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Most of the current telecommunication systems transmit narrowband speech, the frequg¢
the speech signal ranging from about 300 Hz to 3.4 kHz. This leads to reduced quali
intelligibility of telephone band speech. To improve the speech quality, artificial bandy
expansion can be used to generate the missing higher frequencies.
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This thesis presents a neural network based algorithm for artificial bandwidth expansign, and
a neuroevolution system to evolve the neural network. The expansion algorithm works by

generating an initial expansion band using controlled aliasing, and then shaping the ma
spectrum of these new frequencies using a cubic spline based magnitude shaping functi
spline shape is controlled by a set of control points, which are generated from a set of f¢
by the neural network. The training system uses neuroevolution to evolve such neural n
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weights that produce an expansion that resembles an original wideband reference speech in

a cepstral mean square sense. Analysis of the expansion algorithm behavior and li
test results are presented. The tests show that listeners clearly prefer speech expande
method over ordinary narrowband speech.
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TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA
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keinotekoinen laajentaminen
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Paaosa nykyisista telekommunikaatiojarjestelmista valittaa kapeakaistaista puhetta, jon

ka puh-

esignaalin taajuuskaista on noin 300-3400 Hz. Tama johtaa puhelinpuheen laadun ja ymmar-
rettavyyden heikkenemiseen. Keinotekoista taajuuskaistan laajennusta voidaan kayttda puut-

tuvien ylataajuuksien luomiseen, ja siten parantaa puheen laatua.

Tassa tyossa esitelldadn neuroverkkoon perustuva algoritmi keinotekoiseen taajuuskaigtan laa-
jennukseen, sekd neuroevoluutiojarjestelmé algoritmin neuroverkon opettamiseen. Laajen-
nusalgoritmi luo alustavan laajennuskaistan kayttden hallittua laskostumista ja myokkaa
sen spektria kuutiolliseen splini-kayrddn pohjautuvalla magnitudinmuokkausfunktiolla.
Muokkauskayrdn muotoa ohjataan joukolla ohjauspisteitd, jotka neuroverkko laskee ka-
peakaistaisesta signaalista laskettujen piirteiden pohjalta. Opetusjarjestelma saatdd neu-

roevoluution avulla neuroverkon painoja siten, ettéa niiden tuottama laajennus muistuttaa

neliol-

liseltd kepstrivirheeltdén alkuperéista laajakaistaista puhesignaalia. Ty6ssa analysoidaan laa-

jennusmenetelman toimintaa seka esitetdan kuuntelutestituloksia. Testit osoittavat, ett

a kuun-

telijat pitavat menetelmalla keinotekoisesti taajuuskaistaltaan laajennettua puhetta selkeésti ka-

peakaistaista puhetta miellyttdvampéana.

Avainsanat: puheenkasittely, puheen laatu, keinotekoinen taajuuskaistan laajennu
roevoluutio, neuroverkko, geneettinen algoritmi
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Chapter 1

Introduction

Most of the current telecommunication systems, such as PSTN and GSM, sample speech with
8 kHz sampling frequency. According to the Nyqvist theorem, the maximal frequency range
that can be transmitted with a sampling frequency of 8 kHz is limited to 4 kHz. Partly for
historical reasons, the speech transmitted in telephone networks has even smaller bandwidth,
containing frequencies from 300 Hz to 3.4 kHz.

Human voice contains frequencies that are much higher than those transmitted by telecom-
munication systems. Speech sounds can contain energy at frequencies beyond 10 kHz, but
for most purposes considering a much smaller frequency range is suffisi@ntA readily
intelligible signal can be transmitted in less than 5 kHz of bandwidth.

Unfortunately, thenarrowbandspeech transmitted by the telephone systems does not have
even such frequency range. While the narrowband speech signal contains enough information
to preserve intelligibility to some degreg(], the lack of higher frequencies makes the speech
sound unnatural and muffled. Especially the sibilants like /s/ suffer, as the lowest resonance
frequency for them can easily fall outside the narrowbBaiuithe case of /s/, this leads to some
speakers sounding like they are speaking with a lisp.

In addition, while the narrowband speech is intelligible, the listening effort required from
the listener is high. Higher bandwidth speech signals can be comprehended more easily and
they sound more natural. This has lead to development of wider bandwidth speech codecs
to be used especially in the third generation mobile communication systems. For example
the Adaptive Multi-Rate Wideband (AMR-WB) transmits frequencies from 70 Hz to 7 kHz,
providing natural sounding speech with good intelligibility.

In the future, wideband speech transmission will become more common, but it will take time
before all parts of the telephone system support wideband transmission. To enable smooth
transition from narrowband to wideband systems it would be desirable to be abtéitaally
create the missing frequencies of the narrowband transmitted speech in wideband equipment,

1The lowest resonance frequency in /s/ is around 4 kHz for a male sp&iker |
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so that it would more closely resemble the wideband transmitted speech. This way it would be
possible to improve speech quality and reduce the perceived dissimilarities, when operating in a
mixed bandwidth environment containing both narrowband and wideband speech channels and
communication devices. This kind aftificial bandwidth expansion (ABE) would provide

an economic way to enhance the perceived speech quality.

As the narrowband signal and the missing highband signal are created by the same speech
production process, there is a reason to believe that the spectral envelope of the lower and
higher frequency bands of the speech signal are dependent. If a model of this dependency
could be made, it could be used to map the narrowband speech signal into a corresponding
wideband speech signal.

Unfortunately, while the basics of the human speech production are known considerably
well, the wide variety of aspects affecting it has made developing accurate models of the pro-
cess difficult. Moreover, the physical properties and speaking style of each speaker are unique,
leading to high differences in speech signals even when the spoken phrase is the same.

1.1 Overview of the Thesis

This thesis was written within an artificial bandwidth expansion project that was a collabora-
tion with the Laboratory of Acoustics and Audio Signal Processing at Helsinki University of
Technology and the Audio-Visual Systems Laboratory at Nokia Research Center. The original
project aim was to improve an existing expansion algorithm that was developed in a previ-
ous collaboration project. During the development, a new idea of using artificial evolution for
learning artificially bandwidth expansion emerged. The idea was first tested by using genetic
algorithms to tune different parameters of the old algorithm. As it was successful, the work
on a system that would produce neural network based artificial bandwidth expanders using
neuroevolution was launched.

During the last decade, several artificial bandwidth expansion algorithms have been proposed
by various authors. The main goal for all of them has been the same, to improve the quality
of the speech by adding new spectral components to bandlimited speech. An overview of the
existing work is given irchapter 2.

Neuroevolution has shown great promise in complex learning tasks and has been used for a
wide variety of control tasks ranging from game playing to finless rocket guidance. It represents
an alternative to statistical technigues that attempt to estimate the utility of particular actions in
particular states. In neuroevolution, artificial evolution is used to train neural networks capable
of controlling complex systems. An introduction to neural networks, artificial evolution and
neuroevolution is given in chaptehapter 3.

The developed algorithm, NeuroEvolution of Artificial Bandwidth Expansion (NEABE),
that was invented, is presented in chaptieapter 4. The chapter discusses the design and
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implementation of the algorithm and the various choices made.

To assess the algorithm quality, various tests and experiments were made. The goal of the
experiments was on one hand to analyze the behavior of the algorithm and on the other hand to
get an idea of the subjective quality of the expansions produced by it. These experiments and
their results are presentedchapter 5.

Chapter 6 completes the thesis with conclusions of the topic and presents some ideas for
future work.



Chapter 2

Methods of Artificial Bandwidth
Expansion

Artificial bandwidth expansion can be defined as the process of expanding the signal bandwidth
by artificially generating the missing frequencies of the signal, using only the information
contained in the narrowband signal.

Most, if not all, of the artificial bandwidth expansion methods that have been developed are
expandingspeectsignals. The most common application for the expansion methods is expand-
ing narrowband telephone speech of bandwidth 300-3400 Hz to enhance the speech quality.
There is, however, no reason why some of the (statistical) artificial bandwidth expansion meth-
ods could not be used to expand any signal that has enough mutual information between its
base band and expansion band.

In this chapter various methods for artificial bandwidth expansion of telephone band (300—
3400 Hz) speech to span frequencies up to 7 kHz or 8 kHz are described. Some of the methods
may also add spectral components to cover the frequency band below 300 Hz, but the main
emphasis is on the expansion towards high frequencies.

The methods have been divided into two groups. The first group, described in s&dfion
utilizes envelope aliasing, nonlinear processing or artificial neural network to produce the fre-
guency components of the exansion band. The methods of the second group, discussed in
section2.2, are based on a linear model of human speech production. They typically use a
linear prediction B5] to separate the signal into a spectral envelope model and a spectrally
(approximately) flat excitation signal and expand these separately.

2.1 Methods without Speech Production Model

The artificial bandwidth expansion algorithms described in this section, as opposed to the ones
described in the next section, are not based on linear model of human speech production. In
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section2.1.1, nonlinear processing based methods are explained. S@cti@tovers methods
based on envelope aliasing ahd.3outlines a method which uses envelope aliasing and frame
classification. Sectio.1.4describes an artificial neural network based method.

2.1.1 Nonlinear Processing

The general idea of the nonlinear processing methods is to use a suitable nonlinear function to
distort the upsampled and lowpass filtered narrowband signal to produce the high frequencies
into the expansion band. The generated artificial expansion band is then shaped with a spectral
shaping filter to produce a more natural sounding highband. After that, the expansion band
signal is highpass filtered and combined with the original narrowband signal to produce the
bandwidth expanded signal.

Suitable distortion functions that have been used for nonlinear processing include half- and
full rectification [34, 55, 65|, and quadratic, cubic or saturation functio23][

Yasukawa §5] proposes a nonlinear processing based expansion method, which utilizes
rectification to produce the expansion band spectral components. Block diagram of this method
is shown in Figure.1l Soonet al[55] use a similar basic system, but add a zero crossing rate
based adaptation to scale the highband gain, as shown in RRg2ireThis scaling is used
to increase the highband gain during the unvoiced sounds and decrease it during the voiced
sounds. According to their experiments, this adaptation improves the log spectral error and
reduces artefact severity. However, a mere highband gain alteration doesn't correct the tilt
of the spectrum. Thus the spectral shape must still be incorrect, which most likely leads to
reduced subjective quality.

14kHz HPF | shaping | | level
8 kHz 7kHz filter adjust
decimate | | || upsample
8/7 & 2 7/8 >
Narrowband || || level Wideband
LPF delay .
speech adjust speech

Figure 2.1: Block diagram of the frequency expansion algorithm based on rectification introduced by
Yasukawa §5].

The main benefits of the nonlinear processing are low computational cost of the implementa-
tion and robustness. Quadratic distortion has the additional benefit of generating only harmonic
distortions, thus the tonal components of the expansion band will always match the harmonic
structure of the bandlimited signal during voiced sourit#. [

The major drawback of the nonlinear methods is the expansion quality. Since most of the
methods aim for low computational complexity, they typically contain only one shaping filter,
which is usually optimized for voiced speech frames. This leads to a wrong kind of behavior
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ZCR
/
12 | LPF abs || HPF | ShaPing | |y Ly L
filter
Narrowband A Wideband
speech speech
delay x2

Figure 2.2: Block diagram of the nonlinear processing based frequency expansion system proposed by
Soonet al. [55]. ZCR block evaluates the zero crossing rate feature, which controls the gain of the
signal highband.

for fricatives, which would require highband amplification instead of the attenuation used for
shaping the highband spectra of voiced frames.

2.1.2 Envelope Aliasing

Envelope aliasing methods are based on a simple idea of using controlled aliasing to produce
a mirrored copy of the lowband spectrum as a new highband spectrum. The new highband
spectrum is then shaped with a shaping filter to produce a highband that more closely resembles
the highband of the original speech.

Typically, the signal isl : 2 upsampled from 8 kHz to 16 kHz by inserting zeroes between
the samples. The aliasing caused by this operation is not, however, corrected with lowpass
filtering. Instead, the aliased highband portion is shaped with a shaping filter to produce a
suitable artificially expanded speech signal highband. The highband is then combined with
the original narrowband signal, for example by combining the lowpass filtered version of the
upsampled narrowband signal with the highpass filtered version of the frequency shaped up-
sampled narrowband signal.

In [64], Yasukawa describes the implementation of this kind of bandwidth expansion system.
In his method the signals are delay-adjusted to counter the different delays introduced on low-
and highband processing paths and then both paths are level adjusted separately before com-
bining the signals. The amount of level adjustment is tuned by trial and error, using subjective
expansion quality as a guide. Yasukawa’s method is illustrated in Fiy@re

One of the benefits of the aliasing methods in comparison to the nonlinear processing meth-
ods is the reduced need for level adjustment. The high- and lowband have a matching gain,
so in principle the shaping filter could contain all the level adjustment needed, as long as the
extra power brought by aliasing is pre- or post-compensated. The envelope aliasing is also
computationally efficient and allows simple time domain implementation.

The aliasing methods have two drawbacks. Since the fundamental frequency of the speech
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16kHz | shaping | | HPF || level
8 kHz filter adjust
— N r >
Narrowband LPF — delav |— level Wideband
speech y adjust speech

Figure 2.3: Block diagram of the frequency expansion algorithm based on envelope aliasing introduced
by Yasukawa4].

is not considered, the reproduced discrete structure of the expanded frequency band is incon-
sistent during voiced sounds, as the discrete frequency components are not correctly placed at
integer multiples of fundamental frequency. In addition, if the aliasing is done directly to a tele-
phone signal sampled with 8 kHz rate, it will result in a spectral gap in the middle frequencies
(from 3.4 kHz to 4.6 kHz) of the expanded signal, as the telephone signal is typically strongly
attenuated from 3.4 kHz on. The expansion will also be bandlimited in the high end to 7.7 kHz
due to the telephone bandpass filtering, which usually has a passband starting from 300 Hz.

However, according to for exampl@7], the spectral gaps of moderate width are almost
inaudible to human ear. Therefore the second disadvantage of the envelope methods is not a
serious one.

2.1.3 Envelope Aliasing with Classification

In [30], Kallio describes an artificial bandwidth expansion method which uses frame classifica-
tion to change the shaping filter according to the phoneme type expressed in the frame. Three
types of shaping filters are proposed. One is for shaping voiced frames (frames containing /a/,
/el or /il, for example), one for shaping stop consonant frames (/k/, /p/ or /t/, among others)
and the last for sibilant frames (/s/, /z/, Ish/, [zh/, ...). In addition, sibilant processing uses a
more conservatively amplifying shaping filter for the first frame of the sibilant to avoid abrupt
changes and reduce artefacts caused by misclassification.

Using multiple shaping filters makes it possible to considerably amplify fricatives, without
introducing severe artefacts in shaping of voiced and especially stop consonant frames. This
leads to clearer, more natural sounding speech. However, it also requires classification of the
frames to decide when to use which filter. This classification is not easy to implement robustly
and misclassifications usually lead either to over-amplification, which causes artefacts, or to
over-attenuation, which leads to lower subjective speech qliality

The ABE algorithm in BO] computes spectral tilt estimate which is used both to classify
the frame, and to adapt the shaping filter. The filter adaptation reduces the over-attenuation

'For example, overattenuating a sibilant frame causes the speaker to sound like he/she is speaking with a lisp.
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Narrowband | ¢_ |6 115
speech frame s

o

Non-sibilant Sibilant
Voiced sound Stop-consonant ,
) Following frames
First frame

‘ Basic ‘ ‘ Stronger ‘ Conservative ‘ Basic
Attenuation Attenuation Amplification Amplification
IFFT
‘ Energy Adjusting ‘
Wideband

speech frame

Figure 2.4: Block diagram of the frequency expansion algorithm based on envelope aliasing with clas-
sification, originally described ir8[].

problems and smooths the transitions between phoneme classes.
A block diagram of the ABE method by Kallio is given in Figuzed.

2.1.4 Adaptive Spline Neural Network

Uncini et al. [60] describe an artificial bandwidth expansion method based on Adaptive Spline
Neural Networks (ASNN). The architecture of the system is illustrated in Figii@) The

system generates the missing low and high frequency components of the signal by using sep-
arate adaptive spline neural networks for both. The networks take telephone band (300 Hz -
3400 Hz) FFT coefficients as inputs and produce FFT coefficients as outputs. For highband
expansion of unvoiced sounds, an additional scheme utilizing nonlinear processing, illustrated
in Figure2.5(b)is used instead of th& SNNy.
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(a) The architecture of the bandwidth expandgf.is the length of the windowv[n] used
for the STFT and LPF is the interpolation filter.
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Narrowbﬁnd Wideband
speec speech
win]

(b) Additional scheme used for expansion of high frequency part of the un-
voiced sounds. HPF is a highpass filter identical to the one in Yasukawa’s
nonlinear methodds).

