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ABSTRACT

Finding a model that accounts for a �nite set of noisy
samples is a general problem in engineering. In this
paper, the noisy samples are the simulated decay rates
of the harmonics of a string tone, and the model has a
special polynomial form. This form has been utilized as
an intermediate step before designing a loop �lter that
can be used in model-based sound synthesis of string
instruments. Analytical model selection methods have
been used to obtain a reliable decay rate polynomial
estimate. A method for designing the �nal loop �lter
based on the intermediate polynomial representation has
been shown. The results verify the robustness of this
simple method.

Keywords: Physical modeling, Plucked strings, Decay
time, Polynomial regression, Penalization.

1 INTRODUCTION

Studies of damping in musical strings indicate that the
exact nature of the energy losses is diÆcult to analyze
or model accurately. [1, 2]. Di�erent mechanisms e�ect
the decay characteristics of the harmonics in various ways.
Some of these mechanisms are only qualitatively under-
stood. Despite this fact, there is a need for rather sim-
ple models that account for the decay characteristics in
numerical simulations using �nite di�erences [3, 4] or in
model-based sound synthesis of string instruments [5, 6].
In both applications, the losses are typically simulated by
inserting M odd-order time derivatives in the wave equa-
tion. Then, the frequency-dependent decay rate � (inverse
of the decay time � for 3 dB drop in magnitude), becomes
an even-order polynomial in angular frequency !:

�(!) =

MX
n=0

b2n+1!
2n (1)

This even-order polynomial form of damping guarantees a
causal and stable impulse response of a mechanical system
[4]. For M = 1, Eq. (1) reduces to

�(!) = b1 + b3!
2 (2)

This form of damping has been widely used in �nite dif-
ference simulations, with the caution that it is only a fair
approximation that matches to the experimental measure-
ment data, and that a detailed modeling of energy loss
mechanisms is absent [4].

For real-time sound synthesis of musical instru-
ments in general, and plucked string instruments in partic-
ular, the digital waveguide synthesis [7, 8] provides a com-
putationally eÆcient method. This method is based on the
traveling wave solution of the wave equation, and the trav-
eling waves are simulated using bidirectional digital delay
lines. All the losses are consolidated into a set of discrete
points, and they are simulated using low-order lowpass
�lters that are generally termed as loop-�lters [7, 6]. A
one-pole loop �lter with independent gain g and frequency
parameter a, i.e.

Hl(z) = g
1 + a

1 + az�1
(3)

has been a popular choice for model-based sound synthesis
of plucked string instruments [6, 9].

The estimation of the loop-�lter parameters is es-
tablished by a method that tracks the harmonics of a
recorded tone, extracts the decay characteristics of each
harmonic (assuming each harmonic exhibits a pure expo-
nential decay), converts the decay to the desired magni-
tude response of the loop �lter, and �nally obtains the �l-
ter parameters by a weighted least-squares minimization
[10]. The �xed order of the �lter guarantees the stabil-
ity for jaj < 1. However, in each step of the estimation,
some error is introduced. The total error, in turn, devi-
ates the loop-�lter parameters signi�cantly. In order to
minimize the analysis error, and compensate the measure-
ment error, di�erent ad-hoc approaches have been pro-
posed [10, 11, 12].

The relation between the one-pole loop �lter of
Eq. (3) and the simple damping expression of Eq. (2) has
been investigated in [13]. It has been shown that under
certain approximations Eq. (2) can be related to the loop-
�lter parameters. In the same reference, two novel meth-
ods for an arbitrary-order loop �lter design have been re-
ported. The �rst technique in [13] minimizes the mean-
square error (MSE) between the measured and desired de-
cay times of the harmonics. This approach results in an
inherently stable, arbitrary order IIR �lter. The method
is further elaborated in [14].

The second technique in [13] is directly based on the
truncated decay rate polynomial. Assuming that the loop
�lter gain deviation from unity is very small, its magnitude
response is approximated by a Taylor series, and thus the
two-term decay rate polynomial of Eq. (2) is obtained. The
formulas relating the �lter coeÆcients to the polynomial
coeÆcients that are obtained from measurements by re-
gression are also given. For higher order all-pole �lters, it
has been assumed that the polynomial orderM is equal to



the order of the �lter, however this is not justi�ed. More-
over, the optimal order of the decay-rate polynomial has
been left unspeci�ed. Once the constraint about the order
is relaxed, one can obtain less and less MSE by increasing
the polynomial order. However, there is a danger that the
approximation matches the irregularities of the measured
data instead of the desired target function.

