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ABSTRACT

This paper proposes to speed up the design of a third-order graphic
equalizer by training a neural network to imitate its gain opti-
mization. Instead of using the neural network to learn to design
the graphic equalizer by optimizing its magnitude response, we
present the network only with example command gains and the
corresponding optimized gains, which are obtained with a pre-
viously proposed least-squares-based method. We presented this
idea recently for the octave graphic equalizer with 10 band filters
and extend it here to the third-octave case. Instead of a network
with a single hidden layer, which we previously used, this task ap-
pears to require two hidden layers. This paper shows that good re-
sults can be reached with a neural network having 62 and 31 units
in the first and the second hidden layer, respectively. After the
training, the resulting network can quickly and accurately design
a third-order graphic equalizer with a maximum error of 1.2dB.
The computing of the filter gains is over 350 times faster with the
neural network than with the original optimization method. The
method is easy to apply, and may thus lead to widespread use of
accurate digital graphic equalizers.

1. INTRODUCTION

The design of a graphic equalizer (GEQ) has advanced consider-
ably in the past few years [1L|2]. Much research has been con-
ducted to improve the design of both the cascade [3H8]] and the
parallel GEQs [9-13]]. Currently it is possible to design either a
cascade [2}/7]] or a parallel GEQ [[11H13] to have a maximum error
of 1dB, which is often considered sufficient for hi-fi audio. How-
ever, the design still requires optimization, which includes matrix
operations, when the command gains are changed. This means
that the accurate design of a GEQ needs large computational re-
sources, if the parameters need to be updated quickly, such as in
low-latency real-time applications.

We have recently proposed the idea of simplifying the calcu-
lation of filter gain optimization in a cascade graphic equalizer us-
ing a neural network [14], instead of the previous heavier method,
which requires the calculation of DFT and matrix inversions. The
training of the neural network becomes easy, when the network is
presented with the pairs of command gains and the corresponding
optimized gains obtained with an accurate design method. Then
the task of the neural network is to imitate the nonlinear mapping,
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which the optimization method uses. This is simpler than using
the neural network to learn to design the graphic equalizer by opti-
mizing its magnitude response. It is also a different approach than
the teaching of an equalizer using a neural network directly from
an audio signal [15]]. The training using the gain pairs was applied
first to the cascade octave GEQ using a conventional perceptron
with a single hidden layer [[14].

The neural network introduces an error, when it approximates
the nonlinear mapping. In [[14] it was shown that a perceptron hav-
ing twice as many hidden layer cells as input parameters was large
enough for good approximation. The number of input parameters
was 10 in the case of an octave GEQ, so 20 hidden layer cells were
needed [14]. The approximation error can be kept smaller than
0.085dB, which is sufficient for a maximum error of 0.7 dB for
the GEQ itself [[14].

In this paper, we apply the same idea to the design of a very
common large GEQ, which has third-octave-octave bands. The
third-octave GEQ has 31 bands to control the signal gain on nar-
row bands over the whole audio frequency range from 20 Hz to
20,000 Hz. This paper shows that the complexity of the problem is
much larger than in the case of the octave GEQ, which has only 10
bands, and, consequently, a neural network with a single large hid-
den layer may not learn the mapping sufficiently accurately. We
thus test a larger network structure having two hidden layers. It
seems necessary that one of the hidden layers should contain twice
as many nodes as the input layer.

The rest of this paper is organized as follows. Section 2 briefly
recapitulates the design of a cascade third-octave GEQ, which will
be approximated with the neural net. Section 3 explains the struc-
ture and training of the neural network. Section 4 presents vali-
dation and results of this work. Section 5 concludes this paper.

2. THIRD-OCTAVE GRAPHIC EQ DESIGN

An accurate design for a third-octave cascade graphic EQ (ACGE3)
was proposed at the DAFx-17 conference [2]. The method is an
extension of the corresponding accurate GEQ design for the oc-
tave case with ten bands [[7]. Both designs take the user-set com-
mand gain values as inputs and then optimize the filter gains by
evaluating the interaction between different band filters, which are
second-order IIR filters. Each band filter is designed as a spe-
cific parametric equalizer, which is controllable at its own center
frequency and at the center frequencies of its neighboring bands
by defining the bandwidth in an unusual manner. This parametric
equalizer is a modification of the design proposed by Orfanidis in
his textbook [|16].