Figure 2.5: Adaptive spline neural network based artificial bandwidth expander developed by Encini
al. [60].

The implementation used ir6Q] uses 64 point complex FFT/IFFT, which is too short to
contain even a single pitch period of wideband signal. According to Rab#®grtpo short
frame length will cause the FFT components to fluctuate very rapidly depending on the exact
positioning of the frame. The short frame length also leads to reduced spectral resolution,
which might affect the expansion quality.

2.2 Methods Based on Linear Model of Speech Production

The artificial bandwidth expansion algorithms described in this section are based on a source-
filter model of human speech production, illustrated in FigRu&[49]. In the model, an ex-
citation signal is shaped with a filter that models the vocal tract and lip radiation effects. The
vocal tract is a part of the human voice production apparatus that starts from the vocal folds
and ends to lips. Lip radiation effect corresponds to the changing of the volume velocity at lips
into a speech pressure waveform in free field outside the mdgih [

There are two excitation signals, one for voiced sounds and another for unvoiced sounds.
They correspond to the speech excitation by glétalses, and the turbulent noise generated

2named after thglottis, i.e. the orifice between the vibrating vocal folds
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Figure 2.6: A source-filter model of speech production.

by forcing air at high velocity through a vocal tract constriction, respectively. The vocal tract
filter modulates the frequency content of the excitation signal to produce the final utterance.
By altering its parameters, realizations of different phonemes can be produced.

Typical way of using the linear speech production model in artificial bandwidth expansion
can be described in six steps:

1. Extract auto-regressive(AR) coefficients from the narrowband speech frame.

2. Construct a linear prediction analysis filter which uses the extracted coefficients. Filter
the narrowband frame with the analysis filter to get an estimate for the excitation signal.

3. Expand the excitation signal using one of the methods described in s€cliomhe
expansion method is not so critical when expanding excitation signal, as its influence
on the final expansion quality is not nearly as significant as that of the spectral envelope
estimate.

4. Estimate wideband AR coefficients from the corresponding narrowband coefficients us-
ing some estimation method (for example HMM, GMM, NN and codebook methods
have been used). Additional features calculated from the narrowband frame(s) may be
utilized to improve the estimate accuracy.

5. Construct a linear prediction synthesis filter using the estimated wideband AR coeffi-
cients. Filter the expanded excitation signal with the synthesis filter.

6. If the method does not ensure the preservation of the narrowband information, highpass
filter the expanded signal and combine it with the original narrowband signal to preserve
the original lowband. Power adjust as needed before combining the signals.
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Figure 2.7: Block diagram illustrating generic linear prediction based artificial bandwidth expansion
scheme.
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This generic linear prediction based artificial bandwidth expansion scheme is illustrated in
Figure2.7.

The most important differences in the source-filter model based methods are in the spec-
tral envelope estimation methods. In the following subsections, algorithms based on various
spectral envelope prediction methods are overviewed.

2.2.1 Linear Mapping

While the spectral envelope prediction is generally considered to be a non-linear problem, there
have been some attempts to use linear mapping to solve itLllnEpps and Holmes have
explored using ordinary linear mapping and piecewise linear mapping based spectral envelope
prediction methods for artificial bandwidth expansion.

In the linear mapping method, a vector of narrowband parametefs|zy, za, . .., x| IS
mapped into the output highband envelope parameter vgctofy:, ya, . . . , ¥, Using a linear
mapping

y = Wx (2.1)

where elements oW are determined using least squares. Thus, matikcesmd Y, whose
rows consist of narrowband and highband parameter vectors respectively, are formed from a
large training database, aW is calculated as

W= (XTX)1xTy (2.2)

In the piecewise linear mapping method, the training d&aa6d Y) is divided into L
partitions using some clustering technique. A sepa¥diewherel € 1,2, ..., L, is calculated
for each of the clusters using equat@2 The prediction equation becomes:

y=W;x (2.3)

wherel is the cluster the parameter vectobelongs to.
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Avedano, Hermansky and Wat][map time trajectories of narrowband LPC-cepstral co-
efficients linearly into LPC-cepstral coefficients of the wideband signal. The used mapping
is

p M
CHk) =D > Wir(DCi(k —1) (2.4)
i=11=—M
whereC4(k) is the estimate of theth cepstral coefficient;(k) is theith narrowband LPC-
cepstral coefficient ant’; . are FIR filter coefficients, selected in such a way tfiabecomes
the least squares estimate of the origiGl

The linear mapping methods are conceptually simple and usually quite efficient to imple-
ment. However, due to the nonlinear nature of the spectral envelope prediction the estimate
quality is usually limited, which may lead to worse subjective expanded speech quality.

2.2.2 Codebook Mapping

Many of the artificial bandwidth expansion methods have used some variant of codebook map-
ping for spectral envelope prediction. In codebook mapping, the predicted spectral envelope is
selected from a pre-designed codebook. The narrowband envelope is compared to wideband
envelope entries in the codebook, and the entry closest to the original narrowband envelope
is selected. The closeness is measured by a distance metric, which varies from one method
to another. The wideband envelope corresponding to the selected entry is used as the spectral
envelope estimate.

The entries for the codebook are selected by clustering the training data and selecting repre-
sentative vectors for all clusters. This is typically done using the LBG algorithm.

Enbom and Kleijn 10] use a codebook containing narrowband mel-frequency cepstral coef-
ficients (MFCCs) and the corresponding wideband LSP coefficients. For clustering and select-
ing the best matching codeword from the codebook they use the following distance measure:

K
Dy = (ci) = &n(i))? (2.5)
=1
wherec(i) is the MFCC of the current speech framg(i) is the MFCC of codewora and K
is the order of the MFCC.
Chan and Hui §] use a single codebook which consists of wideband LSP vectors. For
clustering and selecting the best matching codeword they measure the spectral distortion on
the signal lowband:

2

SD 1NlmuH 10log | H " 2.6
w= |y Xy [, (gm0 ) ) @9

3For example in11], linear mapping had a highband distortion of 3.74 dB, piecewise linear mapping 3.62 dB
and ordinary codebook mapping 3.35 dB.
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where H(w) is the signal wideband LPC spectrum aAtw) is the LPC spectrum of the
codeword.

The benefit of using a single codebook entry instead of a (narrowband, wideband) pair, is that
the coefficients for the analysis and synthesis filters are the same and their transfer functions
are mutually inverse. Therefore, if the lowband of the excitation signal is retained, the lowband
of the expanded signal will be identical to the original narrowband signal.

Codebook mapping has been applied to bandwidth expansion related spectral envelope pre-
diction widely, and it can be seen as a benchmark method, against which other methods are
compared. While it is capable of producing rather good results in the spectral distortion sense,
it seems to have a tendency to create perceptually annoying signal highband power overesti-
mates L0]. In addition, computational costs for the codebook methods are considerable, as
usually every codebook codeword must be compared with the narrowband spectrum to deter-
mine the winning codeword.

2.2.3 Adaptive Codebook Mapping

In its basic form, the number of possible highband envelopes which can be predicted by code-
book mapping is limited to the size of the codebook. Epps and Holgpfopose an in-
terpolation method to reduce the distortion resulting from this limitation. In the interpolative
codebook mapping, instead of selecting a single codeword closest to the narrowband spectral
envelope N closest codewords are selected and their corresponding wideband code vectors are
combined using weighted average.

In addition to interpolation, Epps and Holmes suggest using different codebooks for voiced
and unvoiced speech frames. During training, a binary voicing detection algorithm is used
to divide the training data into envelopes from voiced and unvoiced frames. The voiced and
unvoiced codebooks are then trained separately. Because different degrees of voicing are as-
sociated with different spectral envelope shapes, this produces additional information for the
expansion process.

2.2.4 Gaussian Mixture Models

Gaussian mixture models (GMM) have also been proposed for highband spectral envelope
prediction. According to Park and Kind§] there are two principal motivations for using the
GMM as a representation of the acoustic space. Firstly, the empirical observation that a linear
combination of Gaussian basis functions is capable of representing a large class of sample
distributions. Secondly, the individual component densities can be intuitively interpreted to
represent some broad acoustic classes.

In GMM based approaches, a gaussian mixture model for mapping the narrowband feature
vector into a wideband spectral envelope is learned. Typically the model is learned by using
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expectation maximization (EM) algorithm to obtain a maximum likelihood (ML) estimate for a
given training set. The trained model consists of triplets {«;, i, Ci}, i = 1,...,Q; where

«; is the weight of the mixture componeitu; is the mean vector of the compone@t, is the

n X n covariance matrix an@ is the number of mixture components. When estimating, the
GMM produces a weighted combination of the mixture component mean vectors as the high-
band spectral envelope estimate. Thus, GMM approach can be considered to be an intelligent
codebook interpolator, where the component mean vectors correspond to the codewords of the
codebook and the mixture parameters define the way in which to combine them.

Park and Kim f5] describe a GMM based approach in which the narrowband feature vector
consists of the spectral vector sequence of narrowband speech and the envelope estimate con-
sists of the spectral vector sequence of wideband speech. The joint density of these vectors,
z = (z,y)7, is modeled as a mixture ¢f 2n-variate Gaussian functions and a minimum MSE
estimate for the wideband is calculated from the model.

Qian & Kabal |8 use a similar approach, except that in their model the feature vector
consists of LSP coefficients and an additional pitch gain feature, and the highband spectral
envelope is estimated as a vector of LSP coefficients.

Generally, the GMM based methods perform better than corresponding codebook mapping
based methods. Both Park and Kidb], and Qian and KabaWg] report an improvement in
comparison to the VQ codebook mapping method. Park and Kim also report a high preference
for the GMM based method in a subjective preference test. The computational requirements
for the GMM methods are around the same order as for the codebook mapping methods.

2.2.5 Hidden Markov Models

Recently, some artificial bandwidth expansion methods utilizing hidden Markov models (HMM)
for spectral envelope prediction have been presented. The main benefit of using HMM for en-
velope prediction is its capability of implicitly exploiting information from the preceding signal
frames to improve the estimation quality. Each state of the HMM usually corresponds to a spe-
cific speech sound, similar to the way each codeword in the codebook methods does. Therefore,
the states of the HMM can be seen to relate to the possible positions of the articulatory organs,
while the state transition probabilities can be seen to model the way the articulatory organs can
be moved from the position.

Jax and Vary 29] use HMM to estimate a set of wideband linear prediction coefficients,
which are then used for both analysis and synthesis filter. This way the lowband of the ex-
pansion will be identical to the original narrowband signal. Their HMM model takes an input
vector consisting of 10 narrowband auto-correlation coefficients and five additional féatures
uses EM trained Gaussian mixture models to approximate the observation probability PDFs
and produces a cepstral MMSE estimate of the wideband LP coefficients. The state and state

4zero-crossing rate, normalized frame energy, gradient index, local kurtosis and spectral centroid
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transition probabilities are estimated from the wideband training data using the true state se-
guence.

Hosokiet al. [23] introduce a bandwidth expansion algorithm which uses subband HMMs
(SHMMSs) for envelope estimation. They divide the wideband speech into a number of sub-
bands and extract their features independently. The relationships between spectral subbands
are learned during the training phase. During the reconstruction phase, the lowband HMM
decodes the state sequence, which the highband HMM uses for spectral envelope estimation.
A separate HMM is used to model the energy ratio between the low- and highband.

Jax and Vary report that exploiting the transition probabilities of the HMM considerably
reduced the occurence of artefa@8|[ The drawback of the HMM method is that it requires
considerable amounts of data to reliably estimate the state models and transition probabilities.
In [29], over 25 hours (4.5 million frames) of training data is used.

2.2.6 Neural Network Based Methods

Iser and Schmidtd6] compare neural network based spectral envelope prediction method to
a codebook method. Their neural network envelope predictor uses LPC coefficients which
have been converted into cepstral domain as inputs. 12 LPC coefficients from two consecutive
frames are transformed into 36 cepstral coefficients using the following equation

1—1
ai(n) + % S kéx(n) dsi(n), fori=1...p
&(n) = k=t 2.7)

i—1

1
=Y keég(n)air(n), else
1

=1

wherea;(n) is theith LPC coefficient and;(n) is theith cepstral coefficient. The LPC is
evaluated for a preprocessed signal to prevent the LPC from modeling the edges caused by
the bandpass filtering of the signal. The preprocessing consists of reducing the sample rate so
that the signal contains only frequency components under 3400 Hz, and setting the frequencies
below 300 Hz to a mean value calculated out of a few samples above 300 Hz.

Network output is given as cepstral LPC coefficients. The output LPC order is 20, resulting
in 30 cepstral coefficient outputs. The outputs are post processed to force the poles of the LPC
filter inside the unit circle to ensure the model stability.

The neural network used by the method is a feedforward network, which is trained using
the standard backpropagation algorithm. The distance measure in the learning process is the
cepstral MSE between the network output and the cepstral LPC coefficients calculated from
the original wideband signal. The network contains 36 hidden neurons in a single hidden layer.

For both the codebook method and the neural network method, the signals are power adjusted
and phase manipulated after the initial expansion. The resulting signal is bandstop filtered and
combined with the original narrowband signal.
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According to the results reported by Iser and Schmidt, the neural network achieves better log
spectral distortion and cepstral distortion, but slightly worse log area ratio (LAR) distortion.
However, in the listening tests, 80% of the listeners prefer the codebook based method.

The computational costs of the neural networks are considerably lower than those of code-
book methods.



Chapter 3

Neuroevolution

Neuroevolution (NE) can be defined as the artificial evolution of neural networks using Evolu-
tionary Computatioh (EC) algorithms. It has shown great promise in complex reinforcement
learning tasksg6] and has been used for a wide variety of control tasks ranging from game
playing [7] to finless rocket guidance §]. Neuroevolution approach represents an alternative
to statistical techniques that attempt to estimate the utility of particular actions in particular
states of the worldq6).

In this chapter, an introduction to the basics of neuroevolution is given. We begin by
overviewing neural networks, in secti@il, and genetic algorithms, in secti@?2 The two
topics are then combined, as we explore the evolutionary approach to neural network train-
ing, in section3.3. Finally, in section3.4, the chapter is concluded by a look into specialized
neuroevolution methods, which have been designed to overcome problems encountered when
utilizing evolutionary algorithms for neuroevolution.

3.1 Neural Networks

In [20], anartificial neural network (ANN) is defined as:

A massively parallel distributed processor made up of simple processing units,
which has a natural propensity for storing experiential knowledge and making it
available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learn-

Evolutionary Computatioiis the general term for several computational techniques which are based to some
degree on the evolution of biological life in the natural work®][ The most widely used form of evolutionary

computation ar&enetic AlgorithmsOthers includé&enetic ProgrammingndEvolution Strategiesamong others.
2While the correct term iartificial neural network, it is a quite common convention to refer to ANN’s simply

as neural networks (NN'’s). As this thesis only discusses artificial neural networks, this convention will be adopted
here.

17
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ing process.

2. Interneuron connection strengths, known as synaptic weights, are used to
store the acquired knowledge.

3.1.1 Architecture

A NN consists of a set of processing elements, also known as neurons or nodes, which are
interconnected. It can be described as a directed graph in which eachperflerms a transfer
function f; of the form:
n
yi = fi<zwijxj + 9i> (3.1)
j=1

wherey; is the output of the nodg z; is thejth input to the nodey;; is the connection weight
between nodesandj, andd; is the bias (or threshold) of the node. Usualfyjs nonlinear,
such as a heaviside, sigmoid, or Gaussian function.

NN'’s can be divided into feedforward and recurrent classes according to their connectivity.
A recurrent NN has feedback connections in its graph. More formally, a neural network is
feedforward, if there exists a method which numbers all the nodes in the network such that
there is no connection from a node with a larger number to a node with a smaller n@8per [

Perhaps the most widely used neural network type is the fully connected feedforward multi-
layer perceptron (MLP), which consists of separate layers of neurons, in which every neuron
is connected to all neurons in the next layer and receives input from all neurons in the previous
layer. The signal is input into the first layer, called the input layer, and propagated through one
or more hidden layers into the output layer, from which the output signal can be read. A single
hidden layer is often used, and is, in theory, sufficient to model any continuous fungtion [
An illustration of a single hidden layer fully connected MLP is given in Figuk

3.1.2 Learning

Learning in NN's is typically accomplished using a set of examples. The network learns to
produce desired results for the learning set and generalizes the results for other inputs. Learning
in NN’s is also called training, because the learning is achieved by adjusting the connection
weights iteratively to make the network perform a desired task. Types of learning that are used
with the NN’s can be divided to three groups: supervised, unsupervised and reinforcement
learning.

