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ABSTRACT

In recent years there has been an increasing amount of interest in
the style of synthesis implemented by Don Buchla in his instru-
ment designs from the early 1960s until the present. A key part
of the Buchla synthesizer and its characteristic quality is the ’low-
pass gate’ filter and the acoustic-like plucked sounds that it pro-
vides. In this work we examine the circuit of the low-pass gate,
both its audio and control portions. We propose a number of digi-
tal models of these circuits, as well as a model of the photoresistive
optoisolator or ’vactrol’ used within them. In the case of the audio
path of the device, we pay particular attention to maintaining desir-
able behavior under time-variation of its parameters. The resulting
digital model retains much of the interesting character of the ana-
log system, and is computationally cheap enough to use within a
standard computer-music setup.

1. INTRODUCTION

In parallel to Bob Moog’s early work on the analog synthesiser
[1], work towards a modular analog synthesis system was also
proceeding on the other side of the USA in California. Driven
by the composers like Morton Subotnick and the San Francisco
Tape Music Centre, Don Buchla was developing the ’Buchla Mu-
sic Box’ [2], a modular analog synthesiser with a very different fo-
cus than Moog’s system. Whereas synthesis in the Moog paradigm
was based primarily on the shaping of harmonically rich but static
waveforms with a resonant low-pass filter – so-called ’subtractive’
synthesis, the synthesis used in Buchla’s instruments had a con-
trasting approach. In the Buchla system, the primary focus was on
varying timbre at the oscillator level via nonlinear wave-shaping or
frequency modulation techniques. These waveforms would then
be processed through the ’low-pass gate’ (LPG), a special kind of
filter invented by Buchla that used photoresistive opto-isolators or
’vactrols’ as its voltage controlled resistance element.

The LPG was a very different tool to the Moog-style filter.
Firstly, it exhibited a fairly gentle roll-off of high frequencies. Sec-
ondly, when turned to low cutoff values it began to attenuate the
sound as well as filter it. Lastly, the vactrol used for control exhib-
ited a very lazy response to modulation – it would track increas-
ing values very quickly, but decreasing values much more slowly.
This resulted in a very musical behaviour. The filter’s control in-
put could be hit with an impulse or short envelope, and the filter
would open very quickly before decaying slowly away to silence.
The sound produced was very much like that of a struck physical
object. This property was used extensively in, for example, the
works of Morton Subotnick.
∗ This work was supported by GETA

The recent explosion of interest in analog modular synthesis,
and particularly the work of ’west coast’ designers such as Don
Buchla and Serge Tcherepnin, has lead to a great resurgence in
interest in the lowpass gate. Contemporary manufacturers such as
Make Noise Music and Doepfer manufacture their own takes on
the circuit, and many designs are available in the public domain
for those inclined to build themselves. Hence, it is desirable to
attempt to create a ’virtual analog’ (VA) version of the filter for
use in computer-music situations. VA research has been a popular
topic in recent years, and has examined many of the tools of analog
synthesis – particularly filters [3, 4, 5, 6, 7, 8, 9, 10] and effects
processing [11, 12, 13].

In this paper we examine a simplified version of the Buchla
low-pass gate, constructed from Buchla’s own Model 292 designs1,
and derivative public domain versions of the circuit2. This version
of the circuit is meant to be a ’canonical’ version – one that con-
tains all the important behaviours and features of the system, but
without the many tweaks and alterations that were added for spe-
cific applications or to compensate for certain misbehaving com-
ponents.

In Sec. 2 we describe the audio path circuitry of the filter, and
develop two discretizations of it. The first is a simple approach
based on the discretisation of the transfer function. The second
takes a more complex approach, which preserves the topology
of the system and behaves significantly better under time-varying
conditions. We also propose a method for extending this model
to the non-linear case. In Sec. 3 we describe the control circuitry
of the device and how it can be modelled digitally, including the
behaviour of the vactrol. In Sec. 4 we briefly describe an imple-
mentation of the complete model. In Sec. 5, we conclude.

2. AUDIO PATH

Fig. 1 shows a schematic of the simplified version of the Buchla
292 audio path. The filter centre frequency is controlled by vari-
ation of Rf , which is the resistive part of a photoresistive opto-
isolator or ’vactrol’. The specific vactrol used in this circuit is
generally the Perkin Elmer VTL5C3 or VTL5C3/2 [14]. The orig-
inal implementations of the circuit contain a 3-pole switch. For
simplicity, this is represented here as two one-pole switches. This
switch was used to switch between the three modes of the device
– ’Both’, ’VCA’ and ’Lowpass’.

