direct-path dominance test is then performed, in order to
ascertain which time-frequency bins provide a significant contri-
bution to the direct path of a sound source. These time-frequency
bins are selected by determining whether the first singular value,
σ1 of matrix Σ is significantly larger than the second singular
value, σ2

σ1

σ2
> β, (14)

where β ≥ 1 is a threshold parameter.
Essentially, this subspace method is based on the assumption

that the direct path of a sound source will be characterised with
higher energy than the reflecting path [19]. However, unlike the
PWD and MVDR approaches, where a power-map is generated by
depicting the relative energy of beamformers, the MUSIC pseudo-
spectrum is obtained as

SMAP(Ωj) =
1

y(Ωj)
(
I−UsUs

H
)
yH(Ωj)

, (15)

where SMAP is the pseudo-spectrum value for direction Ωj , and I
is an identity matrix.

3. COHERENCE-BASED SOUND SOURCE TRACKING

In this work, instead of utilising beamformers to generate an
energy-based power-map or utilising subspace methods to gener-
ate a pseudo-spectrum, we estimate a parameter using the cross
spectrum of different beamformers. This parameter, the cross pat-
tern coherence (CroPaC), has been utilised for spatial filtering ap-
plications, where it has been shown to be effective in noisy and
reverberant conditions [20, 32]. In this section we propose a gener-
alisation of the algorithm presented in [20] for SMAs, using static
beamformers and microphone arrays that define an arbitrary or-
der L. A novel approach of suppressing the side-lobes of CroPaC
beams is also explored.

3.1. Cross-spectrum-based parameter estimation

The CroPaC algorithm estimates the probability of a sound source
emanating from a specific direction in a 3-D space. The time-
domain microphone signals are initially transformed into the
spherical harmonic domain according to the formulation shown
in Section 2.1, up to order L. The spherical harmonic signals are
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(a) Side-lobe suppression for order L = 1. The two beams on the left show the rotating beam patterns and the
beam on the far-right is the resulting beam pattern.

(b) Side-lobe suppression for order L = 2. The three beams on the left show the rotating beam patterns and the
beam on the far-right is the resulting beam pattern.

(c) Side-lobe suppression for order L = 3. The four beams on the left show the rotating beam patterns and the
beam on the far-right is the resulting beam pattern.

Figure 2: Visualisation of side-lobe cancellation for L = 1, 2, 3.

then transformed into the time-frequency domain and a parameter
is estimated for each frequency, k, and time index, n. The cross
spectrum is then calculated between two spherical harmonic sig-
nals of orders L and L+ 1 and the same degree m

G(Ωj , k, n) = λ
<[sL(Ωj , k, n)∗sL−1(Ωj , k, n)]∑L+1

L |sL(Ωj , k, n)|2
, (16)

where < denotes the real operator, sL and sL−1 are the spherical
harmonic signals for a look direction Ωj and the same degree m,
* denotes the complex conjugate and λ is an order-dependent nor-
malisation factor to ensure thatGMAP ∈ [0, 1]. The normalisation
factor can be calculated as

λ =
(L+ 1)2 − (L− 1)2 + 1

2
=

4L+ 1

2
. (17)

The power-map is then estimated for a grid of look directions Ω =
(Ω1,Ω2, . . . ,ΩJ), averaged across frequencies and subjected to a

half-wave rectifier. The resulting power-map is then given by

GMAP(Ωj , n) = max
[
0,

1

K

K∑
k=1

G(Ωj , k, n)
]
. (18)

The half-wave rectification process ensures that only sounds ar-
riving from the look direction are analysed. An illustration of the
effect of the half-wave rectification process to the directional se-
lectivity of the CroPaC beams is depicted in Fig. 1.

3.2. Side-lobe suppression

The calculation of the spectrum between different orders of beam-
formers results in the creation of unwanted side-lobes that exhibit
different shapes depending on the order. A visual depiction of
these aberrations, in Fig. 2, have been generated by multiplying
the following spherical harmonics together: YLLY(L+1)(L+1) for
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Figure 3: Block diagram of the proposed parametric acoustic camera system. The microphone array signals are processed in the time-
frequency domain using the proposed parametric analysis. The output is then averaged across frequencies and the grid is interpolated with
VBAP for visualisation. The resulting power-map is projected on top of the spherical video.