Supervised learning is based on direct comparison between the actual output of NN and the
desired output. Itis often formulated as the minimization of a differentiable error function, such
as MSE over whole teaching sample set. A gradient-descent based optimization algorithm such
as backpropagation (BP) can then be used to adjust the connection weights in the NN iteratively
in order to minimize the error6f]
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Input layer Hidden layer Output layer

Figure 3.1: MLP with a single hidden layer. Squares represent input signal sensors and circles compu-
tational neurons. Each neuron sums its inputs and applies a (typically nonlinear) transform function to
it. A neuron specific bias term is added to the sum before transformation.

In reinforcement learning the desired output is unknown. Instead of explicit error mini-
mization, learning is performed through continued interaction with the environment in order to
maximize a scalar index of performance given lryidc. The critic is typically implemented as
anobjective functionwhich credits desired behavior and penalizes unwanted behavior. There
is often a delay in the generation of this reinforcement signal. In may be, for instance, that
the NN performance cannot be reliably estimated before the end of the task. This is the case
in, for example, game playing. Only after the game it is certain which side won and thus the
reinforcement should be given only then.

In comparison to supervised learning, reinforcement learning is much more applicable to
complex problems, as it is usually hard or even impossible to provide a correct answer to them
and typically the task performance evaluation in them must be delayed.

Unsupervised learning, the third learning type, requires no information on “correct output”,
as it is based solely on the correlations among input d&8h [Typical use for unsupervised
learning is clustering. Clustering is a form of unsupervised pattern recognition, in which the
aim is to unravel the underlying similarities in the input vectors and group “similar” vectors
together into clusters, which can then be analyzed and labeled by a human &&pert [

For feedforward MLP’s in supervised learning tasks, which is probably the most common
case the NN's are applied to, the training is typically done using some variant of gradient
descent, such as resilient backpropagatt [scaled conjugate gradier®]] or various quasi-
Newton or Levenberg-Marquardt algorithms, Bayesian regularization backpropagk®on [
for instance.
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Figure 3.2: Structure of a single population evolutionary optimization algorithm. An iterative evolution
process refines the initial population into a population of fit solutions using evaluate-select-recombine-
mutate-reinsert cycle. The selection centers the search into promising areas by selecting the fittest
individuals for reproduction. Recombination and mutation of the promising individuals explores the
regions around them and reinsertion stores the most promising individuals into the population so they
can act as a base for the next evolution cycle. When optimization criteria are met, the best individual(s)
are returned as the result of the search.

3.2 Genetic Algorithms

The termgenetic algorithn{GA), was first used by Holland, whose boalaptation in Natural
and Artificial Systemsef 1975 was instrumental in creating what is now a flourishing field of
research and application that goes much wider than the original58)A [The subject now
includesevolution strategigsgenetic programmingartificial life and classifier systemsAll
these related fields are nowadays often grouped under the head#aglofionary computing

or evolutionary algorithmgEA). [50]

While optimization had a fairly small place in Holland’s work on adaptive systems, it has
since become the main purpose of use for GAs. A basic scheme for optimization using a
single population evolutionary algorithm is shown in Fig@r2 The generic algorithm can be
described in following steps:

1. Generate initial population of individualsThese are often randomly initialized, but
specific domain knowledge or population from a prior run can be used to generate a
more fit initial population.

2. Evaluate objective function to determine the quality of each individDajective func-
tion is the function that is being optimized, in the case of reinforcement learning it is the
reinforcement signal.

3. Test for optimization criteria fulfillmenDetermine if the optimization criteria have been
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met? If they are, go t8, otherwise go tal. The optimization criteria can be anything
from running for a specific number of generations to using a heuristic to estimate when
learning has stagnated or testing whether the evolved solution is good enough in some
problem specific sense.

. Selection. Determine which individuals are chosen for recombination and how many

offspring each selected individual produces.

. RecombinationProduce new individuals by combining the information contained in the

selected parents.

. Mutation. Each variable in each offspring individual has a low probability to be mutated

by a small perturbation.

. ReinsertionDecide which individuals to insert into the new population (from old popu-

lation and from the generated offspring). Continue from &ep

. Return a desired number of best individuadften one, but if the results are further opti-

mized using some other method, it may make sense to try a number of best solutions, as
their potential for further optimization may differ (and is usually impossible to determine
at this point).

Optimization using evolutionary algorithms differs substantially from more traditional search
and optimization methods. According to Pohlhe#d][ the most significant differences are:

EAs search a population of points in parallel, not a single point.

EA's do not require derivative information or other auxiliary knowledge; only the objec-
tive function and corresponding fitness levels influence the directions of search.

EA's use probabilistic transition rules, not deterministic ones.
EA's are generally more straightforward to apply.

EAs can provide a number of potential solutions to a given problem. The final choice is
left to the user. (Thus, in cases where the particular problem does not have one individual
solution, for example multiobjective optimization and scheduling problems, the EA is
potentially useful for identifying these alternative solutions simultaneously.)

In the following subsections, different parts of the genetic algorithm are discussed in more
detail. In3.2.1, objective functions are examined. Subsections fBof2to 3.2.5go through
different subtasks in the genetic algorithm; selection, recombination, mutation and reinsertion.
SubsectiorB.2.6details multi-population GA's, an expansion of genetic algorithms to multiple
subpopulations, and their migration algorithms.
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3.2.1 Objective Function

Objective function is the heart of the genetic algorithm. Failing to select a suitable objective
function may lead to stagnation of learning. The objective function should reward desirable
behavior and penalize undesirable behavior. In reinforcement learning tasks, the reinforcement
signal is a natural choice.

If the function to be optimized is known, it should naturally be selected as the objective
function. As mentioned, there is no need for the objective function to be differentiable, or even
continuous. The only requirement is that it should monotonously measure the desirability of
the given solution (i.e. by sorting the solutions according to the objective function, we sort the
solutions according to their desirability).

However, for example in many reinforcement learning tasks, the function to be optimized is
not necessarily known explicitly. Nevertheless, it is often possible to compare two individuals
and determine which of them performs better. A simple objective function can then be con-
structed by comparing each individual to every other individual in the population and awarding
it one point for each time it performs better. This idea is intrinsically linked to tournament
selection and therefore will be expanded in the selection subsection.

While in theory the selection of the objective function is quite simple, in practice things of-
ten get more difficult. Typically there may be multiple objectives that should be fulfilled at the
same time, or there may be no way to measure the real objective function, but we have a set of
heuristics that together reasonably well predict it. The problem, then, is how to combine these
multiple objectives into a single scalar objective value. A suitable solution should offer “ac-
ceptable” performance in all objective dimensions, where “acceptable” is a problem-dependent
and ultimately subjective conceftd).

A weighted sum of all objectives is certainly a possible solution, but, especially in case of
heuristics, two of the objectives may contain partly overlapping information, the importance of
which may then get overweighted. In addition, selecting weights for different objectives is a
difficult task and requires insight into the statistical behavior of the selected objective functions.

A better solution is to use a multi-objective evolutionary algorithm. Many such algorithms
have been devised, most of the more successful ones using some combination of Pareto-optimal
optimizatior? and niche inductioh[12].

3Fonseca and Flemind ?] define Pareto-optimal family of solutions of a multi-objective optimization problem
as the set of all those elements of the search space which are such that the components of the corresponding objective
vectors cannot be all simultaneously improved. They also provide a more formal definition of the concept.

“One potential problem with multi-objective EAs is that of genetic drift or speciation, where the algorithm
tends to “drift” towards areas where there are clusters of closely matched solutions and leaves other areas not well
mapped out or explored at all. The effect can be reduced by using niche induction, in which the density of solutions
within hypervolumes of either the decision or the objective variable spaces is restrieted. [
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3.2.2 Selection

In selection the individuals producing the offspring are chosen. First, each individual in the se-
lection pool receives a fitness value (a probability of being selected for reproduction) depending
on how its objective value compares to that of the other individuals in the pool. The individuals
for reproduction are then sampled from the selection pool according to these probabilities.
Selection is an important step in evolutionary algorithms, as it is responsible of directing
the population towards promising solution areas, while still attempting to maintain enough
diversity to be able to explore new, possibly even better solution areas. This tradeoff can be
controlled by varyingselective pressuravhich is defined in47] as “the probability of the best
individual being selected compared to the average probability of selection of all individuals”.
Three useful measures, which can be considered when evaluating selection scheme perfor-
mance, ardoss of diversity defined as the proportion of individuals of a population that is
not selected during the selection phase; aaléction intensityand variance defined as the
expected average and variance of the fitness value of the population after applying a selection
method to the normalized Gaussian distribution, respectivialy [

Rank Based Fitness Assignment

There are two main ways to assign fitness for individuals. One is proportionate to the objective
value, the other is based on the rank of the individual in population sorted by the objective
value. Rank based fitness assignment overcomes the scaling problems of the proportional
fitness assignment and behaves in a more robust manner, and is therefore the method of choice
[47].

Linear rankingis a simple rank based fithess assignment, in which the best individual is
assigned fitness according to the selection pressure parasnatel the worst individual is
given a fitness o2 — s. Intermediate individuals get their fithess by interpolation, thus the
linear ranking fitness of the individuais:

pli) = %(s _A—DE- (_Nl )_(51)_ D ) (3.2)
where N is the total number of individuals in the population. Valid values for the selective
pressure parameterange from 1.0 to 2.0.

Blickle and Thiele §] provide analysis of the linear ranking performancerhe loss of
diversity p4, selection intensity and selection variancé as a function of selective pressure
parametes are:

pals) = 7(s—1)

The formulas from$5] have been converted to use the more widely used selective pressure paraimsttesd
of n~. The relationship between the two parametergis= 2 — s
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I(s) = —(s—1) (3.3)

(s —1)?

Vis) = 1-1(s)>=1-

Plots of the functions are shown in FigBe3.
To provide more intensive selection pressure non-linear ranking methods can be used. A
typical example of these sxponential rankingin which the fithess assignment function is:

. c—1 , 4
p(l) = cjvi—lcz (34)
wherec is a parameter of the method. Selective pressure of the method is proportibratto

Blickle and Thiele 5] give the following performance measures for the exponential ranking:

a—1
1_lnczlnoz o Qa

In o a—1
InlnZ

0.588 a (3.5)

3.69«
2.8414

~ 1 <1.2 —)

Vie) n + 2.225a — In«

=
£
2

wherea = c¢V. I(a) and V(o) are approximations derived using genetic programming
optimization for symbolic regression. They have a relative error of less than 6% for
[10729,0.8]. Plots for the measures are shown in Figu®

Another example of non-linear selectiontisincation selectionin which only a the best
portionT of the population is allowed to reproduce. Each of the individualsame reproduced
1/T times. Typical values fof” range from 0.1 to 0.5. The analysis if] [gives truncation
selection the following performance measures:

pa(T) = 1-T
1 1 _z
Vi) = 1-I(T)I(T) - fo)
wheref,. is determined by" = fj?o \/%e‘f?df. Plots are shown in Figur@3.

Sampling Methods

After fitness has been assigned, the population is sampled to pick the individuals for repro-
duction. A naive way to sample the individuals is calfedlette wheel samplingand can be
visualized as spinning a roulette wheel, the sectors of which are set equal to the relative fitness
of each individual (see Fig3.4(a). The wheel is spun once for each required individual. The
wheel is more likely to stop on bigger sections, so fitter strings are more likely to be chosen on
each occasion. This is not satisfactory. Because each parent is chosen separately, there is no
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Figure 3.3: Loss of diversity, selective pressure and selective variance plotted for four different selection meth-
ods. A selection method with high selection intensity and low loss of diversity is usually preferable. As loss of
diversity represents the proportion of the individuals that are not selected, the maximum value for it is 1.0, meaning
no individuals are selected. Note the reversed parameter scale on the linear selection plots and the logarithmic pa-
rameter scale on the exponential selection plots. The selection variance of the linear selection is quadratic function
of its selection pressure despite the near linear appearance on this scale.
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(a) Roulette wheel sampling (b) Stochastic universal sampling

Figure 3.4: Selection pool of five individuals with fithesses 0.32, 0.09, 0.17, 0.17 and 0.25 respectively.

The probability of selection of each individual is proportional to the area of the sector of a roulette wheel.
In roulette wheel sampling, a single pointer is spun five times to select five individuals. In stochastic
universal sampling, a wheel with five equally spaced pointers is spun once to select five individuals.
This ensures fair selection of individuals and thus avoids the sampling noise of the ordinary roulette
wheel selection.q0]

guarantee that any particular individual, not even the best in the population, will be chosen for
reproduction. This sampling error can act as a significant source of ddise [

An elegant solution to the sampling problem, knowstashastic universal samplif@UsS),
was introduced by Baker ir2]. It avoids the high stochastic variability of roulette wheel
method by sampling all needed samples in a single pass. Instead of having only a single arm,
the roulette wheel is imagined to have multiple arms, spaced at equal distances from each other
(illustrated in Fig.3.4(b). Spinning the wheel simultaneously samples all needed individuals.
From the statistical sampling theory viewpoint this corresponds to systematic random sampling
[50]. Experimental work by HancocklpP] demonstrates the superiority of this approach in
comparison to roulette wheel sampling. In all practical work, SUS should be preferred to
roulette wheel.

Tournament selection

Tournament selectiois a selection method without explicit fithess assignment. In fact, it is
possible to implement tournament selection based genetic algorithm without using an explicit
objective function, which makes it suitable for a wide range of problems for which no explicit
objective function can be formulated, but in which ordering the solutions by comparing them
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with each other is feasible (such as game playing)

In tournament selection,individuals are chosen at random from the selection pool and the
best of them is selected for reproduction. A single tournament is held for each member of the
selection pool. Goldberg and Deb have shown that the expected result for a tournament with
t = 2 is exactly the same as for linear ranking with= 2 (see [L9] and references therein).

The selective pressure can be increased by using larged decreased by giving the better
individual only a certain probability to wiril]. Blickle and Thiele f] provide the following
analysis results for tournaments of size [2, 30]:

palt) = 77—

V2(In(t) — In(\/2 1410 (0))) (3.7)

2.05 +t
3.14t2

wherel (t) is an approximation by steepest descent method having a relative error of less than
1% fort > 5 and less than 2.4% far € [2,5], andV (¢) is an approximation by symbolic
regression using the genetic programming optimization method having a relative error of less
than 1.6%. Analytic solutions faf(¢),t < 5 andV(¢),t = 2 can be found in]. Plots for the
measures are shown in FigBe.

Tournament selection differs from the rank based selection methods much as roulette wheel
and SUS sampling differ from each other. Because each tournament is held individually, it
suffers from exactly the same sampling errat8]] One way of coping with these, at the
expense of a little extra computation, is described).[For at-tournament of population with
N individuals,t items need to be drawN times. To do thist random permutations of numbers
1,..., N are constructed and concatenated into one long sequence, which is then chopped up
into IV pieces, each containing théndices of the individuals to be used in the consecutive
tournaments. IV is not an exact multiple of, there is a small chance of some distortion
where the permutations are joined, but this is not hard to deal with. Unfortunately, this requires
centralized computation (for generating permutations) and thus reduces the otherwise good
parallel implementation suitability of the tournament selection method.

=
Q

=
2

3.2.3 Recombination

Recombination produces new individuals by combining the information combined in (usually
two) parents. Parents are chosen randomly from the individuals that were selected for recom-

5Note that tournament selection is by no means the only way to deal with this. Another option is to use popu-
lation relative objective function. For example, for each individual, arrarigarnaments against other individuals
and award 1 point per win, -1 point per loss and 0 points for a draw. This, however, basically is the tournament se-
lection method described in another way. The benefit of this method is that it allows the use of any selection method
and therefore a more fine grained control of fitness assignment than what is possible with tournament selection.
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Three crossover positions chosen at random: 1, 3 and 4
parent 1 1/10/0|10
parent 2 0/11/1|00
After exchange, the produced offspring are:
offspring 1 1/11(0|00
offspring 2 0/10/1|10

Table 3.1: An example of three-point crossover operation

bination in the selection step.

The role of recombination in the genetic algorithm based search is to combine the genomes
of the fit individuals and (hopefully) combine their best parts to produce an even fitter in-
dividual. Recombination combined with selection works to converge the population around
good solution points, whereas mutation (described in se&t@d) explores new areas by ran-
domly perturbating the solutions. In practise the division is not that clear. Most of the (real
valued) genetic recombination operators also perturb the values. However, the perturbations
made by them are local, whereas mutation induced perturbations are more global in nature.
The perturbations made by recombination operators are also dependent on both parents, unlike
perturbations caused by mutation, which are independent of the individual being mutated.