In ’Both’ mode, the circuit consists of a passive two-pole filter
network. This corresponds to the circuit shown in Fig. 1 with both

1http://rubidium.dyndns.org/~magnus/synths/
companies/buchla/

2http://modularsynthesis.com/nrm/lopass/lopass.
htm
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Figure 1: Simplified schematic of the Buchla 292 LPG audio path.

switches disengaged. In this mode the system acts as a two-pole
lowpass filter, with the cutoff frequency controlled by Rf . The
poles of the filter are not-coincident, and so the slope of the filter
is closer to -6dB/oct than -12db/oct. When Rf gets close to the
value of Rα, a potential divider is formed and the overall gain of
the system begins to drop.

In ’VCA’ mode, an additional low-value resistor is added in
parallel to Rα. This is equivalent to only the ’VCA’ switch in
our schematic being engaged. This is clearly equivalent to simply
lowering the value of Rα (and it will be modeled this way during
the rest of this work). The effect of this change in resistance is
that the poles of the filter are shifted to a higher frequency and the
potential-divider effect of the combination ofRf andRα begins at
lower values ofRf . The result is that variation ofRf now provides
reasonably clean attenuation of the input signal, hence the name
’VCA’ mode. In the real circuits, the ’VCA’ switch also changes
the input op-amp configuration (not shown) so that it has a gain of
4-5dB instead of unity, presumably to normalize loudness between
the modes.

In ’Lowpass’ mode, an extra feedback path containing a ca-
pacitor C3 is switched into the circuit. This changes the topology
of the circuit to closely resemble a Sallen-Key [15] filter. Com-
pared to a standard S-K filter, this circuit contains an extra ca-
pacitor C2 and a shorting resistor Rα. The resulting frequency
response is steeper than that of ’Both’ mode, with a small resonant
bump at the cutoff frequency. We have also added a feedback am-
plifier to this path in order to provide control over the level of this
resonant peak. This is not present in the original Buchla versions
of the circuit, but it is present in more recent derivative circuits.
This mode can be simulated in a model by setting the value of ca-
pacitor C3. Using a value of C3 = 0 disengages the feedback
path.
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Figure 2: Magnitude response of modes of LPG circuit, for values
of Rf between 1kΩ and 1MΩ.

The component values used to model the circuit in the three
different modes are given in Table 1. The magnitude responses of
the circuit in each mode, as Rf is varied, are given in Fig. 2.

Table 1: Values of fixed components in different modes of circuit
from Fig. 1.

Component Both VCA Lowpass
C1 1nF 1nF 1nF
C2 220pF 220pF 220pF
C3 0 0 4.7nF
Rα 5 MΩ 5 kΩ 5 MΩ

2.1. Continuous Model

We can construct the differential equations governing the circuit
given in Fig. 1 by applying Kirchoff’s Current Law (KCL) at the
nodes. Firstly, assuming ideal op-amp behavior, we can write the
equations at nodes Vout and Vfb as:

Vout = V+ (1)
Vfb = aVout (2)

where a is a gain coefficient dependent on the configuration of the
resistors in the feedback amplifier.

We then write down the KCL equations at nodes Vx and V+

respectively:

Vin − Vx
Rf

+
V+ − Vx
Rf

− C2
dVx
dt

+ C3
d

dt
(Vfb − Vx) = 0 (3)

Vx − V+

Rf
− V+

Rα
− C1

dV+

dt
= 0 (4)

By substituting in the expressions for Vout and Vfb, we obtain the
governing differential equations of the system, in terms of Vx and
Vout:

dVx
dt

= b1Vin + b2Vx + b3Vout + b4
d

dt
(d1Vout + d2Vx) (5)

dVout

dt
= a1Vx + a2Vout (6)

where

a1 =
1

C1Rf
, a2 = − 1

C1
(

1

Rf
+

1

Rα
), d1 = a, d2 = −1,

b1 =
1

C2Rf
, b2 = − 2

C2Rf
, b3 =

1

C2Rf
, b4 =

C3

C2
.