This paper aims to present robust and reliable
methods that can be used for loop �lter design. It in-
troduces the decay rate polynomial of Eq. (1) as an inter-
mediate step, provides the background for truncating the
in�nite-order polynomial of Eq. (1) at an order M̂ that is

derived from the measurement data. Once M̂ is found, it
determines the number of damping terms to be included
in the �nite di�erence simulation. Moreover, methods are
shown for designing an arbitrary order recursive loop-�lter
from the truncated polynomial.

The structure of the paper is as follows. In Sec. 2,
an alternative formulation of the loop-�lter design prob-
lem is stated and a brief overview of the statistical model-
selection methods is given. Sec. 3 demonstrates the impor-
tant concepts related to the problem; it shows the estima-
tion of M̂ , and presents a loop-�lter design method based
on the M̂th-order polynomial. Sec. 4 draws the conclu-
sions.

2 PROBLEM FORMULATION

The problem in this paper is a semi-parametric polyno-

mial regression problem, i.e, the problem of estimating
the parameter vector b and the order M of a function
F (b(�̂k);M(�̂k); !) from a set of K noisy measurements
�̂k. The basis functions of F (:) are prescribed, and given
in Eq. (1). The estimation is based on minimizing a pre-
scribed norm, so that

k�̂k � F (b(�̂k);M(�̂k); !)k � 0 (4)

An alternative way of formulating the problem is consid-
ering the approximation error, which is usually a result of
two distinct mechanisms: model mismatch, and measure-
ment inaccuracies [15]. Consider another set of samples,
say ��, that are generated by a more complex model than
F (:) account for, such as the physical damping mechanisms
in musical strings. Then the measured set �̂ may be re-
garded as �� contaminated with measurement inaccuracies.
Model mismatch results in an error in Eq. (4) even when
the ideal and noiseless sample set �� is used. Measurement
inaccuracies account for the deviation of the data �̂ from
��.

In this alternative formulation, the optimum model
is obtained by a joint minimization of the following sub-
problems:

k�̂k � ��k � 0 (5a)

k�� � F (b;M; ��; !)k � 0 (5b)

Note that the least-squares techniques assume a pri-
ori that Eq. (5a) is satis�ed with equality, and focus
on Eq. (5b) without further considering the validity of
Eq. (5a). Emerging algorithms propose alternative meth-
ods to relax this inherent assumption [15]. Also note
that Eq. (5a) is a K-dimensional minimization problem,
whereas Eq. (5b) has M -degrees of freedom. In other
words, the joint minimization redistributesK samples onto
aM -dimensional space. It can be shown that KM samples

are needed for a model with M parameters to achieve the
same sample distribution with an univariate model to be
tuned with K samples [16]. Since the number of available
data samples are usually �xed, higher dimensional mod-
els are more prone to introduce larger errors in Eq. (5b)
compared to the lower dimensional models, although they
achieve better performance minimizing the MSE in Eq. (4).
In order to equalize this di�erence, the total error estimate
is obtained by adjusting (penalizing) the MSE of Eq. (4)
with a function that depends on the degrees of freedomM
of a model, and the available samples K.

All known analytical model selection criteria for
polynomial regression problems estimate the total error
using the following expression [16]:

MSEtotal �= �

�
M

K

�
MSE (6)

where � is a monotonically increasing function of the ratio
of degrees of freedom M and sample size K. In e�ect, the
penalization function � in
ates the MSE for increasingly
complex models. Some of the analytical model selection
methods proposed in the statistical literature are Final

prediction error (FPE), Shwartz criteria (SC), Generalized
cross-validation (GCV), and Shibata's model selector [16],
and their penalization functions are given by:

�FPE(p) =
1 + p

1� p
(7a)

�SC(p;K) = 1 +
1

2
log(K)

p

1 � p
(7b)

�GCV(p) =
1

(1� p)2
(7c)

�SMS(p) = 1 + 2p (7d)

where p = M=K. These methods are proven by asymp-
totic arguments regarding the sample size, and are known
to give suboptimal (lower) model order estimates for very
small number of samples. Moreover, they also assume that
the estimation method is unbiased, i.e., the approximation
sample set contains the target function. However, these
criteria are applied in practical situations when the un-
derlying assumptions do not strictly hold, and reported to
perform well in these cases [16].