Binary Valued Recombination

The original genetic algorithms usbihary valued recombinatignvhere the two parent genomes
were represented as bit strings and recombined using some binary crossover method. There-
fore, they have been widely used and many different schemes for binary recombination (usually
called crossover) have been devised.

A basic binary crossover between two individuals selects one or more crossover points at
random and exchanges the bitstring segments which are after odd crossover points. An example
with three crossover points is given in Tal3ld.

According to the number of crossover points used, the method is called sittighe-point
crossoveror multi-point crossoverA generalization of multi-point crossover, in which the bits
to be exchanged are specified by a separate crossover bitmask generated stochastically using a
Bernoulli distribution, is callediniform crossover

The idea behind multi-point and many other variations of the binary crossover operator is that
parts of the chromosome representation that contribute most to the performance of a particular
individual may not necessarily be contained in adjacent substrings 4ggarid references
therein).

A wide variety of other binary crossover operators exist. For more indepth coverage of
binary crossover, we refer the reader 50|



CHAPTER 3. NEUROEVOLUTION 29

Real Valued Recombination

Many of the optimization problems have variables that are real valued. For them, binary
crossover methods are not suitable. An example clarifies the issue:

Assume we have two single variable individuals= 4 andy = 3. The binary
presentations for them ate, = 100 andy, = 011. Therefore the binary recom-
bination schemes may produce any three-bit bitstring, that is, values from 0 (000)
to 7 (111). The issue becomes even more difficult with floating point and negative
numbers.

While different binary encodings, such as gray codjrmgin be used to alleviate the problem, a
better way to avoid it is to define a real valued recombination operator.

Discrete recombinatiorj41] is a very crossover like real valued recombination operator.
It selects one of the corners of the hypercube defined by the parents as the offspring. More

formally, if z = (z1,...,2,) andy = (y1,...,y,) are the parents to be recombined, the
offspringz = (z1, ..., z,) can be computed by:
zi = {x;} or{y;} i=1,...,n (3.8)

where bothr; andy; have an equal probability (i.e., 0.5) to be chosen. Discrete recombination
for two variable case is illustrated in Figuseb(a)
Extended intermediate recombinatifgi, 41]8 can be defined as:

zi = o + o (y; — ;) 1=1,....n (3.9

whereq; is a scaling factor chosen uniformly at random over an intgrvad] 14-d|. In ordinary
intermediate recombinatiot = 0, for extended intermediate recombinatidn- 0. A typical
choice isd = 0.25. A separatey; is sampled for each

An offspring produced by intermediate recombination is randomly chosen from the hyper-
cube defined by its parents. In extended intermediate recombination the hypercube is scaled by
1 + d before picking the offspring. This is illustrated in Figuge(b)

Extended line recombinatiof61, 41]® is similar to extended intermediate recombination,
except that a single is used for all variables:

zi =z + oy — ;) 1=1,...,n (3.10)

Scaling factow is again chosen uniformly at random over the intefval, 1 + d].

Line recombination selects the offspring from a line segment between the parents. Extended
line recombination scales the line segment before picking. An illustration of extended line
recombination is shown in FiguRe5(c)

"Gray coding maps integers to binary strings in such way that adjacent integers differ in only one bit position.

A number of different Gray codes exist.
8generalized definition presented here is fr@ti]for original definition with fixedd = 0.25 see B1]
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Figure 3.5: Various real valued recombination operators. Circles represent examples of possible off-
spring, squares are the two parents participating in recombination. The light gray sqirejmesents

the area of possible offspring. The dashed linécrepresents the line segment of possible offspring.
(d) shows the distribution of possible values for offspring variabMrhend = 0.5 and the variablé

values for parents are; andy;. d is a parameter used to control the distribution width, see text for a
more accurate definitiorfa), (b) and(c) were inspired by the figures id], whereagd) was influenced

by [22].



CHAPTER 3. NEUROEVOLUTION 31

Breeder Genetic Algorithm (BGA) ird0] defines an interesting biased line recombination
variant, which they call th&GA line recombination It is a combination of mutation and
extended line recombination with a strong bias towards producing offspring outside the line
segment defined by the parents. Itis defined as:

(3.11)

zi:a:i:lzrangei‘&iyi_xi
x =yl

where
k—1
5220@-2” ac{0,1}
i=0
andk is a user defined precision constant (highevill produce more precise results, but at a
cost of increased search time as more mutation will be happening close to the individuals). In
3.11the — sign is chosen with probability 0.9.

The bias towards producing offspring outside of the parent defined line segment is caused by
the biased- sign probability. It makes the BGA line recombination try new points in a direction
defined by the parent points. 14Q], the BGA line recombination is used in conjunction with
discrete recombination and BGA mutation to produce a search method that has linear order of
convergence for “unimodal functions and most of the popular multimodal testfunctions”.

Fuzzy recombinatiof6]] is another BGA related recombination operator, designed to max-
imize theresponse to selectidrof the the recombination. The probability that the offspring
has valuez; is given by a bimodal distribution,

p(zi) € ¢(3), d(yi), (3.12)
with triangular probability distributiong(r) having the modal values; andy; with
:ci—d-]yi—xi\grgmi+d'|yi—:ci\ (3.13)
yi—d-lyi — x| <r <y +d-ly; — x

for z; < y; andd > 0.5. In [61], d = 0.5 was mainly used.
An illustration of the fuzzy recombination can be found in Fig8rg(d)

3.2.4 Mutation

After recombination offspring undergo mutation. Offspring variables have a low probability
of being mutated by a mutation operator. Typically the probability of mutating a variable is
set to be inversely proportional to the total number of variables in an individual. Based on
their experimentation, Mihlenbein and Schlierkamp-Vood@hgresent the following rule of
thumb: “The mutation rate: = 1/n wheren is the size of the chromosome is almost optimal.”

®Response to selection is defined as the difference between the population mean objective value of generation
t + 1 and the population mean objective value of generatiett].
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Back [3] recommends the same rate, but add that a variation of the mutation rate is useful in
cases where the fitness function is a multimodal pseudoboolean function.

For variables using binary representation the mutation operation is simple. Each bit of the
individual has a probability equal to the selected mutation rate to be flipped.

For efficient mutation of real valued variables, the probability of large and small mutations
should not be equal. Biasing the mutation to favor small perturbations improves the search
resolution near the current population points and allows the mutation to work on both local
and global scaleBGA mutatiorf41, 40], the mutation operator of the Breeder Genetic Algo-
rithm, is a popular real valued mutation operator. Unlike uniform or normal distributed muta-
tion, BGA mutation avoids the need to adapt the mutation range in order to give a reasonable
progress for small mutation rate$l]. BGA mutation can be defined as:

x; = x; £ range; - § (3.14)

where

k—1

5220@-2” ac{0,1}

i=0
andk is a user defined precision constaninge; defines the mutation range and is normally
setto 0.5 times the domain of definition of variable Eacha; is assigned to 1 with probability
of ps = 1/k. On average there will be just ome with value 1, saj can be approximated by
277, wherej is selected uniformly at random from. ..,k — 1.

3.2.5 Reinsertion

Once the offspring have been produced by selection, recombination and mutation of individuals
from the old population, it is time to reinsert them to the original population. Usually it is
desirable to keep the number of individuals in the population constant, which means at least
some of the old individuals must be removed from the population.
If so calledgenerational modéf of replacement is used, the reinsertion task becomes trivial.
In generational model, the number of offspring produced is equal to the size of the original
population and the offspring population completely replaces the original population.
Unfortunately, in generational model it is very likely that excellent individuals are replaced
without producing better offspring and therefore valuable information is4d%t Thereforen-
cremental reproductiorretaining a part of the old population, is often preferable, even though
it inevitably carries the same kind of sampling errors as roulette wheel seletflpn [
The simplest incremental scheme, producing less offspring than parents and replacing par-
ents uniformly at random, is callathiform reinsertion47]. While it reduces the probability
that the best individuals are replaced, in many cases it would be preferable to ensure that the

also known apure reinsertionand emphsteady-state reproduction
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best individuals continue to next generatidglitist reinsertiondoes just this. It replaces the
worst parents with the offspring.

Elistism ensures that the subsequent population will have some fit individuals to direct the
search. However, it alone does not guarantee that the overall quality of the population improves.
To ensure this, it should be combined wittness-based reinsertionin basic fithess-based
reinsertion, more offspring than needed is produced and only the best of them are inserted. In
the combined elitist fitness-based approach a given number of worst individuals are replaced
with the same number of most fit offspring. Pohlhe#i][recommends this approach, because
it prevents losing of information. Note, however, that the approach directs the search very
strongly to exploit the already found information, instead of exploring to find new solutions.
This may lead to premature convergence, as it is highly unlikely that the first solution in a
new area will be better than the best already found solutions, even though the area itself might
contain extremely good solutions. Even worse, it is also possible that some part of the genome
of a poor individual is extremely good, and combined with an earlier good individual would
produce a superior solution.

3.2.6 Multi-Population Genetic Algorithms

Balancing between avoiding premature convergence and having enough selective pressure to
reach good solutions in reasonable time can be hard. Ideally we would like to have quite
strong selective pressure to direct the search towards promising solutions, while still supporting
exploration. However, too strong selective pressure can lead the population to converge around
a single solution, which causes the search to stagnate as the recombination operators produce
only similar solutions and mutation operators have an extremely low probability to hit areas
with better fithess than that of the converged population.

To some extent, this can be remedied by usihii-Population Genetic Algorithms (MPGA).
In MPGA multiple subpopulations are used. These subpopulations evolve independently, ex-
changing genes only once per a certain number of generations (natieakion interval[62]
or isolation time[47]). The number of exchanged individuals (calleigration size[62] or
migration rate[47]), the selection method used to select the migrating individuals anchithe
gration topologydetermine how much genetic diversity can occur in the subpopulations and
the exchange of information between the subpopulatiéis [

Each subpopulation maintains some degree of independence and thus explores a different
region of the search space, which improves the search quéfity The migration constantly
adds new genetic material to subpopulations and therefore reduces the probability of prema-
ture convergence. Even if a certain subpopulation converges, after migration it may restart the
evolution process, especially if the individual that migrated has better fithess than the exist-
ing population and an elitist or a highly selective GA scheme is used. In addition, it can be

H1Also known adsland Model Genetic Algorithms
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Figure 3.6: Various multi-population genetic algorithm subpopulation topologies. By restricting sub-
populations the individuals from a specific subpopulation are allowed to migrate to, it is possible to
get a more fine grained control over speed with which the innovations propagate through the whole
population. Figure afted[7].

speculated that the independent subpopulations can concentrate on optimizing a certain part of
the genome and incorporate the optimizations made to other parts by other populations during
migration and the recombination phase following it.

When designing MPGA's, migration topology is an important consideration. It defines where
the individuals from the subpopulations may migrate. The most general migration hierarchy is
theunrestricted migration topologyn which the migrating individuals are free to move to any
other subpopulation. The most basic is thg migration topologywhere the subpopulations
are organized as a directed ring and migrate to the next subpopulation in the niraigvor-
hood migration topologythe subpopulations are organized as a toroidal lattice and can migrate
to any of the neighboring subpopulations. Migration topologies are illustrated in R3giire

There are two typical ways to select the migrating individuals in MPGAs. They are picked
either uniformly at random or based on fitness (the best individuals migrate). Usually the worst
individuals of the receiving subpopulation are replaced by the migrating individuals.

In addition to topology and migration type, subpopulation size and migration rate must be
selected. Typically symmetrically sized subpopulations are used and therefore the problem of
selecting subpopulation size is analogous to the problem of selecting the population size in
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single-population GA's. For migration rate, wide variety of values have been used. Beffling [
explores migration rates of 10%, 20% and 50% using Royal Road problems

According to Whitleyet al. [62], Multi-Population Genetic Algorithms have often been
reported to display better search performance than serial single population models, both in
terms of the solution quality, as well as the total number of evaluations required to reach it.
In [4], MPGA's outperform SPGAs in some of the Royal Road problems with regard to the
metrics of best fithess, average fithess, and number of times the optimum was reached.

Many efficient parallel implementations of MPGA's have been made. For example, Belding
[4] reports superlinear speedup on two different parallel computer configurations.

3.3 Neuroevolution Using Evolutionary Algorithms

The goal in neural network training is to adapt the weights so that the network performs a de-
sired action, that is, approximates such (unknown) input-output mapping function that produces
output which leads to desired performance of the system controlled by the neural network. The
approximation quality is determined by a user defined error metric, which measures how well
the system reaches its goals. Therefore, neural network training can be seen as an optimiza-
tion task, where the weights of the neural network are optimized to minimize the training error
function. As evolutionary algorithms have turned out to be good tools for function optimiza-
tion, it is reasonable to try to use them for NN training as well. It turns out that in many cases
using evolutionary algorithms instead of ordinary gradient descent based training is preferable.

3.3.1 Why Neuroevolution Instead of Gradient-Based Methods?

Artificial evolution methods use large population to search for solutions, so in a sense they are
evolving a number of solutions whereas a gradient descent method only iterates one. Naturally,
this involves an extra computational cost. In addition, there is still relatively little knowledge
about themodus operandif the evolutionary algorithms, whereas the way the gradient descent
algorithms learn is rather well known. Thus more proven knowledge on efficient usage of gra-
dient descent methods exists, whereas much of the knowledge on applying EA's is derived from
experimental studies. Therefore the natural question is, why and when should neuroevolution
be used?

One of the biggest problems with gradient descent based NN training methods is their sus-
ceptibility to getting trapped in local minima, instead of finding the global minimum. Evolu-

2Royal Road fitness landscape functions were devised by Mitehell. [37]. They are idealized problems
in which certain features most relevant to GAs are explicit, so that GA's performance can be studied in detail.
Originally, they were expected to be extremely simple for the GAs to solve, because it was thought that their
structure would lay out a “royal road” for the GA to follow to the optimal solution. However, the results were
exactly the opposite. GA's performed rather poorly. For further details, theoretical discussion and analysis of the
possible reasons()] provides an excellent starting point.
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tionary algorithms avoid this problem, because they are not dependent on gradient information.
In fact, as their operation does not explicitly depend on the error function at all, they can treat
large, complex, discontinuous, non-differentiable and multimodal spaces, which are typical for
the real world problemsf3]. This error function independence also means high modularity for
implementations. The error functions, operating environments and even actual tasks the system
is performing can be changed without a need for altering the way the learning system operates
(although some parameter tweaks are typically necessary).

The evolutionary algorithm based training is also independent of the topology and operation
of the network being trained. As the networks are simply sets of parameters from the EA point
of view, the type of the network being trained can be changed at will. EAs are capable of
training networks for which defining other types of training methods is complicated, such as
recurrent and higher order NN’s or spiking neural networks (SNBS). [

The evolutionary approach also makes it easier to generate NN's with special characteristics.
For example, the NN’s complexity can be decreased and its generalization capability increased
by including a complexity (regularization) term in the fithess function. Weight sharing and
weight decay can also be incorporated easég] [

In addition, for some problems evolutionary training has been reported to be significantly
faster and more reliable than backpropagation based met&8d$-pr reinforcement learning
problems, such as pole balancing and robot arm control, neuroevolution has been able to pro-
duce better results more efficiently than the traditional reinforcement learning methods such as
Q-Learning or Adaptive Heuristic Critic3p, 38§].

3.3.2 Evolutionary Neural Network Training Approaches

A high level description of the neural network training using evolutionary algorithms can be
given as follows:

1. Initialize a population of neural networks using some neural network weight initialization
method, for example the Nguyen-Widrodd method.

2. Evaluate task performance for each NN in the population.
3. Construct genotypé vectors for the neural networks.
4. If the desired end condition is not reached, evolve next generation using the selected EA.

5. Construct neural network from genotype vector and continue fromzstep

Boriginally biological termsgenotyperefers to the genetic description of the individual, whengtasnotypés
a realization of an individual from a specific genotype. An obvious analogy from object oriented programming is
class (genotype) and instance (phenotype). Here, by genotype we mean the description used by the EA to evolve
solutions, and by phenotype, the neural network built from a specific genotype.
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Figure 3.7: Two functionally equivalent feedforward neural networks. The hidden nodes have been
swapped and one of the nodes has had the signs of all its weights flipped. Recombination is problematic
because the functionally equivalent nodes are not in the same place and will therefore get recombined
with functionally incompatible neuron, even though there exists a better recombination partner. After

[9].

The naive approach would be to simply construct a genotype vector from neural network by
concatenating its weights. However, this leads to a problem callembthpeting conventioks
problem.