2.1.1. Transfer function

By substituting Eq. (6) into (5) and transforming to the Laplace
domain, we can construct the transfer function of the filter:

HLPG(s) =
1

α1 + α2s+ α3s2
(7)

where

α1 = 1 +
2Rf
Rα

(8)

α2 = Rf (2C1 + C2 − C3(a− 1) + (C2 + C3)
Rf
Rα

) (9)

α3 = R2
fC1(C2 + C3) (10)
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From the transfer function, we can derive an expression giv-
ing the feedback path amplification, a, necessary to produce the
maximum resonant peak gain. We do this by evaluating |HLPG| on
the imaginary axis, finding the maximum by taking the derivative
w.r.t. frequency, and then evaluating the function at this point. We
can then take the derivative of this function w.r.t. a, and solve the
resulting expression to find the maximum w.r.t. a:

amax =
2C1Rα + (C2 + C3)(Rα +Rf )

C3Rα
(11)

When a > amax, the poles of the circuit cross the imaginary
axis and the system becomes unstable.

By evaluating HLPG at DC, we can see that the DC gain is
given by:

HLPG(0) =
Rα

Rα + 2Rf
(12)

This expression highlights the potential-divider action that appears
when the value of Rf nears the value of Rα. It can also be used
to normalise the loudness between modes by calculating the dif-
ference in DC gain between the modes whenRf is at its minimum
value (which depends on the physical properties of the vactrol).

2.2. Discretization

A variety of approaches can be taken to the discretization of the
system given in Eqs. (5) and (6). In this section we examine two
such approaches.

2.2.1. Direct form model

The simplest and most traditional approach to discretization would
be to apply the bilinear transform to transfer function (7), thus
obtaining a z-domain transfer function which can be implemented
in one of any number of standard digital filter topologies. The
resulting digital transfer function is of the form:

HLPG

(
2Fs

z − 1

z + 1

)
= HLPG(z) =

βd1 + βd2z
−1βd3z

−2

αd1 + αd2z−1αd3z−2
(13)

i.e. a two-pole, two-zero digital filter.
Any of the direct form topologies could be used to implement

this transfer function. For the purpose of this work we use direct
form II transposed, which exhibits advantageous numerical prop-
erties in many situations [16]. To mitigate the frequency-warping
effects of the bilinear transform, we recommend oversampling the
filter by a factor of 2. This warping effect is often also addressed
by pre-warping the frequency control of the filter. However, in this
case the process of pre-warping is significantly complicated by the
fact that there is no simple cutoff frequency parameter. The posi-
tion of the poles of the filter is a complicated function of Rf , Rα
and the capacitor values. As such, oversampling is a better option.

Magnitude responses for the discretised filter implemented via
this method are shown in Fig. 5. The match with the continuous-
time responses given in Fig. 2 is reasonably good for ’VCA’ and
’Lowpass’ modes.

The real drawback of this implementation is encountered when
modulating the filter. Modulation appears to produce transients
within the structure, which cause the output of the filter to grow.
Long-term modulation can cause the filter output to diverge to in-
finity. This is obviously not desirable for a musical filter which
is intended to be modulated. The reason for this behaviour is that

when we simplified Eqs. (5) and (6) to the transfer function (7),
we implicitly discarded the true states of the system (the capacitor
voltages), and constructed new states based on the output of the
entire system at previous time-steps. This change of states also
obviously includes a change to the coefficients used to update the
states (i.e. the state transition matrix), which govern the stabil-
ity of the system. In time-invariant conditions, this change does
not effect the system’s response. However when parameters are
varied, particularly when they are varied quickly, the behaviour of
the system can be wildly different. It’s also worth noting that the
original system had three states (one for each capacitor), whereas
the system in transfer-function form has only two states. This is
because one of the states of the original system, the voltage associ-
ated with capacitor C3, is dependent purely on the other two states
and hence is degenerate. Collapsing this state into the other states
is fine in the time-invariant case, but not in the time-variant case.

2.2.2. Topology-preserving model

An alternative to discretising the system via its transfer function is
to attempt to build a digital model that preserves the topology of
the system described in Eqs. (5) and (6) by simply replacing any
continuous blocks with their discrete equivalents. Fig. 3 shows this
topology in domain-agnostic form. Preserving the topology of the
system preserves its states, and hence the resulting system should
be well-behaved in time-variant conditions if the continuous-time
system was also well behaved. The structure of the system high-
lighted by this representation is interesting to note. The system
appears to contain two lowpass filters (consisting of capacitors
C1 and C2), surrounded by two feedback loops. One feedback
loop contains only a straight multiplier, and represents the lack of
buffering between and hence interdependence of the two low-pass
filters. The other feedback loop contains a differentiator block, and
represents the action of the capacitor C3.

a1

a2

d1

Figure 3: Block diagram of topology of Eqs. (5) and (6)

The primary problem when discretising a filter via this ap-
proach is the delay-free loops that are formed if the discrete in-
tegrator blocks have a delay-free path through them. One solu-
tion to this problem is to use purely explicit integrators, generally
Forward-Euler. This is the approach taken in the delta-operator
approach to filter design [17]. However, explicit integrators gener-
ally have poor accuracy and very poor stability unless the system is
substantially oversampled. This is because they map stable poles
in the s-plane to unstable poles in the z-plane.