L = 1 (Fig. 2, (a), left), L = 2 (Fig. 2, (b), left) and L = 3 (Fig.
2, (c), left).

These side-lobes can potentially introduce biases in the power-
map. Therefore, in this sub-section we propose a technique to sup-
press these side-lobes by multiplying rotated versions of the esti-
mated beams. The number of estimated beams is determined by
the order L. The side-lobe suppressing parameter GSUP is esti-
mated as

GSUP(Ωj , n) =


GMAP(Ωj , n) , if L = 1
L∏
i=1

GρiMAP(Ωj , n) , if L > 1,
(19)

where ρi is a parameter that defines an axis symmetric roll on the
direction of the beam of π

L
radians. Such a roll can successfully

suppress side-lobes that are generated by the multiplication of the
different spherical harmonics. This concept is illustrated in Fig. 2.
Each row illustrates the side-lobe suppression for different orders.
In the top row L = 1, which results in a single roll of π

2
in (19).

For L = 2 (middle row) and L = 3 (bottom row) three and four
rolls of π

3
and π

4
are applied, respectively. The resulting enhanced

beam patterns GSUP ∈ [0, 1], which are derived from the product
of multiple GMAP ∈ [0, 1], are shown on the right-hand side of
the figures.

4. IMPLEMENTATION DETAILS

In order to make the software easily accessible, the acoustic cam-
era was implemented as a virtual studio technology (VST) audio
plug-in1 using the open-source JUCE framework. The motivation
for selecting the VST architecture, is the wide range of digital
audio workstations (DAWs) that support them. This enables an
acoustic practitioner to select their DAW of choice, which will in
turn act as the bridge between real-time microphone signal cap-
ture and the subsequent visualisation of the energy distribution in
the sound scene. The rationale behind the selection of JUCE is the
many useful classes it offers; most notably of which is camera sup-
port, which allows for real-time video to be placed behind the cor-
responding power-map. Additionally, the framework is developed
with cross-platform support in mind and can also produce other
audio plug-in formats, provided that the corresponding source de-
velopment kits are linked to the project.

1The VST plug-ins are available for download on the companion web-
page: http://research.spa.aalto.fi/publications/papers/acousticCamera/

The algorithms within the acoustic camera have been gener-
alised to support spherical harmonic signals up to the 7th order.
These signals can be optionally generated by using the accom-
panying Mic2SH VST, which accepts input signals from spher-
ical microphone arrays such as A-format microphones (1st or-
der) or the Eigenmike (up to 4th order). In the case of the
Eigenmike, Mic2SH will also perform the necessary frequency-
dependent equalisation, described in Section 2.1, in order to miti-
gate the radial dependency incurred when estimating the pressure
on a rigid sphere. Different equalisation strategies have been im-
plemented that are common in the literature, such as the Tikhonov-
based regularised inversion [23] and soft limiting [33].

In order to optimise the linear algebra operations, the code
within the audio plug-in has been written to conform to the ba-
sic linear algebra library (BLAS) standard. Other operations such
as the lower-upper (LU) factorisation and SVD are addressed by
the linear algebra package (LAPACK) standard; for which Apple’s
accelerate framework and Intel’s MKL are supported for the Mac
OSX and Windows versions, respectively.

The overall block diagram of the proposed system is shown
in Fig. 3. The time-domain microphone array signals are initially
transformed into spherical harmonic signals using the Mic2SH au-
dio plug-in, which are then transformed into the time-frequency
domain by the acoustic camera. For computational efficiency
reasons, the spherical harmonic signals are rotated after the
time-frequency transform towards the points defined by the pre-
computed spherical grid. These signals are then fed into a beam-
former unit, which forms the two beams that are required to com-
pute the cross-spectrum based parameter for each grid point. Note
that when the side-lobe suppression mode is enabled, one parame-
ter is estimated per roll and the resulting parameters are multiplied,
as defined in (19). For visualisation, the parameter value at each
of the grid points is interpolated using VBAP and projected on top
of the spherical video.