The competing conventions problem stems from the fact that it is possible to construct many
different functionally equivalent neural networks. For example in fully connected MLP, the
order of hidden layer neurons may be permuted freely and the network retains its functionality.
In addition, the signs of the hidden neuron weights and the sign of its bias may be inverted, if
the activation function is odd symmetric (suchtash). Thierens 9] shows that in this case,
there are2™n! functionally equivalent. hidden neuron neural networks. This redundancy
in the network representation makes the recombination problematic. The following example,
originally from [9], clarifies the issue:

Consider the two feedforward networks in Figuge: if they use an odd sym-
metric activation function, they are functionally identical; two hidden nodes have
been swapped, and all of the weights associated with one of them have been mul-
tiplied by -1. Despite being functionally identical, the networks will appear very
different in genetic algorithm. Crossover will produce weak offspring, because the
corresponding parts are not in corresponding places.

4also known agabel convention problerar permutation problem
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Thierens p9] proposed a way to avoid functional redundancy problem by sorting the nodes
before crossover. He uses the following method: First, for hidden neurons with bias < 0O,
flip signs of all weights (including bias). Next, sort neurons in hidden layers into increasing
bias order. While this approach avoids the multiple representations redundancy, it still does
not seem to avoid the whole competing conventions problem. For example, if there are two
otherwise almost identical neurons in two networks, which only differ slightly by their bias
term, their position in the genotype vector may differ and they can be recombined with wrong
neurons. Or if the two neurons are identical, but one of the networks has more smaller bias
terms in its hidden layer than the other, the positions will again differ.

The problem with the approach proposed by Thierens is that while it provides unique reprensen-
tation for neural networks, it does not ensure that similar neurons in otherwise differing net-
works will get recombined. To adequately solve the problem, it would be preferable that sim-
ilarly functioning neurons were recombined. In sect®# some methods capable of this are
reviewed.

The usual way of dealing with the competing conventions problem in simple ordinary EA
based neuroevolution is to simply avoid doing recombination altogether, or to invent tailored
genetic operator®). If recombination is left out, Genetic Programming (GP) and Evolutionary
Strategies (ES) are good choices, since their primary search operator is mutation and therefore
the negative impact of the permutation problem is redu6&f [

3.3.3 Hybrid Training

While evolutionary algorithms perform global search well, gradient based methods are often
better in locally optimizing the found solution. Therefore, if the error function permits the use

of gradient based methods, it makes sense to try a hybrid approach. In the hybrid approach, the
efficiency of the evolutionary training is improved by incorporating a local search procedure
into the evolution. EA's are used to locate a good region in the search space and then a local
search procedure is used to find a near-optimal solution in this region. Hybrid training has been
used successfully in many application are&§] [

3.4 Specialized Neuroevolution Methods

As described in the previous section, competing conventions is an important problem that ef-
fectively prevents having useful results in neural network training with recombining EAs. As
discussed, the problem is paffhcaused by the fact that in fully connected feedforward net-
work the hidden layer neurons may be freely permuted, while still retaining the same network

15As mentioned in sectioB.3.2 the other part of the problem is the sign flipping redundancy when using odd
symmetric activation. This part of the problem can be easily avoided by avoiding the use of odd symmetric activa-
tion functions, for example by using an ordinary sigmoid or logarithmic sigmoid instead.
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functionality. If this problem could be avoided, using recombination in neuroevolution would
become feasible.

3.4.1 Symbiotic, Adaptive Neuro-Evolution

While neural networks have redundant representations, individual hidden neurons have no such
problems. If we take a hidden neuron and all of its incoming and outgoing weights, the repre-
sentation for the functionality is unique (as long as honsymmetric activation function is used).
Symbiotic, Adaptive Neuro-Evolution (SANEB®, 38| does just this. Instead of evolving
whole neural network, it separately evolves neurons and neural network blueprints, which spec-
ify which neurons should be connected together to form the network.

In each generation, networks are formed according to the blueprints, and evaluated on the
task. Neurons compete on the basis of how well, on average, the networks in which they
participate perform. A high fithess means that the neuron contributes to the successful networks
and, therefore, suggests that it cooperates well with other neurons. The blueprints evolve to
effectively combine the well working neurons to produce even better results. This coevolution
of neurons and topologies evolves good networks more quickly, because the network sub-
functions are allowed to evolve independenth]] Since neurons are not tied to a single
network, a neuron that may be useful is not discarded if it happens to be part of a network
that performs poorly. Likewise, bad neurons do not benefit from being part of a high scoring
network. Instead of trying to produce a monolithic solution network, SANE breaks the problem
down to that of finding solutions for smaller, interacting subproblems.

In addition, evolving neurons instead of full networks maintains diversity in the population.

If a single neuron type becomes prevalent, it will not as often be combined with other types of
neurons in the population. Therefore, because difficult tasks usually require several different
types of specialized neurons, the dominant neuron type will receive less fithess and thus, less
offspring, bringing diversity back into the population.

Unfortunately, SANE still suffers from the competing conventions problem. Because blueprints
describe complete networks, the recombination at blueprint level is subject to competing con-
ventions.

There are also problems with the neuron level recombination. Since the neurons are mated
together as a single population, budding specializations may get destroyed by the recombina-
tion. In addition, SANE’s ability to evolve recurrent networks is limited, as a heuron’s behav-
ior in a recurrent network depends critically upon the neurons to which it is connected, and in
SANE it cannot rely on being combined with similar neurons in any two trials.
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3.4.2 Enforced Subpopulations

Enforced Subpopulations (ESP)g] addresses the problems of SANE. Like SANE, it is a
neuron-level cooperative coevolution method, i.e., evolves neurons instead of full networks
and combines them to form a complete network. However, in ESP, subtasks are explicit: each
neuron in the neural network has its own subpopulation, and a neuron can only be recombined
with members of its own subpopulation. This way the neurons in each subpopulation evolve
independently, and the subpopulations rapidly specialize into some network sub-function. This
avoids the competing conventions problem and makes evolving recurrent networks with ESP
feasible.

ESP can be used to evolve any single hidden layer neural network, such as feed-forward,
simple recurrent (EIman), fully recurrent, and second-order networks. Topology is not evolved
and therefore must be specified beforehand. Typically fully-connected topology is used. The
evolved genotype consists of a vector of real numbers that represent connection weights. The
evolution cycle in ESP has the following steps:

1. Initialization. For each hidden neuron, an initial population consisting ofdividuals
is created. Each individual contains the input, output and possibly recurrent connection
weights of a neuron, intialized with a random string of real numbers. (Alternatively,
some NN initialization method could be used to initialize the population.)

2. Evaluation. A hidden layer of the neural network is formed by selecting one neuron
from each subpopulation at random. Task performance of the network is evaluated. The
achieved score is added to the cumulative fitness of each neuron that participated in the
network. This process is repeated until each neuron has participated in an average of, for
example, 10 trials.

3. Check Stagnationf the performance of the best network has not improvetdgenera-
tions, burst mutationis performed. In burst mutation, the best network is saved and new
subpopulations are created by adding Cauchy-distributed noise to each of the neurons in
the best solution.

If the performance has not improved after two burst mutations the network size is adapted.
In size adaptationthe best network found so far is evaluated after removing each of its
neurons in turn. If the fithess of the network does not fall below a threshold when missing
some neuron, then it is not critical to the performance of the network and its correspond-
ing subpopulation is removed. If no neurons can be removed, a hew subpopulation of
random neurons is added and the size of the network hidden layer increased to include
the new subpopulation. This way, ESP will adapt the size of the network to the difficulty
of the task. This makes it more robust in dealing with environmental changes and tasks
where the appropriate network size is difficult to determine.
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4. RecombinationThe average fitness of each neuron is calculated by dividing its cumu-
lative fithess by the number of task performance evaluations it participated in. Neurons
in each subpopulation are then sorted by their average fitness. Each neuron in the top
guartile is recombined with a higher-ranking neuron using single point crossover and
Cauchy-distributed mutation. The offspring replace the lowest-ranking half of the sub-
population.

5. End Condition If the best found network performs sufficiently well in the task, the cycle
ends. Otherwise, the cycle continues from step 2.

Steps 1,2,4, and 5 are the backbone of the algorithm. Step 3 is used to avoid premature
convergence. The burst mutation in a sense reinitializes the search around the best currently
found solution, therefore searching for optimal modifications to it. The size adaptation is both
a form of complexificatiort® and a form of pruning. It prunes unneeded complexity or, if none
is found, adds complexity to provide more solution flexibility.

The subpopulation architecture in ESP provides it advantages over SANE's single popula-
tion. The subpopulations specialize for specific tasks and the neurons only recombine with
other neurons evolving for the same task. In addition, coevolution is more efficient, as the
networks are always guaranteed to have neurons for each subtask, whereas SANE may form
networks that contain multiple members of some specializations and omit members of others.
This is especially useful when evolving recurrent networks, as a neuron’s specific recurrent
weight will always be associated with a specific subpopulation. As the subpopulations special-
ize, neurons evolve to expect the kinds of neurons to which they will be conndéed [

While ESP is very efficient in finding good solutions, as the pole balancing comparisons in
[16] show, it does not evolve topology. Even though different pruning methods may be used
to minimize the solution network, evolving computationally more efficient networks might be
possible, if also the topology was evolved.

3.4.3 Neuroevolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT)€] is a Topology and Weight Evolving
Artificial Neural Network (TWEANN). In addition to evolving connection weights, it evolves

the structure, or topology, of the network. Starting from a minimal topology (all inputs con-
nected directly to all outputs), NEAT simultaneously evolves the weights and incrementally
complexifies the topology to produce a near minimal solution for the problem. This minimality
gives it a performance advantage compared to other neuroevolution approaches. In addition, by
evolving topology, NEAT avoids the need to pre-selectit. This is a considerable merit, because
when dealing with difficult problems, topology selection can be a difficult and time consuming
process.

8the incremental elaboration of solutions through adding new strudgidte |
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The main problem in topology evolving is how can individuals of different topologies be
recombined? In addition, competing conventions becomes a much more complex problem
when evolving topology is allowed, because a certain function can be realized with different
topologies. NEAT solves these problems by usmsgforical markings which keep track of
the historical origin of each gene. Tracking the historical origin in NEAT is very simple.
Whenever new structure is evolvedgibal innovation numbeis incremented and assigned
to the corresponding new gene. This innovation number uniquely identifies each topological
innovation. Therefore, if historical markings of the two genes match, they can be recombined.

The recombination of two individuals becomes easy. Simply line up their genes, sorted
by their innovation numbers, and perform recombination between genes that both individuals
have. In NEAT recombination, offspring inherits matching parent genes randomly. Disjoint
(genes in the middle of the genome that do not match) and excess (unmatching genomes at the
end) genes are inherited from the more fit parent, or in case of equal fithesses, randomly. The
NEAT recombination is illustrated in Figu@8.

In NEAT, an individual consists of two kinds of genes: node genes (corresponding to the
input, output and hidden nodes in the neural network) and connection genes (corresponding to
the links between the nodes in the neural network). Node genes provide a list of inputs, hidden
nodes and outputs that can be connected (initially only inputs and outputs). Connection genes
specify the in-node, out-node and weight of the connection, whether or not the connection gene
is expressed (enabled), and the innovation number. An example of a NEAT genome and the
corresponding network is given in FiguBed.

As the NEAT networks start minimal, topology mutation operators have an important role.
They complexify the solution by creating more connections and nodes. There are three types
of mutations in NEAT:add node mutationadd connection mutatioand connection weight
mutation

In the add node mutation, an existing connection is split and a new node is placed in between
its nodes. The old connection is marked disabled and two new connections are created. The
connection leading into the new node receives a weight of 1, and the new connection leading
out receives the same weight as the old connection. This way the adding of the node has
minimal initial effect. The new nonlinearity in the connection changes the function slightly,
but otherwise it acts like the old connection. Note that disabling the old connection instead of
simply removing it is important. Even disabled genes are used in recombination, so there is a
chance that disabled gene becomes enabled again in future generations.

In the add connection mutation, a single new connection gene connecting two previously
unconnected nodes with a random weight is added. The connection weight mutation is similar
to weight mutations in other neuroevolution systems.

When a topological mutation changes the structure of the network, it typically initially re-
duces the fitness of the solution. Therefore, recently augmented structures would have little
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Parent 1 Parent 2
1 2 3 4 5 8 1 2 3 4 5 6 7 9 10
124254354 |2>55|5-4|1->5 1-4 (254|354 |2>55[524| 556 |64 |3->5| 16
DISAB DISAB DISAB

disjoint

1 2 3 4 5 8
Parent 1l | 154|254 354|255 554 15
DISAB
1 2 3 4 5 6 7 9 10
Parent2 | 1-4| 254|354 255|524 556 | 64 355 156
DISAB DISAB
disjoint ~ disjoint excess  excess
) 1 2 3 4 5 6 7 8 9 10
Offspring| 14 | 254 | 354 | 255|554 | 556 | 64| 15|35 | 156
DISAB

Figure 3.8: In NEAT recombination, genomes are matched up using innovation numbers. Although
the individual topologies differ, their innovation numbers reveal which gene matches which. Without
any topological analysis, a new structure that combines the overlapping parts of the two parents as well
as different parts can be created. In NEAT, matching genes are inherited randomly, while disjoint and
excess genes are inherited from the more fit parent. Here equal fitness is assumed, so the disjoint and
excess genes are also inherited randomly. The disabled genes may become enabled again: if a gene is
disabled in only one of the parents, there is a preset chance that it will be enabled in the off§gling. [
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Genome (Genotype)

Node Node 1 | Node2 | Node 3 | Node 4 | Node 5
Genes Sensor | Sensor | Sensor | Output | Hidden

Inl In2 In3 In2 Ins Inl In4

Connect Out 4 Out 4 Out 4 Out 5 Out 4 Out 5 Out 5
Gen "] Weight 0.7 | Weight -0.5 | Weight 0.5 | Weight 0.2 | Weight 0.4 | Weight 0.6 | Weight 0.6
N | Enabled | DISABLED | Enabled | Enabled | Enabled | Enabled | Enabled

Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11
Network (Phenotype)

Figure 3.9: A genome with five node genes (3 input, 1 hidden and 1 output), and seven connection
genes (one of which is recurrent), and the corresponding phenotype. The second connection gene is
disabled, so the connection it specifies is not expressed in the phendgpe. [

hope of surviving, even if their innovation was a crucial one, if NEAT would not protect in-
novation throughspeciation The idea of speciation is to divide the population into species,
which consist of networks with similar topologies. The networks compete mainly within their
own species instead of with the population at large. This protects the innovations, as significant
topology changes separate the offspring into its own species, thus giving it time to optimize its
performance.

NEAT determines the similarity of two individuals by measuring the number of excess and
disjoint genes between them. The compatibility distahad different structures in NEAT
is defined as a linear combination of excéssand disjointD genes, and the average weight
differences of matching genég, including disabled genes:

5=%+%+03-W (3.15)

The coefficients, co, andes can be used to adjust the importance of the three factors, and the
factor N, the number of genes in the larger genome, normalizes for genome\sizan(be set
to 1 if both genomes if both genomes are small, for example consist of fewer than 20 genes).

The speciation in NEAT is implemented using a compatibility threskgld\n ordered list
of species is maintained. In each generation, genomes are sequentially placed into species.
Each existing species is represented by a random genome from the previous generation of the
species. An individual is placed in the first species which it is compatible with, that is, for
which its similarity is below the threshold, < §,. This way, species do not overlap. If an
individual is not compatible with any species, a new species is created, with the individual as
its representative.
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Explicit fitness sharind15] is used to control the size of the species. All individuals in the
same species must share the fithess of their niche. This limits the size of the species, even if
many of its individuals perform well. This way any one species cannot take over the entire
population, which is crucial for speciated evolution to work. The sharing adjusted fifhess
for individual 7 is calculated according to its distanédrom every other organisnj in the
population: p

! 1
N S G (310
where sharing functiorh is set to 0 when distancs, j) is above threshold,; otherwise,
sh(d(7, 7)) is setto 1. Thus, the sum in the denominator reduces to the number of organisms in
the same species as individual

Every species is assigned a number of offspring in proportion to the sum of adjusted fithesses
f1 of its members. The lowest performing members of the species are eliminated from the
population and the entire population gets replaced by the offspring of the remaining organisms
in each species.