A common approach taken in the virtual analog field has been
to choose more robust implicit integrators such as Backward-Euler
or Trapezoidal, and then insert a z−1 block into any feedback paths
which contain a delay-free loop [3]. This additional delay ele-
ment usually requires some compensation in order to maintain the
correct behaviour of the system. Backward-Euler integrators have
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been used in this context [4], but they possess a similar problem
to Forward-Euler integrators in that they change the Q-factor of
poles when mapping from the s-plane to the z-plane. In this case,
unstable poles are mapped to stable poles, and consequently, whilst
stability is maintained, the relationship between the strength of the
resonant peak of the filter and cutoff frequency which is present
in the continuous system is lost. This is an important perceptual
quality in defining the sound of a synthesizer filter, and hence it is
desirable to maintain. Recent work has applied Trapezoidal inte-
grators in similar structures, which maintain the Q-factor of poles
during the s-plane to z-plane mapping [18].

Another approach has been to instead solve the delay-free loops
by iteration [7, 8, 5, 9], although this is only strictly necessary if
the loop contains a non-linearity. More recently, methods have
been proposed that allow a simpler solution of the implicit prob-
lem [19].

In this work, we apply a method similar to that of Zavalishin
[19]. Firstly, we construct the system by replacing all blocks in
Fig. 3 with their digital equivalent. The integrator blocks and dif-
ferentiator block are implemented using the trapezoidal rule, as
this is the equivalent of the bilinear transform and possesses the
same desirable qualities. The trapezoidal integrators and differen-
tiator are implemented in direct form II transposed (DF2T). Their
block diagrams are given in Fig. 4. Addition blocks and multipliers
are trivially replaced with their digital equivalent.

z�1

�1
d

dt

z�1

Z

Figure 4: Block diagrams of direct form II transposed (DF2T) in-
tegrator and differentiator elements.

With these digital blocks inserted, we can write expressions
for the outputs of all of the state-containing blocks (the differen-
tiator and integrators) in terms of their own state and their inputs.
If we denote the outputs and states of the blocks as yd and sd for
the differentiator block, yo and so for the Vout integrator and yx
and sx for the Vx integrator, and yi for Vin, we have:

yd = sd + 2Fs(d1yo + d2yx) (14)

yx = sx +
1

2Fs
(b1yi + b2yx + b3yo + b4yd) (15)

yo = so +
1

2Fs
(a1yx + a2yo) (16)

and

sd = −sd − 4Fs(d1yo + d2yx) (17)

sx = sx +
1

Fs
(b1yi + b2yx + b3yo + b4yd) (18)

so = so +
1

Fs
(a1yx + a2yo). (19)

The first set of equations can be treated as a system of linear
equations, with the outputs, yd, yx and yo, as unknowns and the
states and input, sd, sx, so and x as constants. We can then solve

the system with any standard technique to find an expression for
each of the outputs in terms of only the states of the system and the
input. With the outputs calculated, we update the states and move
on to the next sample. This process is equivalent to re-arranging
the system to eliminate the delay-free loops, whilst still maintain-
ing all the individual states.

Alternatively, a more efficient approach is to solve the linear
system for only one of the outputs and then re-arrange the other
two output equations to allow them to be calculated consecutively
from the other outputs in addition to the states and input. For ex-
ample, we could write:

yx =
a2b4sd + 2Fs(b3 − 2b4d1Fs)so − 2a2Fssx − a2b1yi

a1b3 − a2b2 − 2a1b4d1Fs + 2a2b4d2Fs
(20)

yo =
so + a1/2Fsyx

1− a2/2Fs
(21)

yd = sd + 2Fs(d1yo + d2yx) (22)

To improve computational efficiency, many other simplifications
of these equations can be performed – including substituting back
in the original component parameters in an attempt to find a more
efficient form. This form is merely presented for concise explana-
tory purposes.

Magnitude responses of the digital filter produced are shown
in Fig. 5. Again, the filter is oversampled by a factor of 2 to reduce
the frequency warping introduced by the trapezoidal integrators
and differentiator. A close correlation with the magnitude response
of the continuous system from Fig. 2 is seen.