The transfer function of the second-order band filter with user-
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Table 1: Center frequencies f. and bandwiths B for third-octave bands m.

m  fe(Hz) B(Hz) m  fe(Hz) B(Hz) m  f.(Hz) B(Hz) m  fe(Hz) B(Hz)
1 19.69 9.178 9 125.0 58.28 17 7937 370.0 25 5040 2350
2 24.80 11.56 10 1575 73.43 18 1000 466.2 26 6350 2846*
3 31.25 14.57 11 1984 92.51 19 1260 587.4 27 8000 3502*
4 39.37 18.36 12 250.0 116.6 20 1587 740.1 28 10080  4253*
5 49.61 23.13 13 315.0 146.9 21 2000 932.4 29 12700  5038*
6 62.50 29.14 14 3969 185.0 22 2520 1175 30 16000  5689*
7 78.75 36.71 15 500.0 233.1 23 3175 1480 31 20160  5570*
8 99.21 46.25 16 6300 293.7 24 4000 1865

* Manually adjusted bandwidths due to warping close to the Nyquist frequency.

set linear gain G, is [2]
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with gg,m = 201og(Gs,m) and gm = 201og(Gyn). The sampling
rate fs used throughout this work is 44.1kHz. Table [T]shows the
center frequencies f. ,, and bandwidths B,, of the third-octave
bands used in this work.

One such second-order IR filter is used per band, see Fig.[T|(a),
and all the 31 filters are cascaded to form the overall transfer func-
tion of the GEQ:

H(z) = [] Hn(2), (6)

as illustrated in Fig. [[[b). The gain factor Gy in front of the graphic
equalizer in Fig.[T(b) is the product of the scaling coefficients bo
of the band filters:

31
Go =[] bom- )
m=1

This way the multiplier related to the scaling factor bg,,, can be
removed from each band filter section, as can be seen in Fig.[T(a),
which saves M — 1 multiplications in total [[13]].

2.1. Least Squares Optimization of Filter Gains

The optimal filter gains for the cascade graphic equalizer are solved
using the least-squares method with the help of an interaction ma-
trix [7]. The magnitude response of each equalizer filter with an
example gain (17 dB is used in this work) is evaluated at the third-
octave center frequencies and at their geometric means. These data
are used to form the interaction matrix Bo, which represents the
leakage caused by each band filter to the other frequency points.
Each row of the interaction matrix contains the normalized mag-
nitude response of the ™ band filter sampled at the 61 prescribed
frequencies. Because of the normalization, the value of the in-
teraction matrix at the center frequency of the filter itself is always
1.0, since the magnitude response is divided by the filter gain. Fur-
thermore, an additional iteration is used, which calculates another
interaction matrix based on the filter gains obtained as the first LS
solution. The second interaction matrix is used for further opti-
mization [7]]. This iteration round helps to restrict the approxima-
tion error in the magnitude response to be less than £1 dB, which
was the design goal during the development of ACGE3 [2]. The
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Figure 1: (a) The second-order IIR filter structure of each band
filter H,(2), and (b) the graphic equalizer structure containing a
series of such filters and showing the filter gain controls, G,. In
the third-octave design, the number of filter sections is M = 31.
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matrix inversions cause this optimization method to be computa-
tionally costly.

3. NEURAL NETWORK

3.1. Training Data

The training data for the feedforward neural net is created using the
ACGES3 design [2]], which was reviewed in Sec.@ With that design
it is possible to create a huge number of input-output gain pairs,
where the input values are the user-set command gains between
—12dB and 12dB and the outputs are the optimized filter gains
used in the underlying filter design, see Sec.[2.1]

For this work we created 1500 input-output pairs with random
input gains using the ACGE3 algorithm. Six special gain configu-
rations, known to be hard for GEQs, were included in the training
data. They were two constants cases with all gains set to +12dB
and all gains at —12dB, and two zigzag cases [2], as well as two
hard configurations which are special zigzag setting

3.2. Network Structure and Training

By definition, the third-octave EQ has 31 frequency bands, mean-
ing it has 31 user-adjustable command gains. Thus the neural net-
work has 31 nodes in its input layer, one for each band’s gain set-
ting. The ACGE3 design is implemented using one second-order
IIR filter ber band, resulting in 31 optimized gain values for the
EQ filters. Thus, the size of the output layer is also set to 31.