Eq. (6) provides the key for solution of the decay
rate estimation problem. The measurement data of size K
is �tted by truncated polynomials up to the order N , and
for each order the MSE of the �t has been penalized using
Eq. (6). The minimum of the total error gives the desired
order. Before the demonstration of the method, however,
it is instructive to consider the sources of the measurement
errors.

2.1 The measurement error

For the present problem, the set of decay rates �̂k are to
be extracted from the measured string instrument tones.
Although a subset of the tools that are used for loop-�lter
design [10, 11, 12] may be utilized for this purpose, as
mentioned in Sec. 1, the additional errors introduced by
these techniques are inevitable. An example about the
performance of these tools are given below.

The data set consists of anechoic classical guitar
tones of the �rst (sample groups 1 and 2), and the fourth
(sample groups 3 and 4) strings, played by a professional
musician by varying the �nger (index, middle, and thumb),
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Figure 1: Distribution of the extracted one-pole loop �lter
parameters.

the dynamics (piano, forte, fortissimo), and the plucking
style (apoyando and tirando). 18 samples of seventh fret
positions (sample groups 1 or 3) and another 18 of open
positions (sample groups 2 or 4) of each string have been
recorded. The tones have been analyzed with the tools
that are described in [12, 9], and the parameters of the
one-pole loop �lter (see Eq. (3)) have been extracted for
each sample.

The extracted parameters are shown by sample
groups in Fig. 1. A standard box plot have been used,
where the tick inside each box is the median value, the
box boundaries contain the 25% of the data, the ticks con-
nected to the boxes with dashed lines contain the 75% of
the data, and the crosses are outliers. The scattering of the
parameters is evident in the �gure. A desirable method
should reduce the variance for each parameter and con-
verge to their main values. In the following sections, such
a method is introduced. In order to bypass the e�ects of
the analysis tools and provide a better focus on the pro-
posed method, synthetic data has been used throughout
this paper.

3 SIMULATIONS

The three simulations presented in this section are con-
ducted to illustrate the relationship between the decay rate
function and the �lter magnitude response, the estima-
tion of the optimum order M̂ (in the sense that the trun-
cated polynomial model jointly minimizes Eq. (5a) and
Eq. (5b)), and designing a loop �lter based on the trun-
cated order polynomial, respectively. In order to avoid
confusion that may occur because of the even-order na-
ture of the polynomial model, throughout the simulations,
the order will be represented by N = 2M

3.1 Decay rates in the absence of noise

In this simulation, the mean values of the a and g param-
eters for the highest string (f0 = 330Hz) have been used
as template (sample group 2 in Fig. 1). The one-pole loop
�lter magnitude responses have been calculated by vary-
ing the coeÆcient am = mamean where m = f:5; 1; 2; 3g.
The gain gmean has been kept �xed. The resulting four
magnitude responses are shown in Fig. 2(a) for increasing
m (from top to bottom). The magnitude of the �lter is
related to the decay times of the harmonics as follows

jH(e|!k)j = e
�

1
f0
�k (8)
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Figure 2: The illustration of the relationship between the
one-pole loop �lter and the decay rate functions.

The decay rate functions are obtained by

��(!k) =
1

�k
= �f0 log(jHm(e

|!k)j) (9)

at 66 harmonic frequencies within the audio range. Note
that ��(!k) correspond to the ideal sample set of Eq. (5a),
and K = 66. The resulting decay rate functions are shown
in Fig. 2(b). The curves follow the opposite ordering with
the loop �lter magnitude responses: the highest decay rate
corresponds to the coeÆcient a3 that has the highest de-
viation in the magnitude response from the unity.

One may have the impression from Fig. 2(b) that
the di�erent absolute values of the target functions may
weight the MSE of the polynomial regression for each case,
thus no conclusions can be deduced from the comparison
of the MSE corresponding to each of the target functions.
In order to suppress this weight, target functions are nor-
malized by dividing them to their maximum values, and
this normalized function set shown in Fig. 2(c) is used in
the simulation.