Compared to the DFT2 model, this version performs excel-
lently in terms of time-varying behaviour and stability. The filter
appears to be stable under all physically reasonable parameter val-
ues and under any rate of modulation, without any oversampling.
It becomes unstable when the feedback amplitude a exceeds the
value given by Eq. 11, but this is also the case in the real system.
Modulation with a smooth signal such as a sinusoid does not pro-
duce any unwanted transients or increase in volume, and sounds
clean.
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Figure 5: Magnitude response of modes of digital models of LPG
circuit, for values of Rf between 1kΩ and 1MΩ. Top: DF2T
model. Bottom: Topology-preserving model.

2.2.3. Limiting or decoupling resonance

When used in lowpass mode the LPG circuit exhibits an uneven
resonance response with respect to Rf , as can be inferred from
Eq. (11). In fact, the maximum feedback gain possible before the
system becomes unstable also varies depending on Rf . This be-
haviour is naturally also present in the digital models. We can ame-
liorate the effects of this behaviour in a number of ways. Firstly, if
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we only want to make sure that the filter remains stable no matter
the selection of a, we can use (11) as a dynamic upper limit for
the allowable possible values of a. Alternatively, the expression
can be used to decouple the resonance control fromRf andRα by
defining a new parameter 0 < anorm ≤ 1. We can then use this
value and amax to calculate the actual feedback gain used as:

a = anormamax. (23)

This makes the filter more controllable, but it means that the res-
onance no longer strictly behaves as it does in the real system.
Whether this is appropriate depends on the application of the model.
Note that using this parameterisation, the filter can be made to self-
oscillate over its entire range by setting anorm = 1.

2.3. Non-linearities

The models of the circuit presented above are completely linear.
In reality, some non-linearity may be present in the photoresistive
parts of the vactrol and in the op-amps. In older versions of the cir-
cuit, a transistor buffer is used at the output instead of an op-amp
buffer, which exhibits much more significant non-linear behaviour.
In some recent derivative versions of this circuit, feedback limiting
diodes are used in the resonance feedback pathway. This configu-
ration would exhibit strongly non-linear behaviour similar to that
seen in the filter of the Korg MS-20 [20].

It is not possible to easily introduce non-linear behaviour into
the direct-form based model described in Sec. 2.2.1. The topol-
ogy preserving model described in Sec. 2.2.2 is more suitable.
However, the introduction of non-linearities complicates the so-
lution of the system of equations that is necessary to resolve the
delay-free loops, especially if the non-linearities are transcenden-
tal functions. In order to solve the system, it is necessary to make
an approximation of the non-linearity which leaves the system of
equations in a solvable form. The simplest approximation is to in-
stantaneously linearise the system around the point of operation of
the non-linearity by calculating its tangent. For an arbitrary dif-
ferentiable function of some input x, this linear approximation is
given by:

f(x) ≈ f(xo) + f ′(xo) · (x− xo)
= f(xo)− xof ′(xo) + xf ′(xo) (24)

where xo is the operating point, and priming represents differenti-
ation w.r.t. x. This can also be recognised as the first-order Taylor
approximation of the function around the operating point. If we
treat the operating point xo as a constant, we can solve the system
in the same way as we did in the purely linear case.

The question of how to choose xo is a difficult one. The sim-
plest approach would be to approximate xo as the value of the
input to the non-linearity at the previous time-step. This approxi-
mation is reasonable when the input to the non-linearity is slowly
changing. If the input is changing quickly, for example if it con-
tains strong components near the Nyquist frequency, the error will
be significant. This error could be reduced by oversampling, by
iterating, by constructing a more complex predictor for the oper-
ating point, or by using a higher-order approximation of the non-
linearity.

As an example of applying this technique, we can consider the
addition of a simple diode-limiter model, represented by a tanh()
function [21, 22], to the resonance feedback path (i.e. the path
connecting the second integrator to the differentiator). The new

form of the equation for yd, given by Eq. (14) in the linear case,
would be:

yd = sd+2Fs(d1[tanh(xo)+(x−xo)(1−tanh2(xo))]+d2yx).
(25)

Similarly, the equation for the update of sd, given by Eq. (17) in
the linear case, is modified to:

sd = −sd−4Fs(d1[tanh(xo)+(x−xo)(1−tanh2(xo))]+d2yx).
(26)

The system can then be solved as in the linear case, using these
new expressions and also Eqs. (15), (16), (18) and (19). The re-
sulting system looks much like that given in Eqs. (20)-(22), with
the addition of a few new terms representing the non-linearity.