Using history markings, speciation induced innovation protection and minimal topology
starting, NEAT is able to evolve solutions for difficult non-Markovian tasks such as double
pole balancing without velocity information (DPNV) remarkably efficiently (experiment de-
tails and comparisons to other methods can be found6}).[ The performance of NEAT is
comparable to that of ESP if a good starting topology for ESP is used. While NEAT avoids
the need to specify topology, it requires considerably more parameters than ESP (23 against 5)
[16]. Luckily, NEAT performance is robust for moderate parameter variatisés [

In addition to increasing search efficiency, the topology evolution in NEAT may improve
the computational speed of the end solution network, as minimal topology means minimal
computational costs. This has some relevance when evolving networks for use in devices of
low computational power, such as mobile phones. The automated topology evolution also
relieves network designer from the search of optimal topology, which is typically a difficult
task, especially for recurrent networks.

Modular NEAT[5]] is a recent NEAT modification which directs genetic search to evolve
reusable modules and blueprints which show how to combine them. Modular NEAT could be
described as SANE which uses NEAT evolved multiple input, multiple output network mod-
ules instead of neurons, and is able to use a single module in multiple, possibly overlapping,
positions. Figure.10illustrates the way Modular NEAT blueprints combine NEAT evolved
modules to create neural networks. Bi], Modular NEAT was tested in game playing do-
main containing symmetries, and produced better quality results four to six times as efficiently
as ordinary NEAT.
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Outputs Network Blueprint

M7, L {1 1,2 — 2,3 — 3},
0: {12}

M4, I: {1— 3,2 — 4},
0:{1-1,2—>2,3 >3,

4— 4}

M7,I: {1—- 2,2 — 5,3 — 6},

O: {1— 3}

Inputs

Figure 3.10: An example of Modular NEAT blueprint combining NEAT evolved modules to produce

a neural network. Two three input, one output modules containing a hidden neuron with recurrent con-
nection (M7); and a two input, four output module containing three hidden neurons (M4) are combined
to produce a neural network. The blueprint specifies the used modules and how they are binded to
form the network. (In the picture, the bindings are given as sedbsiract neuron— concrete neuron
connections.)



Chapter 4

Neuroevolution of Artificial
Bandwidth Expansion

The NeuroEvolution based Artificial Bandwidth Expansion (NEABE) algorithm presented here
was designed to be used in digital speech transmission systems. The main design goals were
to create an algorithm that would double the sampling frequency from that used in current
speech transmission systems (ie. from 8 kHz to 16 kHz), add new frequency components
to the highband of the signal and leave the original narrowband untouched. Additionally the
online portion of the algorithm was required to be able to run in real-time using ordinary DSP
hardware.

The idea of using neuroevolution to reach these goals was born when the preliminary tests
in tuning the magnitude shaping parameters of a prior Artificial Bandwidth Expansion (ABE)
algorithm (see chapt&:.1.3 described more thoroughly iB(]) using genetic algorithms (GA)
proved to be very successful.

The prior ABE version used fixed logic to decide type of the speech signal frame (voiced,
fricative or stop consonant) and expanded the frame according to its type. This, however, is not
very accurate because the transitions between different phones in speech are very smooth and
thus hard limits create unneeded discontinuities to the expansion process. It would be better if
the classification was adaptive and the transition between the classes smooth. Even better, it
would be beneficial if the problem of frame classification could be avoided altogether. Frame
classification is not really needed to solve the bandwidth expansion problem, because it is not
necessary to know the frame class to be able to expand it. In other words, it is not necessary to
recognize speech to be able to expand the speech bandwidth.

Unfortunately, dropping the frame classification leads to significant problems in expansion
method design. In the context of the old ABE method, it would mean selecting the highband
magnitude shaping curves and the parameters that are significant for tuning them, without
using any strict phoneme classes, which would be very difficult at best. As parameter tuning

47
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using evolutionary methods had been successful, it made sense to try to extend the idea to
evolving not only parameters, but the whole expansion method. For this, a generic function
approximator would be needed. Neural networks seemed to be the most natural choice as
they have been used for speech processing and even artificial bandwidth expansion before (see
chapter2.2.9. In addition, there has been a considerable amount of research on neuroevolution,
the process of evolving neural network controllers for different control tasks, for example in
robotics and process industry.

Thus the decision to try to use neuroevolution for artificial bandwidth expansion was made.
To test the concept as efficiently as possible, it was built on the principles of the old ABE
algorithm as much as possible. This, as will be shown later in this thesis, lead to some choices
that probably are not ideal in the sense of expansion result quality, but which made it possible to
test the concept faster. Hence, despite the good results for some types of speech data, this work
should be seen more as a proof of concept than as a industrial grade solution to the bandwidth
expansion problem.

This chapter introduces the NEABE algorithm. First section gives a conceptual overview
of the NEABE system, explaining the general idea behind it. Second section describes the
evolution subsystem of NEABE in detail and third the online subsystem. A detailed explanation
of the current NEABE implementation and its parameters is given in section four.

4.1 Conceptual Overview

As is typical for neuroevolution systems, the NEABE system consists of two subsystems. There
is the evolution subsystem (ESS) which evolves individuals for the online subsystem to use.
The online subsystem (OSS), as its name implies, is the real-time component of the system. It
handles the actual bandwidth expansion procedure, using the genome passed by the evolution
subsystem to configure its modules to expand the bandwidth of the speech signal.

The basic idea is to use the evolution system to define what is needed for the expansion
to succeed. After the evolution process has found a solution good enough for the problem
in a simulation environment, the online subsystem can be implemented in the actual target
environment (telecommunication network in this case) and the evolved genome used to perform
the artificial bandwidth expansion.

This process is illustrated in Figudel The evolution subsystem generates a random popu-
lation of genomes and, using the online subsystem, expands a predefined set of learning sam-
ples with each of them. It calculates a fitness value for each of the individuals by evaluating
an objective function, which measures the quality of the expansion result using some metric
appropriate for the problem. It then evolves the population, recombining and mutating the
individuals. This evaluation—evolution cycle is continued until a specified end condition is
reached.
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Simulation
environment

Simulation
environment
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network (from 0SS network (to
caller) receiver)

(a) Evolution subsystem (ESS) searches a solution for(b) The evolved genome is used as part of the real
the problem in simulation domain by testing differ- world telecommunication system to perform artificial
ent genomes in online subsystem (OSS) and evaluatingbandwidth expansion.

their fitness.

Figure 4.1: Evolution subsystem configures online subsystem to solve the problem in simulation envi-
ronment. The solution is transferred to the real operating environment.

After an acceptable solution has been found, its genome is permanently merged with the
online subsystem to form the final expansion algorithm. Should the processing environment
change, a new genome can be evolved later using the same evolution process in a properly
altered simulation environment, and installed to the actual processing system replacing the old
genome.

This leads to considerable adaptability. The solution can be adapted to the language(s) spo-
ken in the target telephone system, thus improving the quality of the expansion by avoiding
the need for the algorithm to be a “jack of all trades”. Also multiple solutions could be used,
using a fixed control logic to select between them. For example there could be one genome for
a noisy environment and another for a less noisy one, and a control logic to monitor when to
switch from one to the other.

The final solution can also be optimized if needed, for example by prhtiegneural net-
work.

4.2 The Evolution Subsystem

The structure of the Evolution Subsystem is presented in Fiy@ré he Evolution Subsystem
consists of three main modules: Learning Sample Management Module (LSMM), which man-

!Pruning is the name given to the process of examining a solution network, determining which units are not
necessary to the solution and removing those ub#k [This is often done by determining non-essential units by a
form of sensitivity analysis, in which the value of a unit is set to zero and the impact of the change is evaluated by
testing with all test samples. In this case, pruning a network would require listening the impact to the test samples.
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Figure 4.2: The structure of the Evolution Subsystem. Online Subsystem (OSS) in the picture is a major
subsystem that contains the modules needed for standalone operation in the final operation environment.

ages the speech samples that are used to train the system; Fitness Evaluation Module, which
evaluates the quality of the expansion made by the online subsystem, using some metric that
measures the psychoacoustic qualifthe expanded sample as accurately as possible; and the
actual Evolution Module which performs the artificial evolution by mutating and recombining
the best performing individuals.

The modules have relatively few interdependencies, so it would be possible to replace one
of them without changing the others, if certain simple interfaces are adhered to. This makes
the system flexible and enables separate development of the modules.

The basic algorithm of the ESS learning process can be compressed into the following steps:

1. Produce the initial population of solutions in Evolution Module.

2. For each of the genomes

For each of the samples in the Learning Sample Management Module

a. Process the narrowband sample with the Online Subsystem, configuring it us-
ing the current genome.

b. Evaluate the fitness in Fitness Evaluation Module, comparing the expansion
result with the reference signal received from the LSMM. Produce an objective
value that will be used by the Evolution Module to create a fitness ranking for
the genomes.

3. Rank the genomes by their objective values and select genomes for reproduction using
some rank based selection method.

4. Generate offspring by letting the selected genomes reproduce using mutation and crossover.

2similarity to the original wideband sample in the psychoacoustic sense
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5. Replace part of the population with the produced offspring.

6. Test if one of the end conditions is met (one of the genomes produces a good enough
solution or a prespecified iteration limit is encountered). If not, continue from 2 with the
new population.

4.2.1 Learning Sample Management Module

This module handles the preprocessing of the samples in the training simulation. It simulates
the processes a telephone speech signal goes through when it is transmitted from the speaker
to the receiver. It is responsible for providing the narrowband signal to the online subsystem
during the training simulation, and providing the corresponding wideband reference signal to
the fitness evaluation module.

During preprocessing, the samples are transformed from 16 kHz wideband signals to 8 kHz
narrowband signals. The system must avoid introducing any processing delay or the delay
must be countered somewhere during the teaching process, because for the fitness function to
be successful the wideband- and extended signals fed to it must be as synchronized as possible.

There are three processing paths in the current NEABE implementation. One simulates a
call from a GSM mobile phone, another one a call from an ordinary PSTN phone. The third
one is a simple passthrough processing path, which simply downsamples and lowpass filters
the wideband signal to produce the narrowband signal.

As the online subsystem uses frame based processing, the narrowband signal is split into
frames containing 10 ms of speech. There is some overlap between the frames to reduce the
effect of FFT windowing and to enable linear averaging between the frames to avoid sudden
jumps at frame edges. Hence, the actual processed frames are 98 samples (12.25 ms) long.

4.2.2 Evolution Module

The Evolution Module is responsible for evolving new genomes that will act as parameters for
the Online Subsystem. It also acts as a process controller for the learning process, directing the
other modules of the Evolution Subsystem.

There are multiple possible evolution methods that could be used. As the Online Subsystem
of the current implementation uses a neural network to calculate the magnitude shaping pa-
rameters and does not have any other parameters to set by evolution, an evolution mechanism
specialized for neuroevolution like ESPg or NEAT [56] could be used. These benefit from
a faster, more efficient and flexible evolution, as they take the structure of the neural networks
into account. NEAT would also relieve us from having to specify the structure of the neural
network beforehand.

Nevertheless a simple unrestricted migration topology multipopulation GA was used in the
current proof-of-concept implementation to save time, because a generic GA software library
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was readily available. For ESP and NEAT, only implementations geared towards solving some
specific problem exist.

A GA with multiple subpopulations was selected in an attempt to better preserve the popu-
lation diversity and to enable multiple concurrent evolution processes with limited information
exchange, so the different populations could concentrate on different aspects of the problem.
Migration between the subpopulations is fithess basegration_rate percent of the popu-
lation being replaced by individuals drawn randomly from the bes&jration_rate percent
of the individuals in other populations.

Generating the initial population

The Evolution Module is responsible for generating the initial population. In the simplest case,
a completely random set of genes could be generated, utilizing only random number generator.
However, for genes acting as neural network weights, this is not optimal. Nguyen and Widrow
[43] propose a method for initializing the weights of a neural network and show that the method
improves the learning speed of a 2-layer neural network when using backpropagation learning.

Even though learning methods using artificial evolution are not as susceptible to the choice
of initial weights as the backpropagation based methods, it may still make sense to initialize the
weight-genes using the Nguyen-Widrow method. This way the initial values are more suitable
for the neural networks and may produce better initial results. More importantly, as Nguyen
and Widrow state in their paper, it is reasonable to expect that picking weights so that the hidden
units are scattered in the input space will substantially improve learning speed of networks with
multiple inputs. This is a valid assumption for evolution based training as well, as the better
scattering of the weights will give the evolution process a better chance to start from an area
with relatively good solutions. Therefore, the genes that specify the neural network weights
are initialized using the Nguyen-Widrow method.

Selecting Learning Samples

The evolution process is computationally quite heavy. Processing around a hundred learning
samples for approximately a hundred individuals in the population would create a rather large
computational load. To reduce this load the Evolution Module does not use all the samples in
the LSMM for all generations. Instead a prespecified number of random samples are drawn for
each generation and the samples are used for processing of all individuals in the generation. To
ensure that the samples used during the generation are not from the same speaker one sample
is drawn from each speaker. The training database of the current NEABE implementation has
12 samples from 8 speakers so the computational load reduces to under 10% of what it would
be if all samples were used for all generations.

To ensure that the evolved result is near optimal for all training samples, they are all used for
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each generation during the last 10 generations of the evolution. This way the initial evolution
can be done fast, but end results will still get fine tuned toward the training sample set optimum.

4.2.3 Fitness Evaluation Module

The Fitness Evaluation Module evaluates how well a given sample was expanded, by compar-
ing the expanded signal received from the Online Subsystem to the wideband signal from the
Learning Sample Management Module.

The comparison metric used should measure the difference between two signals as psychoa-
coustically accurately as possible. In principle, as artificial bandwidth expansion is only speech
enhancement, not speech synthesis, the original wideband signal should not even be needed.
We could simply measure whether the expansion improves the speech quality and make the
evolution select the algorithm parameters that would most improve the speech quality. Un-
fortunately, no such measure exists. In fact, there is not even any generally agreed upon way
to measure the psychoacoustical difference between two speech signals, so a method that ap-
proximates the difference accurately enough for expansion quality evaluation purposes must be
selected instead.

However, this is not very straightforward either. It is made slightly easier by our use of rank
based fitness assignment (see chapt2r), because the actual values produced by the metric
are not important. Therefore the metric can be highly nonlinear (in regard to quality) as long
as it introduces an approximate subjective speech quality based ordering.

The spectral envelope of the expanded speech signal is the principal key for a high subjective
guality of the speech produced by any bandwidth expansion sy&d@miherefore, it makes
sense to use a spectral metric as the quality measure for the expanded signal.

Framing the Signals for Spectral Quality Metric Calculation

To compute the spectral quality metric between two signals, a frame based processing scheme
is usually used. For FFT based spectral estimation this is necessary. A fundamental assumption
when using FFT is that the signals under investigation are wide-sense stati8garggeech

is not a WSS process, because the articulators are moving and shaping the vocal tract. How-
ever, by selecting a time frame in which the vocal tract movement is negjlible stationarity
assumption holds satisfactorilg3.

The time duration of the analysis frame should be long enough to span at least one pitch
period, but on the other hand so small that the articulators do not move considerably during the
frame. If the frame length is too short, the results will fluctuate very rapidly depending on the
exact positioning of the framet). If the frame length is too long, the speech process during
it will not be stationary enough and the results of the spectral estimation will not be accurate.

3on the order of 15-20 ms for most vowels
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When selecting the frame length it is useful to avoid the length used by the expansion process
of the Online Subsystem, because using the same length might let some frame synchronized
error get through, as the frame pre-FFT windowing reduces the importance of the samples on
the frame edges. The risk of this is reduced by the temporal overlap in frames, but as speech
is not stationary and, especially during glides, the exact frame time interval can affect the FFT
analysis results considerably, using a different framing scheme for the fithess evaluation may
still improve the system robustness.

Selecting the Spectral Quality Metric

There are many different spectral distance metrics which could be used as a quality measure.
For example, Epps and Holme%]] use the following spectral distortion metric to measure
spectral distortion between two envelope shapes in the extension band:

K r05w
1 s Ak(w) 2
Do =.|—= 201o Go— dw, 4.1
HC K;/O‘Q&us [ glo( CAk(w))} (4.1)
where
Go = — /0'5% 201 (A’“(“’))d 4.2)
¢= 025ws 0.25ws ng Ak(u)) v )

and A, (w) is the original and4,,(w) the predicted envelope of thieth (temporally aligned)
frame of wideband speech and is the wideband sampling frequency (16 kHz). The compen-
sating gain facto€. has the effect of removing the mean difference between the two envelopes,
and thusD ;- measures only the spectral distortion between the envelope shapes.