Fig. 3 plots the polynomial order versus the MSE
(in dB scale) of the approximation of the normalized de-
cay rate functions of Fig. 2(c). For each case, the ap-
proximation error decreases exponentially (linear on dB
scale). With the same order of approximation, the MSE
depends on the a coeÆcients of the generating �lters. In
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b1 b3 b5 b7 b9 b11 b13 b15

0.167 0.112
0.049 0.231 -0.014
0.030 0.271 -0.027 0.001
0.026 0.283 -0.033 0.002 0 0
0.026 0.286 -0.036 0.003 0 0
0.026 0.287 -0.037 0.004 0 0
0.026 0.287 -0.037 0.004 0 0 0
0.026 0.287 -0.038 0.004 0 0 0 0

Table 1: The increasing order polynomial parameters of
the approximation to the target sample set.

other words, given a target MSE, say -100 dB, the target
function �̂1=2(!) should be approximated by a 12th order
polynomial, �̂1(!) by a 16th order, �̂2(!) by a 18th order,
and �̂3(!) by a 24th order polynomial, respectively.

This example illustrates that the truncation order
N cannot be directly related to the �lter order, i.e., the
order N of the decay rate polynomial cannot determine
the �lter order uniquely. Note that both the shape and
the decay rate of a target function can be associated with
the L2 norm of the di�erence between the generating �l-
ter magnitude response and unity, i.e., k1 � jH(e|!)jk2.
This association may be used as an axillary smoothness
criterion to establish a relation between the �lter order
and the decay-rate polynomial order. This remark is an
elaboration of a similar conclusion stated in [13].

The convergence characteristics of the approxima-
tion can be checked from Table 1, where the polynomial co-
eÆcients are tabulated for the target sample set genareted
by the loop-�lter H1(z) that has the mean coeÆcients.
The convergence regime �ts the lowest order parameter
�rst, then proceeds with higher order parameters.

Note that the convergence is not completed at N =
1, corresponding to the two-term polynomial in Eq. (2).
In other words, in most practical cases the simple one-pole
loop �lter simulates a more complicated damping regime
compared to the damping models of the form in Eq. (2).

3.2 Decay rates in the presence of noise

In order to consider the actual nature of the problem,
Gaussian noise with a high variance has been added to
the target decay rate function. The ideal target function,
as well as its noisy samples are shown in Fig. 4. No at-
tempts have been made to shape the noise according to
the physical phenomena and actual measurement errors.
Moreover, it has been assumed that the decay rate esti-
mates are available within the audio range.

The polynomial regression is performed by increas-
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Figure 4: Approximation to the noisy sample set (dots)
by the second, fourth, and twenty-fourth order polyno-
mials, shown with dotted, solid, and dash-dotted curves,
respectively. The target function is shown with a dashed
curve.
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Figure 5: The empirical, actual, and total MSE of the
approximation, shown by dash-dotted, dashed, and solid
lines, respectively.

ing the order N . The �gure shows the second, fourth, and
twenty-fourth order polynomial �ts with dotted, solid, and
dash-dotted lines, respectively. As in the noiseless case,
the second order polynomial exhibits a high deviation from
the target function. The fourth order polynomial seems to
exhibit similar characteristics to those of the target func-
tion, whereas the twenty-fourth order polynomial deviates
again from the target function, providing rather a better
�t to the noise characteristics.

It is instructive to investigate the empirical, actual,
and total MSE, i.e., the MSE between the noisy samples
and the �tted model, the MSE between the noiseless sam-
ples of the target function and �tted model, and the sum
of the empirical and actual MSE. Note that the empiri-
cal MSE corresponds to the error imposed by the Eq. (4),
whereas the actual MSE corresponds to the error imposed
by Eq. (5b). It is clear that the empirical MSE decreases by
increasing the model order, however the sample values of
the higher-order polynomials deviate more and more from
the actual (noiseless) values of the target function. The

total error has a minimum at N̂ = 4. This order and the
error is the correct solution of the problem by considering
both the Eq. (5a) and the Eq. (5b).

Fig. 6 shows the total MSE estimates obtained from
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Figure 6: The estimates of the total MSE by Final Predic-
tion Error (FPE), Shwartz citeria (SC), Generalized Cross
Validation (GCV), and Shibata's model selector (SMS).

the analytical model selection criteria mentioned in Sec. 2.
The estimates are calculated using Eq. (6) and correspond-
ing penalization function � for each method. All the meth-
ods have a distinct global minimum at order four, which is
the correct order for the particular data set used in the sim-
ulation. The total error estimates at this order are slightly
lower than the total MSE in Fig. 5, but this fact is of minor
importance, since in a minimization problem, the absolute
value of the MSE is not needed. Moreover, the compar-
ison of Fig. 5 and Fig. 6 shows that all the methods but
SMS tend to over-penalize the higher-order polynomials.
This is related to the fact that they converge into the tar-
get total MSE asymptotically, as the sample size K !1.
Therefore it is a good practice to obtain model-order esti-
mates from multiple model-selection criteria and average
their predictions in order to obtain reliable estimates.