Fig. 6 shows the normalized magnitude spectrum of the first
10 harmonics of this non-linear model, measured using a sine-
sweep technique [23]. The cutoff controlling resistance Rf is set
to 110kΩ, and the resonance feedback path gain a, is set to the
amax corresponding to this value ofRf . 4x oversampling was used.
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Figure 6: Normalised magnitude spectra of first 10 harmonics of
the non-linear model, with Rf = 110kΩ and a = amax.

3. CONTROL PATH

The filter described in Sec. 2 takes as its main frequency control the
two resistive parts of a photoresistive opto-isolator (vactrol) with
value Rf . Since much of the interesting behaviour of this circuit
is in its response to control, the connection between the applied
control voltage and the value of Rf must also be modelled.

A simplified version of the control circuitry of a Buchla 292-
style filter is given in Fig. 7, and the values of its components in
Tab. 2 Modelling the relationship between applied control voltage
and vactrol resistance can be split into a number of stages. Firstly,
we have to model the control circuitry to produce the correct rela-
tionship between the CV input (and offset) and the current through
the LED part of the vactrol. Secondly, we have to model the map-
ping between the LED current and the resistance of the resistive
parts of the vactrol (Rf ). Lastly, we have to model the memory
effects of the vactrol, and the filtering of the control value that it
produces.

+
-

If

Vs

CV O↵set

Vc

Rf

Rf

Vactrol

Figure 7: Simplified schematic of the Buchla 292 control path.
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Table 2: Values of fixed elements in circuit from Fig. 7.

Comp. Value Comp. Value Comp. Value
Cc 2nF R1 +R2 10kΩ R3 150kΩ
R4 470kΩ R5 100kΩ R6 20kΩ
R7 33kΩ R8 4.7kΩ R9 470Ω
R10 10kΩ Vs 15V

3.1. Control Circuit

The control circuit essentially consists of a first-order shelving fil-
ter applied to the control input signal Vc and of a subcircuit that
uses the output from the filter to control the amount of current
flowing through the vactrol LED. The input filter both decreases
high frequencies in the input signal and adds an amount of offset
to it, controlled by the variable resistor modeled by R1 and R2.
The current-controlling circuit resembles a logarithmic amplifier
with the notable difference of the presence of a zener diode con-
nected to ground.

By means of nodal analysis it is immediate to verify that V1,
that is the voltage across R2, is related to the voltage V2 at the
negative input terminal of the operational amplifier by

V1 =
Vs + R1

R3
V2

1 + R1
R2

+ R1
R3

, (27)

and that the current I4 flowing from the input filter towards the
positive terminal of the control input can be described, in the Laplace
domain, as

I4(s) =
[1 + sCc (R4 +R5)] V2(s)−Vc

R5
− CcV2(0)

1 + sCcR4
. (28)

It is also possible to approximate V2 in terms of the voltage V3

across the zener diode and the filtered input signal as

V2(s) ≈ V3(s) + (R6 +R7) Ia(s)

α
, (29)

where

Ia(s) =
Vb(s)

R5
+

Vs

R3

(
1 + R1

R2

) , (30)

Vb(s) =
1 + sCc (R4 +R5)

1 + sCcR4
Vc(s), (31)

α = 1 + (R6 +R7)

(
1

R3
+

1

R5

)
. (32)

In this circuit, the zener diode can be interpreted as as a limiter
that forces V3 into the range delimited by its forward voltage drop
VF and its breakdown voltage −VB. A typical breakdown voltage
isVB = 3.9 V, while we can ignore the value of VF since it should
never be reached in this circuit. Between the two values, the zener
diode has neglibile current passing through it, therefore it can be
seen as an open circuit. Under this assumption, the voltage V4

between the vactrol LED and the resistor R9, can be expressed by

V4 = V3

(
R9β −

G

α

)
+
Ia
α

[R9 −G (R6 +R7)] , (33)

where

β =
1
α
− 1

R6 +R7
− 1

R8
, (34)

and G = 2× 105.
By equating currents through R9 and the vactrol LED, which

is hereby modeled by the Shockley ideal diode equation, we obtain

V4 +GV3+Ia(R6+R7)
α

R9
= IS

(
e
V3−V4
nVT − 1

)
, (35)

where IS is the reverse saturation current, n is the emission coef-
ficient and VT is the thermal voltage. By fitting the data from the
datasheet [14] of the device we have extracted values IS = 2.7551
nA and n = 3.9696, and we have chosen the thermal voltage to
be VT = 26 mV at room temperature (≈ 300 K). V3 can be there-
fore explicitly expressed in terms of the system inputs using the
Lambert W function [24], and further approximated as

V3 ≈ −
α

G
nVTW

(
e
GIa(R6+R7− 1

αβ )
αnVT

)
− Ia
αβ

. (36)

When the zener diode operates in its breakdown region, it can
be modeled as a voltage source of value V3 = −VB in parallel
to R8. Following a similar reasoning as before, we still obtain an
equation of the form of (35), which can be solved in this case for
V4, leading to

V4 ≈nVTW
(
e
G[Ia(R6+R7)−VB]

αnVT

)
− G

α
[Ia (R6 +R7)− VB] .