Another distance measure is log spectral distortion (LSD), which can be defined for the
artificial bandwidth expansion as:

dsp = % /_ ) (20 logy m —20logy, mﬂ:«&%)mw, (4.3)
where A,,,(e’*) and o, denote the modeled frequency spectrum and relative gain of the
missing frequency band of the original wideband signal, éimj(ej“’) anda,.; denote the
corresponding parameters of the artificially expanded b&#. [

The LSD can also be expressed in the cepstral domain. For a sequence of speech frames the
root mean square average of the LSD is given by:

- V210 E{l

_ PP RY) a2
drsp 10 2(Co Co) +;(Cz ¢;) } (4.4)

whereE{-} denotes the expectation operation and cepstral coefficignts . . . are calculated
from the AR coefficients and the relative gav]
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Figure 4.3: Raised cosine bandpass filter with 500 Hz transition bands shown in linear amplitude plot.

Two distance metrics have been tested with NEABE. A simple log spectral MSE and a
distance metric based on the cepstral MSE of the fifstoefficients, whereV, is selected
such that the coefficients containing information about the spectral harmonics are ignored and
the information about the spectral envelope is included.

The MSE metric is also influenced by the harmonic structure. However, because the low-
band to highband transform is always the same during the evolution run and thus only the
spectral envelope can be altered by the evolution system, the harmonics should not have any
considerable effect on the direction of the evolution process.

When expanding telephone band speech, there is an additional problem that the narrowband
signal has been bandpass filtered. When the base expansion band is generated directly from the
narrowband this causes the expansion band to have some gaps (seedsg@iorunderstand
why). These gaps should not be included into the spectral distance calculation, as their inclu-
sion would cause a genome to benefit from considerably amplifying the bands the gaps are at,
which would only add noise to the system. Due to this, the MSE distance is only measured
from the spectral bands which are not generated from the attenuated bands of the narrowband
signal. Which bands these are depends on the used Lowband to Highband Transfer Function
(see sectiod.3.3. Similarly, the cepstral calculations filter out the gap bands by using a raised
cosine bandpass filter (illustrated in Figut®) in the spectral domain before continuing with
the cepstrum calculation.

To make the distance metric robust against pathological signal frames which cause zeroes
to appear in the magnitude spectfyrthe operators usleg,,(1 + =) instead oflog;,(z) as

“The evolution process can sometimes, especially in the beginning of the evolution, generate genomes that cause
extreme attenuations on some spectral bands. These attenuations may be so extreme that due to the limited accuracy
of the digital computer, zeros occur in the magnitude spectrum of the frame.
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Figure 4.4: log(1 + z) de-emphasizes differences in the lower end of the scale, but otherwise behaves
similar tolog(z)

the logarithm function. This also de-emphasizes the errors near the spectral zeroes (see Figure
4.4), which improves the psychoacoustical expansion results, as the errors will probably get
masked by nearby higher magnitude spectral information anyway.

Thus the used frame distance measures are:

Vo R 2
SMSE; = [ (1omao1+ |X(0)) ~Togsol1 + X)) (4.5)
Ncl—l x _
CMSEf = Z (/ ln(1+|Hcf(w)X(w)D€]wn
n=0 -
— [ )X @)hen ) 4.6)

where SMSE/ is the frame log spectral mean square erkqrjs the beginning of the valid
expansion band}s is the end of the valid expansion bani{e’~) is the spectrum of the
reference signal frame an¢l(e/*) is the spectrum of the expanded signal; and' SE; isthe
frame cepstral mean square errdf, is the number of cepstral coefficients to include in the
evaluation,H.; is the spectral domain raised cosine bandpass filterXad*) and X (/@)

are as before.

Combining Frame Objective Values to Produce Genome Obijective Values

The frame objective values need to be combined to produce a single objective value for each
genome. This is done in two parts. First, quality values for frames of each training signal are
combined to produce an objective value for the signal and then the signal objective values are
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combined by simply calculating an average.

The way the frame objective values are combined is highly important, because it affects the
training greatly. In an ideal case we would have training data that would contain equal number
of frames for each phoneme, but on the other hand we would like the data to contain frames in
a natural order so that the system could learn to exploit the information in the frame order, if
recurrent feedback is used.

These principles are somewhat mutually exclusive, so even though the speech samples have
been carefully selected to contain all types of phonemes in Finnish, the number of frames per
phoneme varies considerably. As an example, /s/ is typically a phoneme of extensive duration,
so there are quite many frames containing it, whereas unvoiced plosives, such as /k/, /p/, It/, are
usually quite short and thus few frames contain them.

Of course it can be speculated that the short phonemes do not need to be modeled as carefully
as the longer ones, as they are not heard a very long time and thus moderate subjective errors
are (more) acceptable in them. While this is true to some extent, a notable but short time error
in one frame will reduce the subjective quality considerably and cause a notable artefact in the
produced speech.

An ideal objective value combiner would thus emphasize the large errors somehow. One
possible scheme of doing this is to apply an extra cost factor for errors that are in some sense
much larger than the average error level. This kind of outlier punishing, when implemented
correctly, could possibly reduce the amount of artefacts in the produced speech.

Currently, however, the frames are combined to produce a sample objective value by simply
averaging them together. The final genome objective value is simply:

3 MSE;(f)

‘ P [F'(s)]
Obj = Z B
seS

4.7)

wheres is the set of all sampleg;(s) is the set of frames in the sampleM SE¢(f) is either
the SMSE or theCMSE of frame f in samples, |F(s)| is the number of frames in the
samples and|S| is the number of samples in the learning sample set.

4.3 The Online Subsystem

The Online Subsystem is the heart of the NEABE system. It is responsible for the actual band-
width expansion. It is the portion of the system that will be integrated to the target system, so
ideally it should be computationally efficient, straightforward to implement in any program-
ming language and as robust as possible. The modules in the OSS should be easy to customize
and change to achieve the full potential of the NEABE system, the ability to adapt to different
operating environments by simple retraining.
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Figure 4.5: The structure of the Online Subsystem

The architecture of the online subsystem is presented in Fig&reThe online subsystem
consists of four main modules: Feature Evaluation Module, which evaluates the features of
the frames to be given as inputs to the neural network; Neural Network Module, which is
configured by the ESS genome and is responsible for producing magnitude shaping parameters
from the feature inputs; Lowband to Highband Transform Filter (LHTF), which adds the basic
highband data to the frame by transforming the lowband; and the Magnitude Shaping Module,
which modifies the highband produced in LHTF to make it resemble the correct wideband
spectrum.

The samples to be expanded are processed frame by frame, the actual framing done by
some other system (during evolution, the ESS LSMM, in the end system, by the surrounding
telephone system). The OSS operation still depends on the framing method used, as the FFT
window used by the system should have the same length as the frame.

A high level description of the OSS expansion process is given in the following steps:

1. Feature Evaluation Module evaluates the expansion features for the frame.

2. The evaluated features are passed to Neural Network Module as parameters. It uses them
and (optionally) its own recurrent feedback parameters to evaluate a neural network,
which has its weights set according to the genome set by the ESS process. Some outputs
of the network are stored in the NN module to be passed as inputs for the next frame.

3. LHTF filter expands the original narrowband frame to produce a basic expanded frame,
which has a highband with approximately correct harmonic spading incorrect spec-
tral envelope.

4. The expanded frame is attenuated and amplified in the Magnitude Shaping Module, using

>The highband harmonics have consistent distance to each other, but their distance to the lowband harmonics
may be incorrect.
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the magnitude shaping parameters produced by the NN module to control the magnitude
modulation.

5. The final expanded frame is output to the surrounding system. If there are more frames
to process, the process is continued from step 1.

4.3.1 Feature Evaluation Module

Feature Evaluation Module is quite possibly the most important module of the Online Subsys-
tem. The expansion quality is directly related to the quality of the features selected here. If
the features do not contain information that is important for deciding how a frame should be
expanded, the system will fail. In effect the features are the sensors of the expansion process,
without which it cannot “see”.

If the sensors are twisting or leaving out the relevant information, we cannot expect the
system to be able to act correctly. If the sensors are overflowing the “brain” (the decision
making process located in the neural network in this case) with irrelevant information, it will
not be able to make good decisions. So the selected features should be accurate, important and
give all relevant information, while discarding the information unrelevant for the expansion
process.

Additionally there should be as few features as possible to minimize the dimensionality of
the solution space the neuroevolution process must search. Each added search space dimension
slows the learning process down and adds to the risk of not reaching a solution at all. In
addition, the number of training samples needed to prevent overtraining grows with the input
space dimensiorbf], although with the current magnitude shaping approach (explained in
section4.3.9 this is not a big problem, as the magnitude shaping algorithm effectively limits
the overtraining risk.

For fully connected neural networks, the number of free parameters grows quite aggressively
when inputs are addédso the input dimensionality is of even more concern when they are
used.

As a consequence of the aforementioned reasons a tradeoff emerges. On one hand, to ensure
that the process has all the needed information, we should provide it with all the possible
features that could be useful for the process, and on the other, we should minimize the number
of features to keep the size of the search space feasible.

Feature Subset Selection

There are many methods available for solving the mentioned tradeoff. A good introduction to
the feature subset selection is given 18][ However, for the purposes of the initial NEABE

SFor fully connected feedforward MLPs, each new input aidsew synaptic connections, whekheis the
number of hidden neurons in the system, so each input/adds parameters to be tuned by the evolution process.
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implementation, the features were selected by a group of domain experts, mostly basing the
selection on what has worked well with the prior ABE algorithm. Some consideration was
given to the special qualities of neuroevolution, especially by selecting the simpler features
instead of the more refined ones and instead trusting the neuroevolution to find the best way to
combine them efficiently.

Selected Features

In this section the features selected for the NEABE system are briefly explained. In the current
NEABE implementation the Feature Evaluation Module is resposible for FFT transforming
the signal frames, so both time- and spectral domain features can be used without extra cost
and thus the selected features are usually implemented in the domain the implementation is
simplest to make.

To produce good quality magnitude shaping clriae the expansion, the expansion algo-
rithm must have either implicit or explicit understanding of different phoneme classes. The
older version of the ABE algorithm used explicit classification. It had separate processing
paths for sibilants and stop consonants, but classified the other sounds as voiced. As it used
processing methods very similar to NEABE and yielded quite good results, it seemed feasible
to give NEABE some of the measures it used for classification as features, as the neural net-
work in NEABE must implicitly perform classification like operations to be able to correctly
expand the signal.

One of the measures the prior algorithm used to differentiate between voiced and unvoiced
sound frames was the zero crossing rate. The zero crossing rate is defined as the number of
times the signal crosses the zero-level within the frame, often normalized by the number of
samples in the frame.

Unfortunately, zero crossing rate does not measure the magnitude of the direction change in
any way. Even though it is a good measure for explicit classification, a more fine grained and
robust measure would be beneficial for the neural network in NEABE, which has a control task
(setting the Magnitude Shaping Module spline control parameters) in addition to its implicit
classification task. Luckily, such a measure exists and has been used for bandwidth extension
before, in R7].

Gradient Index Introduced by Paulus irf] for the voiced/unvoiced classification of speech
segments, the gradient index is based on the sum of magnitudes of the gradient of the speech

"Magnitude shaping curve is responsible for amplifying and attenuating the highband to produce natural sound-
ing expansion. It is described in sectiér8.4
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signal at each change of direction and can be defined as:

No—1
. Z U(k)|spp(K) = spp(k — 1)|
k=1
Toi = 70" Ne—1 7 (9
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k=0

where¥ (k) = 1/2|¢ (k) — ¥ (k)|, in which (k) denotes the sign of the gradient
snb(k) — snp(k — 1). The gradient index has low values during voiced sounds and high values
during unvoiced sounds2f]

Another feature for voiced/unvoiced classification, which was used for sibilant detection in
the old algorithm, was taken in to provide additional accuracy to the expansion, because it had
worked rather well in the old algorithm.

Differential Energy Ratio Differential energy ratio is defined as the ratio of the energy of
the second derivative of the signal and the energy of the signal. The second derivative is
approximated with a FIR filter with impulse resporiger) = 6(n) — 26(n — 1) + 6(n — 2).

N,—1
Z (8mp(K) — 28np (K — 1) + 8 (k — 2))?
Lder = = N 1 (49)
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k=0

To give the neural network a chance to separate stop-consonant frames from other unvoiced
sounds (such as sibilants), a feature capable of detecting temporal changes in relative signal
energies was needed. The simplest of these is the ratio of current and last frame energies.
However, testing the feature with a speech database revealed that logarithm of the feature was
a more suitable measure, giving a nicer spread of the values, as can be seen from the feature
histograms in Figurd.6.

Ratio of Energies

E,
Troe = 10Og T (4.10)
n—1

wherelog can be any logarithmpg,, was used in the current implementation.

Because the neural network in NEABE has a control task, it needs to know something about
the power at the different spectral bands of the original narrowband frame to be able to deduce
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Figure 4.6: Feature histograms for ratio of energies before and after logarithm.

the needed amplification levels and thus the control values it should output to the Magnitude
Shaping Module. Towards this end, the average magnitude of some (four in the current imple-
mentation) spectral subbands are calculated.

Average Subband Magnitude The average subband magnitudes are transformed into loga-
rithmic (decibel) domain, both to make it easier for the neuroevolution to extract the relevant
information and to make the features more human readable.

k1

k=k
Lasm — 20 k logm ﬁ

wherekg is the FFT index corresponding to the starting andhe FFT index corresponding
to the ending frequency of the processed spectral bandbzyid) is the FFT coefficient with
indexk.

(4.11)

4.3.2 Neural Network Module

Neural Network Module (NNM) is responsible for transforming the input features into the pa-
rameters used by the Magnitude Shaping Module to produce the magnitude shaping curve for
the expansion band. Its weights are the main control mechanism the Evolution Subsystem has
over the Online Subsystem. In the current implementation, they are the only control mecha-
nism as well, but basically any parameters of any modules in the Online Subsystem could be
controlled by the evolution, if so desired.

Conceptually, the task of the Neural Network Module is simple. It is used as a function
approximator to estimate the mapping from features to Magnitude Shaping Module parameters.
All learning is done by the Evolution Subsystem, so no learning algorithm is needed in the
NNM. A simple MLP network suffices for the task.

However, a question remains whether the MLP should be feedforward or recurrent. Simplic-
ity and the smaller number of weights needed speak for feedforwardness, whereas the potential
to learn to utilize long-term feature information speaks for the recurrent version. A compro-
mise was made by choosing a feedforward neural network with optional feedback outputs. The
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Figure 4.7: MLP with one feedback channel.

idea, illustrated in Figurd.7, is that some extra outputs, in addition to the Magnitude Shaping
Module parameter outputs, are adélethese outputs are fed back as inputs for the next frame.
When the feedback outputs are used, it is up to the evolution process to decide what to do with
them. The idea is that it can teach the neural network to use those outputs as feedback channels
to send whatever information, which will improve the expansion fitness, as inputs to the next
frame.

Of course, this is not a complete recurrent MLP. There is only a limited number of signaling
channels available and thus the different neurons are forced to compete for the channels, instead
of each hidden neuron having their own feedback channels directly to the other hidden neurons.
However, this reduces the number of weights needed, which simplifies the learning task at hand,
something which is very important when using a basic genetic algorithm for learning instead
of more specialized neuroevolution methods. In addition, in theory the MLP with feedback
could evolve into a structure which is equivalent of the complete recurrent network, if that
was the optimal structure for the task and enough communication channels were given. Also,
implemented this way, the amount of recurrent feedback can be controlled easily. In a sense,
recurrence is moved from neuron level to network level.

8This partially recurrent neural network scheme is known as Jordan network in literature. However, in typical
Jordan network, ordinary network output is fed back, whereas here additional communication outputs exist and the
artificial evolution process is free to decide what to communicate.
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Input Normalization

The inputs for the neural network are normalized during the teaching process by scaling them
using the estimated means and standard deviances for the features. For N available data of the
kth feature we have

N
_ 1
T = Nz;l‘ik, k:1,2,...,l
1=
N

1

i=1

Tif — T

Tip =
Ok

All the resulting normalized features will have zero mean and unit variance. The Online Sub-
system deployed into the final operating environment will use the estimates found during train-

ing.

4.3.3 Lowband to Highband Transform Filter

The Lowband to Highband Transform Filter transforms the narrowband input frame into a
wideband frame, creating a basic highband which will be shaped by the Magnitude Shaping
Module to form the final expansion band.

Currently, the wideband frame is generated using spectral folding by controlled aliasing
to produce the highband. The narrowband signal is upsampled by two, by inserting zeroes
between the samples in the narrowband frame. This is the equivalent of mirroring the lowband
into the highband in the frequency domain. The approach is illustrated in Fgire

Two other ways of transforming the lowband into a highband were considered. One was a
simple translation in the spectral domain, creating an exact copy of the lowband as a highband.
The process is shown in Figu#e8. Using this method would have created a spectral domain
discontinuity between the end of the lowband and the beginning of the highband, which prob-
ably would have caused artefacts in the expanded speech. An attempt could have been made
to solve the discontinuity by letting the evolution process search a value also for the first Mag-
nitude Shaping Module control point, but the result would not have been as good as with the
aliasing method which, due to mirroring, quarantees continuity over the seam.