After initial training tests of the neural network it was decided
that the network structure should be in the form of 31-J-K-31, i.e.,
it should have two hidden layers of size J and K. After training
several different prototype neural networks we settled on the layer
sizes of J = 62 and K = 31. Based on our previous experiments
with the octave GEQ it is beneficial to have the size of the first
hidden layer twice the size of the input layer [14]]. Figure[2]shows
the structure of the neural network, where g1, g2, ..., g31 are the
user-set command gains in dB and gopt,1, Gopt,2 ---» Gopt,31 are the
optimized filter gains in dB.

The neural network was trained using Matlab’s fitnet func-
tion, which is a function-fitting neural network that is able to form
a generalization of the input-output relation of the training data.
Thus, after the network is trained, it is possible to use it to gen-
erate outputs for inputs that were not in the training dataset. The
training algorithm was selected to be t rainbr, a Bayesian reg-
ularization backpropagation algorithm [[17]]. It updates the weight
and bias values according to the Levenberg-Marquardt (LM) op-
timization [[18, Ch. 12]. The LM algorithm provides a desirable
compromise between speed and guaranteed convergence of steep-
est descent [18]], while the Bayesian regularization also ensures
that the resulting network generalizes well by minimizing a com-
bination of the squared errors and the network weights [17].

The training dataset was split into two sets, a training set (70%
of the whole dataset) and test data (the remaining 30%). The test
data is not used in the training per se, it is only used to monitor the
performance of the model to unseen data during the training. The
stopping conditions were set so that the training would continue
until it is converged. With Bayesian regularization, a good indica-
tion of convergence is when the LM g parameter reaches a high

lgspeciul =[12-12—-1212 —-12 —-12 —-1212 —-12 —12 12 —12 —12
12 —12 =12 —12 12 —12 =12 12 =12 —1212 =12 =12 —12 12 —12
—12 1217 and its Opposite —Especial -

Hidden

Layer 1
62) Hidden
Layer 2

81 gopt,l
& gopt,Z
83 gopt,3
831 gopt,?al

Figure 2: Neural network presented in this work has 31 inputs and
outputs, and two hidden layers.

value (Matlab’s default is 10'°). However, after 15,000 epochs
the training was stopped, before reaching the maximum p. One
epoch takes approximately a minute calculate, when using 12 par-
allel CPUs, so it is quite time consuming to train the neural net.
Thus, increasing the training time could still improve the accuracy
of the proposed neural net.

3.3. Final Neural Network

Figure 2] shows the resulting neural network while Fig. [3] depicts
individual neurons in the hidden layers and the output layer. In
Fig. [3| the leftmost neuron is the 5" neuron of hidden layer 1.
Its inputs are the scaled user-set command gains g7, g, ..., g51,
since the neural network assumes that the input data has values
between —1 and 1. Matlab does the scaling automatically dur-
ing training using mapminmax function. The j® neuron uses the
weights wjl-’l, 'LU},Q, s wjl-,g,l to scale the inputs, sums them and
adds the bias value 9]1- to the sum, and then uses the nonlinear sig-
moid function o to calculate the output 0} of for the neuron:

M=31
ojl- = 0’( Z w;mg;n + 9}), 8)

m=1

where o is equivalent to tanh(z) = 2/(1 + e™2%) — 1.

The output of a neuron in the second hidden layer is calculated
in similar manner as in Eq. (8), but now the inputs are the outputs
from every neuron in hidden layer 1. The output of the k™ neuron
of hidden layer 2 is calculated as