(37)

The resulting current If flowing through the vactrol LED can
be then computed as

If =

nVT
R9

W

(
e
G[Ia(R6+R7)−VB]

αnVT

)
if V3 = −VB,

βV3 + Ia
α

otherwise,
(38)

while the current-to-resistance mapping can be modeled by fitting
the data on the datasheet [14] using

Rf =
A

If
1.4 +B, (39)

where A = 3.464 ΩA1.4 and B = 1136.212 Ω.
Since the computation of the Lambert W functions in (36) and

(38) can be problematic both because of potentially high computa-
tional cost and the possibility of their arguments being outside of
the range of common numerical data types, we hereby introduce
valid and inexpensive approximations. Firstly, it is worth remem-
bering that W (1) = Ω ≈ 0.567 and W (x) ≈ log(x) when x is
sufficiently big. Then, it is possible to notice that the derivatives of
the arguments of the exponentials in both equations with respect
to Vb are always greater than 6 · 105. These two considerations
suggest that the Lambert W functions in (36) and (38) will have
a shape, in terms of Vb, and hence Ia, that resembles a piecewise
linear function being constantly 0 when the argument of the inner
exponential is negative and turning very rapidly to a straight line
when it becomes positive.

Therefore, W (ex) can be approximated as a first-order poly-
nomial for x ≥ xi, 0 when x ≤ −xi and with a not-a-knot cubic
spline otherwise

w(x) = k0 + k1x+ k2x
2 + k3x

3. (40)
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In the case of (36), by using xi = 600, which corresponds to a
maximum variation in terms of Vb of circa ±0.01 V, we obtain
k0 = 1.468 · 102, k1 = 4.920 · 10−1, k2 = 4.167 · 10−4 and
k3 = 7.391 · 10−9, while the linear part can be expressed by
wl(x) = x − kL = x − 6.386. This leads to a direct mapping
between Ia, and thus Vb, and V3 that can be expressed as

V3 =


− Ia
αβ

c. 1,

− α
G
nVTw

(
GIa

(
R6+R7− 1

αβ

)
αnVT

)
− Ia

αβ
c. 2,

kL
α
G
nVT − Ia (R6 +R7) c. 3,

(41)

where case 1 corresponds to
Ia ≤ −xi αnVT

G(R6+R7− 1
αβ

)
,

case 2 to
−xi αnVT

G(R6+R7− 1
αβ

)
< Ia < xi

αnVT
G(R6+R7− 1

αβ
)
, and

case 3 to Ia ≥ xi αnVT
G(R6+R7− 1

αβ
)
.

For (38) we chose to simply consider the Lambert W function
as a piecewise linear function that is constantly 0 when the expo-
nential argument is negative and linearly growing when this is pos-
itive. Then, in order to better fit SPICE simulation results, we mul-
tipy the W approximation in its linear region by a scaling factor
γ = 0.001. Also, in order to guarantee continuity between zener
breakdown and open-circuit regions, the open-circuit If expression
is added to the breakdown region approximation. In the end, the
resulting value is constrained between minimum (If,min = 10µA)
and maximum limits (If,max = 40mA). If,max is set by the point
at which the op-amp would saturate, and can be varied to change
the control response. The resulting If approximation is therefore

Îf =


If,min c. 1,
βV3 + Ia

α
c. 2,

γG[Ia(R6+R7)−VB]
αR9

− βVB + Ia
α

c. 3,
If,max c. 4,

(42)

where case 1 corresponds to Ia ≤ α (If,min − βV3),
case 2 to α (If,min − βV3) < Ia ≤ VB

R6+R7
,

case 3 to VB
R6+R7

< Ia <
γGVB+αR9(VBβ+If,max)

γG(R6+R7)+R9
,

and case 4 to Ia ≥
γGVB+αR9(VBβ+If,max)

γG(R6+R7)+R9
.
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Figure 8: Vc to If relations, produced by model and by SPICE.