The user-interface for the acoustic camera consists of a view
window and a parameter editor (see Fig. 3). The view window dis-
plays the camera feed and overlays the user selected power-map
in real-time. The field-of view (FOV) and the aspect ratio are user
definable in the parameter editor, which allows the VST to accom-
modate a wide range of different web-cam devices. Additionally,
the image frames from the camera can be optionally mirrored us-
ing an appropriate affine transformation (left-right, or up-down);
in order to accommodate for a variety of different camera orienta-
tions.
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(b) Nearly-uniform spherical grid plotted on a 2-D
equirectangular plane (black colour) and a 2-D VBAP
interpolated grid overlay (cyan colour).

Figure 4: Spherical and interpolated grids.

4.1. Time-frequency transform

The time-frequency transform utilised in this work is filter-bank-
based and was implemented originally for the study in [21] 2. The
filter-bank was configured to use a hop size of 128 samples and an
FFT size of 1024. Additionally, the optional hybrid filtering mode
offered by the filter-bank was enabled, which allows for more res-
olution in the low frequency region by dividing the lowest four
bands into eight; thus, attaining 133 frequency bands in total. A
sampling rate of 48 kHz was chosen, and the power-map analy-
sis utilises frequency bands with centre frequencies between [140,
8000] Hz. The upper limit of 8000 Hz was selected due to the spa-
tial aliasing of the microphone array used [34].

4.2. Power-map modes and sampling grids

The power-map is generated by sampling the sphere with a spheri-
cal grid. A precomputed almost-uniform spherical grid was chosen
that provides 252 nearly-uniformly distributed data points on the
sphere. The grid is based on the 3LD library [35], where the points
are generated by utilising geodesic spheres. This is performed by
tessellating the facets of a polyhedron and extending them to the
radius of the original polyhedron. The intersection points between
them are the points of the spherical grid. Two different power-map
modes and two pseudo-spectrum methods were implemented in
the spherical harmonic domain: conventional signal-independent
beamformers (PWD, minimum side-lobe, maximum energy and
Dolph-Chebyshev); MVDR beamformers; multiple signal classi-
fication (MUSIC); and the proposed cross-spectrum-based with
the additional side-lobe suppression. The power-map/pseudo-
spectrum values are then summed over the analysis frequency
bands and averaged over time slots using a one-pole filter

ĜSUP(Ωj , n) = αĜSUP(Ωj , n) + (1− α)GSUP(Ωj , n− 1),
(20)

21https://github.com/jvilkamo/afSTFT

where α ∈ [0, 1] is the smoothing parameter. The spherical power-
map values are then interpolated to attain a two-dimensional (2-D)
power-map, using pre-computed VBAP gains. The spherical and
interpolated grids are shown in Fig. 4. These 2-D power-maps are
then further interpolated using bi-cubic interpolation depending on
the display settings and are normalised such that ĜSUP ∈ [0, 1].
The pixels that correspond to the 2-D interpolated results are then
coloured appropriately, such that red indicates high energy and
blue indicates low energy. Additionally, the transparency factor
is gradually increased for the lower energy valued beams to ensure
that they do not unnecessarily detract from the video stream.

4.3. Example power-maps

Power-maps examples are shown in Fig. 5 for four different
modes: the basic PWD beamformer, the adaptive MVDR beam-
former, the subspace MUSIC approach, and the proposed tech-
nique. The recordings were performed by utilising the Eigen-
mike microphone array and a RICOH Theta S spherical camera.
Fourth order spherical harmonic signals were generated using the
accompanying Mic2SH VST plugin, which were then used by all
four power-map modes. The video was unwrapped using the soft-
ware provided by RICOH and then combined with the calculated
power-map to complete the acoustic camera system. However,
since the camera may not be facing the same look direction as
the microphone array, a calibration process is required in order to
align the power-map with the video stream. However, it should
be noted that since the two devices do not share a common ori-
gin, sources that are very close to the array may not be correctly
aligned. The resulting power-maps are shown for two different
recording scenarios: a staircase of high reverberation time of ap-
proximately 2 seconds (Fig. 5, bottom) and a corridor of approxi-
mately 1.5 seconds (Fig. 5, top).