J=62
or = U( Z wi,jo; + 9;&), )

j=1

and finally the m™ neuron in the output layer outputs the optimized
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Figure 3: Structure of individual neurons in the neural net. Cf. Fig. E

gain for the m™ filter by calculating

K=31

g(,)pt,m = Z w"f’n,koi + efn (10)
k=1

Equations (8)—(I0), which are used for running the neural net-
work, can be written in matrix form as

g’zz.ﬂ_L (11)
Xmax — Xmin

o' = tanh(W'g' + 6"), (12)

o® = tanh(W?o' + 6?), (13)

gopt = W20% + 6% (14)

oot = (b — ) 22 g (1)

where all the vectors and matrices correspond to those shown in
the top part of Fig. 3] That is, Eq. (TT) maps the user-set dB-gain
values g € [—12 12] to g’ € [—1 1], where all Tmin,, = —12
and Tmax,m = 12. Eq. (I2) calculates the outputs o' of hidden
layer 1 based on g’ by using weights W, bias values 6, and the
nonlinear transfer function tanh(). Similarly, Eq. (I3) uses all of
the outputs o' of hidden layer 1 to calculate the outputs of hidden
layer 2 using a different set of weights W2 and bias values 62,
including the nonlinear sigmoid function. The output layer takes
the outputs o? of hidden layer 2 as its inputs and weights them
with W? and adds the bias values defined in 3. Note that the
output layer has no nonlinearity in it. Finally, the output layer of
the neural network outputs the optimized gain vector g, that have
values between [—1 1], which are then mapped to dB values based
on the maximum and minimum values found in the training data
targets, tmax and tmin, respectively.

With these three weight matrixes, three bias vectors, and four
output/input extreme values, it is possible to run the neural network
for any arbitrary user command gain configurations (between —12
and 12dB). We will provide all of the needed parameters to run
the model.

4. RESULTS AND VALIDATION

In order to validate the actual performance and accuracy of the
proposed third-octave neural GEQ (NGEQ3), we need to compare

it against ACGE3, which was used to train the network. In order
to do this, a validation dataset of 10,000 random command gain
settings was created.

4.1. Computational Performance

The main purpose of substituting the ACGES3 filter optimization
with a neural network is to computationally simplify the procedure
so that Fourier transforms and matrix inversions are not needed.
Although the designing and training of neural networks may take
some time, running a trained neural network is often computation-
ally quite straightforward. The neural network proposed in this
work has 4929 parameters, consisting of the weights and biases,
however, the main computation consists of only three matrix mul-
tiplications and additions, and two tanh calculations for vectors
of sizes 62 and 31, see Egs. (12)—(T4).

To evaluate the computational time of the filter optimization,
the validation dataset of 10,000 input command gains were opti-
mized and the averages of the optimization times were recorded.
The results are shown in Table 2] As can be seen, the proposed
NGEQ3 optimization (13 us) is much faster than that of the orig-
inal ACGE3 (4661 pus). The ACGE3 optimization is heavier than
the proposed NGEQ3 optimization, since it requires the calcula-
tion and inversion of the interaction matrix, during the iteration
round, and several matrix multiplications. The interaction matrix
is constructed by using the discrete-time Fourier transform which
is used to evaluate the magnitude response of the band filters at
61 frequency points, consisting of the 31 third-octave center fre-
quencies and their midpoints. The matrix inversion requires the
computing of the Penrose-Moore pseudoinverse for the resulting
61-by-31 interaction matrix, which involves a matrix inversion and
three matrix multiplications [7].

Table 2: Comparison of computing times of the third-octave
ACGES3 and proposed NGEQ3 methods, average of 10,000 trials.
The fastest case in each column is highlighted.

Gain Coefficient
optimization update Total
ACGE3 (DAFx-17) 4661 us 57 ps 4718 us
NGEQ3 (proposed) 13 s 57 us 70 ps
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Figure 4: Comparison of ACGE3 and NGEQS3 filter optimization,
when all command gains are set to 12 dB.
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Figure 5: Alternating 12 zigzag command gain settings. See the
legend in Fig.

Furthermore, the calculation of the filter coefficients takes ap-
proximately 57 us, which is the same for both methods, meaning
that the NGEQ3 gain optimization is even faster than the actual
filter design.