Fig. 8 shows the form of the relationship between Vc to If , in
the case of the above described model, and in a SPICE simulation.
Values of R1, R2 = 5kΩ and R6 = 10kΩ are used. The cor-
respondence between the modelled relationship and that derived
from SPICE is very close in the region below the zener breakdown
voltage VB . The fit is less good after this point, but still adequate
for the purpose.

3.2. Vactrol Model

A vactrol is made from two components, an LED and a light-
dependent resistor (LDR) combined together within a light-proof
housing. The LDR section is similar to those available as sepa-
rate components, consisting of a region of semiconductor mate-
rial separating two conductors, which are in turn connected to the
terminals of the component. High resistance semiconductors are
usually used, with the particular substance depending on the fre-
quency of light which the component should respond to. The most
common semiconductor used for visible-light LDRs, and in vac-
trols, is cadmium sulphide. When photons of sufficient energy hit
the material, electrons are promoted from the valence band of the
semiconductor to the free conduction band, decreasing the resis-
tance of the material. The energy (and hence frequency) of light
needed to make the LDR respond depends on the band gap be-
tween the valence band and the conduction band, which varies be-
tween semiconductors. Electrons from the conduction band are
constantly decaying back down to the valence band, therefore the
overall resistance depends on the balance between the rate of elec-
tron promotion due to incident photons and the rate of electron
decay. The resistance therefore depends on the intensity of the
incident light.

When voltage is applied across the LED portion of the vactrol,
photons are emitted, which then hit the semiconductor part of the
LDR and decrease its resistance. This process results in a useful
component that acts much like an ideal voltage-controlled resis-
tance if we consider only long time-periods. However, the prop-
erties of the semiconductor in the LDR mean that the behaviour is
more complicated on short time-scales, particularly in response to
transient variations of illumination (and hence voltage applied to
the LED). Notably, decreases in resistance due to increased illu-
mination happen more quickly than the increase in resistance pro-
duced by a reduction in illumination. A voltage impulse applied
over the LED therefore produces a quick drop in resistance in the
LDR, followed by a slower decay back to high resistance. This re-
sistance profile is remarkably similar to the amplitude envelope of
a struck physical object, hence the special sound it produces when
used as the variable resistance element within a synthesizer filter.

Adapting full models of photoconductor transient dynamics
[25] for musical signal processing use is a significant task, and left
for future work. Instead, we take a heuristic approach to modelling
the particular vactrol used in the LPG. This vactrol is generally
the Perkin Elmer VTL5C3 or VTL5C3/2. We propose an ad-hoc
non-linear filter structure that will behave similarly to the vactrol
with correct setting of parameter values. This structure is shown in
Fig. 9. It consists of a lowpass filter constructed using an integra-
tor. The cutoff frequency (or response time in this case) is switched
between two different values dependent on the sign of the deriva-
tive of the input signal. These values are chosen from the datasheet
[14] for the VTL5C3/2 as being approx 12ms in the positive-going
direction and 250ms in the negative-going direction. This chosen
value is then modulated further by the current output value of the
vactrol model, so that it responds quicker when at high values, as
also indicated on the datasheet.

Figure 9: Block diagram showing structure of vactrol model.
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4. IMPLEMENTATION AND RESULTS

The above described models of the audio and control circuitry of
the LPG were implemented in Max/MSP using the Gen~ exten-
sion. The controls available in the model are a CV input (which
operates on voltage values), a CV offset, a switch to engage or dis-
engage ’lowpass’ mode, and a resonance control. The ’VCA’ mode
is implemented by providing a control which varies Rα. This al-
lows the response to be smoothly varied between filter-like and
VCA-like by the user. These implementations are available at the
website associated with this paper 3, along with audio demos.

The resulting model seems to retain much of the character and
dynamics of the original device. In lowpass mode, especially in the
non-linear version , the model makes an interesting filter for sub-
tractive synthesis, with a unique and quite aggressive character.
We encourage readers to try the available implementation them-
selves in order to evaluate the quality of the sound.

5. CONCLUSIONS

In this work, we have examined the structure of the Buchla low-
pass gate filter. A robust digital model of the audio part of the
circuit is constructed by generating a digital filter structure with
the same topology as the analog system, and solving its delay-free
feedback loops. The control portion of the circuit is modelled by
approximating its response and applying the output to heuristic
models of the vactrol’s current to resistance mapping and memory
effect. The resulting combined model was implemented for real-
time use in Max/MSP and Gen~.
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