3.3 Loop-�lter design

Once the optimum N̂ has been found, it is straightfor-
ward to obtain the desired magnitude spectrum using the
following relation:

jHN̂(e
|!)j = e�

��
N̂
!)

f0 (10)

. The next task is design a �lter Hl(z) minimizing
kjHN̂ (e

|!)j � jHl(z)jz=e|!k. This problem looks similar to
the initial problem of Eq. (4) in form, however there are
fundamental di�erences. First of all, the new problem is an
approximation problem rather than a regression problem,
since both terms are real, continuous functions of a sin-
gle variable !. Moreover, there is no measurement error,
i.e., the intermediate polynomial representation turns the
problem of Eq. (4) into a form similar to that of Eq. (5b)
only, by satisfying Eq. (5a) automatically. In this case, to-
tal MSE equals to the empirical MSE, and there is a unique
least-squares solution for this problem. The problem can
also be turned into a weighted least-squares problem by a
weighting function. In addition, the desired magnitude re-
sponse does not exceed unity, thus the designed loop �lter
guarantees a stable virtual string model.
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Figure 7: The desired magnitude response (dash-dotted)
obtained from the truncated polynomial and the magni-
tude responses of the �tted IIR �lters. The �lter orders
are one,two, and six, and they are plotted with dotted,
solid, and dashed lines respectively.

For obtaining the loop �lter coeÆcients, MATLAB
yulewalk function has been used. This function is based
on modi�ed Yule-Walker algorithm for an arbitrary-order
IIR �lter design. Other methods, such as the one proposed
in [14], may be utilized for solution as well. Fig. 7 shows
the designed �lter magnitude responses of the �rst, second,
and sixth order IIR �lters together with the desired mag-
nitude response obtained from Eq. (10). The response of
the 6th order IIR �lter is completely overlapping with the
desired magnitude response, so that this two magnitude
responses can hardly be distinguished.

As a �nal step, it is instructive to compare the mag-
nitude response of the �lter that generated the simulation
data to the response of the designed �lter, both shown in
Fig. 8. The dots are the noisy samples of the generating
magnitude response at multiples of a test fundamental fre-
quency f0 = 330 Hz. The magnitude response correspond-
ing to the truncated decay rate polynomial (calculated by
Eq. (10) after obtaining the order that minimizes the total
MSE) is shown with a dashed curve. Finally the �tted bi-
quad �lter response is shown with a solid curve. Although
there are slight deviations, the responses are very close to
each other. It is evident that the e�ect of the noise is ef-
�ciently by-passed, hence the presented method is robust
under simulation conditions. However, evaluation of the
performance of the suggested method with measurement
data has been left as a challenging future task.

4 CONCLUSIONS

In this paper the problem of designing a stable loop �lter
for virtual string instruments have been investigated. The
simulated decay-rate samples, which can also be obtained
by measurements, have been used as an intermediate de-
sign step. The distinction between the empirical and total
MSE of the polynomial regression using these samples has
been emphasized in a general framework. Four di�erent
methods of analytical model selection, have been used to
illustrate how the obtain the optimum polynomial order,
in the sense that the truncated polynomial minimizes the
total MSE. A simple method for designing the �nal �lter
has been shown. The results indicate that the method is
both robust and reliable.
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Figure 8: Comparison of the generating �lter response
(dotted), the magnitude response corresponding to the
truncated polynomial (dashed), and �tted biquad �lter
magnitude response.

There are some points that need further investi-
gation. It would be desirable to obtain another criterion
that helps to determine the loop-�lter order as well. Since
this problem di�ers from the polynomial regression, the
analytical methods cannot be incorporated as such. The
simulation in Sec. 3.1 indicates that the relation between
the �lter and polynomial order is not one-to-one, however
there is a relation between the smoothness of the �lter
magnitude response and the polynomial order. This rela-
tion needs to be quanti�ed, and should be incorporated in
the design process.

The perception of the decay-rate di�erences is an-
other important topic. In fact, recent perceptual studies
show that large errors in the decay characteristics of the
plucked string tones may be tolerated by the listeners [17].
However, at their recent level, these studies are provid-
ing just qualitative insight rather than quantitative rules.
Therefore, the method presented in this paper does not
rely on perceptual criteria. Once elaborated, perceptual
criteria may be incorporated in the method as well.
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