4.2. Accuracy

While getting the implementation of the filter gain optimization
faster can be essential to certain applications, the proposed method
needs to be accurate in order to be useful. Figures 4 and [5] show
magnitude responses of two example runs of the proposed neural
network. Both cases are known to be challenging for a GEQ, and
thus, both of these example cases were also included in the training
dataset. Figure[]shows a gain setting where all command gains are
set to +12dB, while Fig. [J] shows a gain setting with alternating
commands at +12 dB. In both figures, red circles (O) are the user-
set command gains, black squares ([J) are the ACGE3 optimized
filter gains, blue crosses (x) are the optimized filter gains by the
proposed NGEQ3, and the black line plots the magnitude response
of the whole NGEQ3. Thus, in ideal case the crosses should lie
inside the squares (X). Furthermore, the horizontal dashed lines
plot the zero line, as well as the used maximum and minimum
values +12 of the command gains.

Largest Error =0.287 dB at 1587 Hz

Magnitude (dB)
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Figure 6: Worst case scenario based on the validation dataset of
10,000 gain configurations. See the legend in Fig.

Largest Error =0.045dB at 250 Hz
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30 | | |
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Figure 7: Random command gain settings illustrating the mean
accuracy of NGEQ3. See the legend in Fig.

These two examples clearly illustrate the importance of fil-
ter gain optimization, since it is evident that the optimized filter
gains (L] and X) can be totally different than the actual user-set
command gains (O). In Fig. [l where all the gains are set to
+12 dB, the optimized gains are considably smaller that the com-
mand gains, so that the final response settles at 12 dB. On the other
hand, in the zigzag case in Fig. [] the optimized gains are more
than twice the value of the user-set command gains.

The accuracy of the proposed NGEQ3 was evaluated using the
same validation dataset as above. The proper error evaluation is to
compare NGEQ3 to ACGE3, since that is how the neural network
was trained. That is, a perfect neural net with zero error would
produce identical responses (and errors) with ACGE3. However,

Table 3: Magnitude-response errors in dB at command point fre-
quencies for 10,000 random gain settings.

ACGE Commands
Max Mean Max Max Mean Max
ACGE3 (DAFx-17) - - 1.1 0.53
NGEQ3 (proposed)  0.28 0.07 1.2 0.53
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the absolute errors in respect to the user-set command gains are
what eventually matters to the end user.

Table 3] shows the accuracy validation results. Each row in
the table compares the absolute error, calculated at the defined
command gain frequencies where the target can be specified, to
ACGE3 and to the actual user-set command gains values. The
largest error in NGEQ?3 with respect to ACGE3 was 0.28 dBﬂ This
case is plotted in Fig. [f] where the largest error occurs at 1587 Hz.
However, the magnitude response still goes through the command
gain setting (O), so there is no visible error for the end user.

Finally, Fig. [/| shows a random gain setting (not included in
the validation or training datasets) to illustrate how small the error
typically is. As can be seen in Table 3] the mean value of all the
maximum errors (mean max) over the 10,000 sample validation
dataset, when compared to ACGE3, was 0.07 dB, which is incred-
ibly small. Furthermore, the last two columns of the table show
the maximum and average of all of the maximum errors calculated
against the user-set command gains. As can be seen, the overall
maximum errors of ACGE3 and the proposed NGEQ3 are almost
the same and close to 1 dB, whereas the mean max of the validation
dataset is the same for both methods, approximately 0.5 dB.

5. CONCLUSIONS

This paper proposed to simplify the calculation of the gain opti-
mization of a third-octave graphic equalizers using a neural net-
work. This became possible after our team recently proposed an
accurate graphic equalizer design method, which optimizes filter
gains based on user-defined command gains. The filter gains are
determined using a least-squares technique with one iteration and
then, as all parameters are known, the IIR filter coefficients are
computed using closed-form formulas. Thus, the main complica-
tion in the design has been the filter gain optimization.

In this work, the command gain-filter gain vector pairs ob-
tained with the accurate design method are used as training data
for a multilayer neural network. After the training, the LS opti-
mization can be replaced with the neural network. The computing
of the filter gains is over 350 times faster with the neural network
than with the original LS method. The filter coefficients are finally
computed using traditional closed-form formulas, which now takes
more time than the gain optimization. The proposed method turns
accurate graphic equalizer design easy and fast. The associated
Matlab code is available online at http://research.spa.
aalto.fi/publications/papers/dafx19-ngeqg/.

While in this work the neural network was trained by using
the input-output gain pairs from a previously known optimization
algorithm, in the future, it could be interesting to explore the pos-
sibilities to train a neural network with a novel cost function based
on the actual gains of a GEQ.
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