It can be seen from Fig. 5(top) that there is one direct source
and at least one prominent early reflection. However, in the case
of PWD, the distinction between the two paths is the least clear,
and also erroneously indicates that the sources are spatially larger
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(a) PWD, corridor (b) MVDR, corridor (c) MUSIC, corridor (d) proposed, corridor

(e) PWD, stairs (f) MVDR, stairs (g) MUSIC, stairs (h) proposed, stairs

Figure 5: Images of the acoustic camera VST display, while using fourth order spherical harmonic signals and the four processing modes
in reverberant environments.

than they actually are. The distinction between the two paths is
improved slightly when using MVDR beamformers, which is im-
proved further when utilising the MUSIC algorithm. However, in
the case of the proposed technique, the two paths are now com-
pletely isolated and a second early reflection with lower energy is
now visible; which is not as evident in the other three methods.
PWD also indicates a sound source that is likely the result of the
side-lobes pointing towards the real sound source; thus, highlight-
ing the importance of side-lobe suppression for acoustic camera
applications. Fig. 5(bottom) indicates similar performance; how-
ever, in the case of MUSIC, the ceiling reflection is more difficult
to distinguish as a separate entity.

5. CONCLUSIONS

This paper has presented an acoustic camera that is easily acces-
sible as a VST plug-in. Among the possible power-map modes
available, is the proposed coherence-based parameter, which can
be tuned to this particular use case via additional suppression of
the side-lobes. This method presents an intuitive approach to at-
taining a power-map, and is potentially easier and computationally
cheaper to implement than MVDR or MUSIC, as it does not rely
on lower-upper decompositions, Guassian Elimination, or singular
value decompositions. It is also demonstrated that in the simple
recording scenarios, the proposed method can be inherently toler-
ant to reverberation.

6. REFERENCES

[1] Adam O’Donovan, Ramani Duraiswami, and Dmitry Zotkin,
“Imaging concert hall acoustics using visual and audio cam-
eras,” in Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on. IEEE,
2008, pp. 5284–5287.

[2] Angelo Farina, Alberto Amendola, Andrea Capra, and Chris-
tian Varani, “Spatial analysis of room impulse responses cap-
tured with a 32-capsule microphone array,” in Audio Engi-
neering Society Convention 130. Audio Engineering Society,
2011.

[3] Lucio Bianchi, Marco Verdi, Fabio Antonacci, Augusto
Sarti, and Stefano Tubaro, “High resolution imaging of

acoustic reflections with spherical microphone arrays,” in
Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2015 IEEE Workshop on. IEEE, 2015, pp. 1–5.

[4] GC Carter, “Time delay estimation for passive sonar signal
processing,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 3, pp. 463–470, 1981.

[5] H Song, WA Kuperman, WS Hodgkiss, Peter Gerstoft, and
Jea Soo Kim, “Null broadening with snapshot-deficient co-
variance matrices in passive sonar,” IEEE journal of Oceanic
Engineering, vol. 28, no. 2, pp. 250–261, 2003.

[6] RK Hansen and PA Andersen, “A 3d underwater acoustic
camera: properties and applications,” in Acoustical Imaging,
pp. 607–611. Springer, 1996.

[7] Russell A Moursund, Thomas J Carlson, and Rock D Pe-
ters, “A fisheries application of a dual-frequency identifica-
tion sonar acoustic camera,” ICES Journal of Marine Sci-
ence: Journal du Conseil, vol. 60, no. 3, pp. 678–683, 2003.

[8] Leonardo Scopece, Angelo Farina, and Andrea Capra, “360
degrees video and audio recording and broadcasting employ-
ing a parabolic mirror camera and a spherical 32-capsules
microphone array,” IBC 2011, pp. 8–11, 2011.

[9] Adam O’Donovan, Ramani Duraiswami, and Jan Neumann,
“Microphone arrays as generalized cameras for integrated
audio visual processing,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE,
2007, pp. 1–8.

[10] Boaz Rafaely, Fundamentals of spherical array processing,
vol. 8, Springer, 2015.
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