On the positive side, the spectral gap caused by the bandpass characteristic of telephone
speech would have been smaller, because the narrowband signal reaches its unattenuated value
around 300 Hz and thus the gap on the beginning of the highband would have been only 300
Hz. The gap on the high end of the narrowband starts from around 3400 Hz, thus the spectral
folding produces a highband gap of about 600 Hz.

The other considered LHTF method was using nonlinear distor@dns],,(n) = g(sns) of
the upsampled and lowpass filtered signal to generate the highband information and combining
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Figure 4.8: Example results of different LHTF methods. Upper left panel shows the original narrow-
band magnitude spectrum. The results of spectral folding are shown in the upper right and the results of
spectral translation in the lower left panel. The quadratic distortion results, shown in lower right panel,
have been power corrected by attenuating the highband so that the spectrum is continuous over the low-
to highband transition.
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it with the original narrowband lowband in the spectral domain. The considered nonlinear-
ity was a simple quadratic, using the functigfs(n)) = (s(n))?, which, according toZ7],
produces only harmonic distortions and therefore ensures that the tonal components of the gen-
erated wideband signal match the harmonic structure of the bandlimited signal during voiced
sounds. LHTF by quadratic distortion is illustrated in Figdrg

Using nonlinear distortion would have removed the gap altogether and would have ensured
the harmonic structure match, but at the cost of using artificially generated excitation informa-
tion in the highband. In addition, the effects of the nonlinearity can be difficult to predict and
generally require sophisticated post-processing to aifl [Although this post-processing
could possibly have been left for the neuroevolution controlled magnitude shaping to handle, it
would have complicated the task of actual bandwidth expansion by mixing it with the nonlin-
earity compensation. The other alternative, separate nonlinearity compensation module along
the lines of the one described 7], would have further increased the already quite formidable
computational requirements.

In addition, the prior ABE algorithm used folding, thus using it simplified the implementa-
tion, made comparisons with the old algorithm easier and reduced the need of module testing
for the LHTF module.

4.3.4 Magnitude Shaping Module

Magnitude Shaping Module is responsible for attenuating and amplifying the highband pro-
duced by the LHTF to produce the final, natural sounding expansion band for the speech frame.
It uses the information extracted from the features by the neural network to create a modulation
curve which is used to adjust the spectral envelope of the LHTF generated highband to better
resemble the original wideband signal. The concept is illustrated in FigQre
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Figure 4.9: Magnitude shaping curve is used to modulate the generated wideband to more closely
resemble the original wideband.
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The shaping curve used in the Magnitude Shaping Module can be selected independent of
the other modules, as long as the number of NNM outputs are adjusted. The neuroevolution
process will strive to optimize the module input parameters for the selected curve. However,
care must be taken not to introduce a curve that is too flexible, otherwise overfitting may occur.
Even though the overtraining could be prevented by using a validation set to early stop the
learning at the optimal poingg], it would not prevent the model from distorting the harmonic
structure of the signal. Thus a magnitude shaping curve coarse enough is needed to guarantee
that the harmonic structure of the speech signal remains continuous while the spectral envelope
is adapted. In addition, the curve should have as few free parameters as possible to make the
learning more efficient, while on the other hand it needs enough parameters to be able to adapt
well to the high frequency range of the original wideband signal during training.

Preferably the magnitude shaping curve should also be smooth, as abrupt, discontinuous
changes in the spectral envelope are quite rare and could cause the curve to have a long impulse
response. This, in turn, would lead to quality degradation, caused by impulse response clipping
induced by the short frame length. Smooth curve is also intuitively more pleasing, as the role
of the Magnitude Shaping Module can be seen as the filter of the source-filter model and the
role of the LHTF as the source of the model. Therefore, the magnitude shaping curve should
be continuous. In practice, for this to work, the LHTF must not introduce any spectral envelope
discontinuities, which, depending on the selected LHTF, may or may not be true. With spectral
folding the assumption holds.

In addition to other requirements for the magnitude shaping curve, the computational effi-
ciency needs to be considered as well, as real-time curve generation is needed.

Cubic splines were the curve-type chosen for the initial implementation. They are smooth
(C2 continuity), local, interpolative curves with feasible computational requiremeté |
Interpolativity makes it easy to achieve a continuity in the spectral domain between the low-
and high bands, by simply setting the first control point of the curve to move the beginning of
the highband spectrum to coincide with the lowband spectrum endpoint. In the case of spectral
folding this is even easier, as a fixed 0 dB amplification suffices. The continuity is desirable to
avoid sudden changes over the lowband/highband seam.

The magnitude shaping control for splines is done using fixed frequency control points. In
comparison to letting the evolution process set both the frequency and the magnitude of the
control points, this reduces the number of free parameters in the model. However, it adds the
requirement of selecting the control point frequency locations. The selection is an important
one, as it affects the flexibility and level of control the curve has on different subbands of the
signal. The number of the control points should be such that adequate frequency resolution for
efficient control of the spectral envelope is reached, but the module does not alter the harmonic
structure of the signal or adapt to possible noise in the teaching samples.

%a change in some part of the curve changes only a finite number of control points surrounding it
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In addition to the number of control points, their relative locations are important. Instead
of setting the control points to a fixed distance from each other, it makes sense to set them to
fixed frequency warpe@4] locations to give the control system a frequency resolution similar
to that of human auditory system.

Also, when using telephone speech samples, special attention must be paid to the spectral
gaps caused by the bandpass filtering of the original signal. The Fitness Evaluation Module
cannot accurately evaluate fitness on the spectral gaps so it is usually best to avoid setting
evolution controlled control points into the gap areas, as their values will be set according to
the influence they have on spectral bands that are included in the fitness evaluation. This can
lead to excessive amplifications or attenuations in the control points to get best possible fit in
the evaluated subband.

In the current implementation, the first control point is fixed to 0 dB in the beginning of the
expanded band and the last control point to -60 dB in the end of the expanded band. Both
are in spectral gaps and, during preliminary tests, it was found that using fixed amplification
values for them improved the expansion results of the telephone band speech considerably. In
the case of the first control point, it is also reasonable, because it ensures continuity over the
seam. In the case of the last control point, using fixed value effectively leads to lowpass filtering
the signal, which reduces the expansion quality in the case of fricatives. However, the speech
samples used in our implementation were already lowpass filtered with a cutoff of around 7
kHz, so the expansion quality would not have been too good in the last kilohertz band anyway.

4.4 Current Implementation of the NEABE System

This section overviews the details of the our current NEABE implementation. Figafe
shows the block diagram of the implementation. Currently, there are two different working
parameter sets, which produce a bit different results.

One parameter set uses a simple feedforward network of ten hidden neurons and recombines
all individuals. The parameter set was tested without recombination as well, but no remarkable
difference in expansion quality was found.

The other parameter set uses two feedback channels and a neural network of five hidden
neurons. Recombination is not used, as the competing conventions problem would cause it
to hinder the development of recurrent connections. The network performs better than an
equivalent network without the feedback communication channels, which indicates that the
channels are being used for transmitting useful information.

The performance of the two parameter sets in terms of objective function minimization is
similar, but subjectively the results are somewhat different. The direct set tends to overexpand
sibilants (leading to metallic, sharp /s/, for example), whereas the feedback communication set
is somewhat more conservative, sometimes even underexpanding (transforming /s/ tffvards /
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Chapter 5

Results

To evaluate the performance of the NEABE algorithm and improve our understanding of the
way it works, extensive analysis was performed. This analysis was divided into three cate-
gories, each of which has its own purpose: the learning process analysis, the objective quality
analysis and the subjective quality analysis.

While the subjective quality of the expanded speech is clearly the most important measure
of performance for an artificial bandwidth expander, it does not, unfortunately, provide useful
information for developing the algorithm further. To improve the algorithm, knowledge of its
internal operation is needed. In NEABE, the operation of the algorithm can be divided roughly
into two parts:learning andexpanding Here, learning means the task of deriving workable
parameters for the expansion system using artificial evolution. Expanding refers to the actual
expansion process, which uses the neural network controlled magnitude shaping curve to adjust
the higher spectral components created by the lowband to highband transform function.

It is critical that the learning part performs adequately, because without proper learning the
system fails to maximize its expansion potential. If the algorithm population converges into
a point and learning stagnates early, the results will be poor. If the learning process fails to
utilize its current good individuals to create even better individuals and that way move towards
the global minimum of the objective function, the results will be poor. In sediidnan
analysis of a typical NEABE learning process is provided.

Finding good individuals does not guarantee good expansion quality. Minimizing the objec-
tive function over a dataset only guarantees good performance on average. As the dataset con-
tains speech signals with varying amounts of different phonemes, the expansion quality may be
inadequate for some specific phonemes or phoneme combinations, while still performing well
with other combinations. Therefore, a close look on what the evolved expander actually does
is in order. Sectiorb.2 provides this kind of objective quality analysis, exploring the way the
expansion process behaves through analyzing the performance of the expander on an example
sound.

70
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As mentioned, the subjective expansion quality is the most important performance measure
for the artificial bandwidth expander. SectibrB describes the results and analysis of a two-
part listening test which was used to evaluate the subjective expansion quality.

All the results presented in this chapter were derived from the same expander, which was
trained with a 196 phrase learning dataset (4 male and 4 female speakers, 24 phrases each)
using the feedback parameter set (5 hidden neurons, 2 feedback channels, no recombination
during learning). The expander performance was thereafter tested using a test set of 16 samples
(7 male speakers with 8 samples total, 5 female speakers with 8 samples total), from which a
specific female speaker sample was mostly used for objective testing and all samples were
used for the subjective listening test. Narrowband sources for the expansion in both learning
and testing sets were created by simply lowpass filtering (with 4 kHz cutoff) and downsampling
the original wideband samples.

5.1 Learning Process Analysis

To train the expander, a population of 80 individuals was run for 250 generations. The objective
value (MSE of first 35 cepstral components averaged over all frames of all teaching samples,
as described in sectigh2.3 for the best individual of each generation is shown in Figude

Learning process makes major discoveries around generation 20 and 40-50, after which the
learning converges into a slower descent towards the minimum. It should be noted that the
results continue to improve throughout the evolution. This indicates that it might be possible to
improve the expander even more by continuing the evolution further, although signs of stagna-
tion can be seen from generation 230 onwards. The flat part in the end of the evolution is due
to all samples being used for evaluating the individual performance during the last 10 genera-
tions, which removes the noise caused by the random sampling of fithess evaluation samples
(see sectiod.2.2for details). The random sampling also causes the local increasing of best
objective values. While best individuals are passed on by the elitist evolution strategy, they
may perform worse with other randomly sampled sets of phrases.

The constant improvement of the objective value throughout evolution shows that the evo-
lution search is successfully learning to better utilize the expansion process it is controlling.
It also indicates that the population diversity is staying high enough and new discoveries are
constantly made. Used selective pressure also seems to be satisfactory, leading to quick cap-
italization of promising individuals found, as shown by the rapid descent during generations
40-50.

5.1.1 Visualizing the Population Development

To get a better idea of the way the population is evolving during the search, a visualization
of all individuals of all generations was needed. Unfortunately, direct visualization of the 96
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Figure 5.1: The objective function value for the best individual of each generation, from generation

0 to generation 250. Learning process makes major discoveries around generation 20 and 40-50, after
which the learning converges into a slower descent towards the minimum. The objective function value
of the final optimal point is 0.0768.
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Figure 5.2: Relative variances of the 50 largest principal components. The variances have been normal-
ized by the total sum of variances. To give an idea of the amount of information displayed compared
to the total amount of information, the dark gray line shows largest three principal components and the
black line largest two principal components. Three components give 0.054 (5.4% of total variance) of
additional information compared to using only two components.

weight neural network space is impossible. To provide a visualization that contains as much of
the data variance as possible, Principal Component Analysis (P used.

To get an idea how much of the variance the PCA is able to display, the variances of the
fifty largest principal components were plotted. These are shown in FigrAs can be seen
from the picture, around ten first components seem to contain significant information. There is
a significant increase in information displayed between two (59.9% of total variance) and three
(65.3%) principal components, so three dimensional visualization was selected.

The three dimensional PCA visualization of the evolution of the GA population through time
is shown in Figuré.3.

Population moves through the space, exploring promising regions, changing direction abruptly
when better solutions emerge. The selective pressure causes the whole population to move in
the solution space to improve the values in promising areas. As recombination is not used, the
only force directing the search towards the promising areas arises from selection, which causes
the population to bias towards promising individuals. The promising individuals receive more
offspring and thus the population steers into their direction.

Still, even in the end the populations remain spread out, exploring yet unfound solutions.
The diversity remains high partly because of mutations, and partly because of migration which

!PCA is a classical statistical method, which has been widely used in data analysis and compression. An
introduction to this linear transform can be found in various books, for exampi&/jn [
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Figure 5.3: Visualization of the evolution of the GA population through time. Different colors represent
different populations, from Oth generation to 250th generation. The visualization has been calculated us-

ing principal component analysis (PCA). Three principal components with largest variances are shown.

The components have been normalized by the standard deviation of the first principal component. The
arrows show the approximate path of the population movement through time.
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keeps the subpopulations heterogeneous enough by supplying them worthy contestants once in
every twenty generations. Because the migration is elitist, the individuals moving in have high
fitness and therefore prevent the former best individual of the population from taking over the
whole subpopulation.

5.1.2 Visualizing the Development of the Best Individual

Visualizing the best individuals is informative for two reasons. First, it can be used to ascertain
that the population moves towards good individuals instead of drifting randomly around. Sec-
ond, robust solutions should have good solutions around them as well, so finding a cluster of
former best solutions around the final solution might indicate solution robustness. In addition,
the best individual plot can be used to determine the effect of randomly selecting a subset of
learning samples for fithess evaluation instead of using the whole learning sample set. Any
difference should be visible as displacement of the best individual during last ten generations,
when all learning material is used to direct the evolution.

A visualization of the development of the best individual through time is shown in Figure
5.4. Two large clusters are clearly visible, one near the best individual of the 125th generation
and one above the best individual of 250th generation. In addition, some smaller clusters exist
in both of the “spikes” in the lower picture. The best individuals of ten last generations are
somewhat lower on both the second and the third principal component than the best individuals
of the 20—-40 generations before that. The difference is especially clear on the third principal
component.

The population movement seems to follow the movement of the best individual, as expected.
For each population “spike”, there is a corresponding cluster of best individuals that attracted
it.

The first major cluster of individuals starts around generation 50 or so, just when the search
has converged into a steady descent, as can be seen in bigurehe second cluster starts
around generation 200, but there is no clear shift in objective value between these two clusters.

The displacement of the best individual of last ten generations is believed to be due to sam-
pling effects. Randomly drawing part of the learning samples gives only noisy estimate of
the objective function for the whole set. However, the last best individuals are still relatively
close to the second large cluster, which indicates that despite the noise, the error in learning
achieved with random sampling is not large and therefore using this method to cut down the
computational cost seems valid.

5.1.3 Visualizing the Effects of Migration

As mentioned before, the diversity of search is believed to remain high partly because of mi-
gration, which keeps the subpopulations heterogeneous by exchanging best individuals, and on
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Figure 5.4: Visualization of the evolution of the best individual through time. The different populations
are colored as in Figu®3. The colors shown in color bar represent the best individual of the generation,
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a plane comprised of two largest principal components. The second picture shows the locations on a
plane comprised of the largest and the third largest principal component. Component normalization and
other details are as in FiguBe3.



CHAPTER 5. RESULTS 77

160 163 166 169
2 2 2 2
1 1 1 1
- ’g K} °3
0 0 # 0 g 0 /
F } L 4 -
-1 -1 -1 -1
-2 -2 -2 -2
2 0 2 2 0 2 2 0 2 2 0 2
172 175 178 181
2 2 2 2
1 1 1 1
[} . ) *
0 / 0 I 4 0 » 0 A
p) . ) ¥
-1 -1 -1 -1
-2 -2 -2 -2
2 0 2 2 0 2 2 0 2 2 0 2

Figure 5.5: A visualization of convergence-divergence cycle which is believed to be caused by migra-
tion. The picture x-axis is the first principal component and the y-axis is the second principal component.
The number above each frame denotes the number of the generation in the picture. As migration hap-
pens once every twenty generations, generation 160 is just before migration and generation 181 just
after another migration. Converged subpopulations diverge after migration, just to converge again to
new positions and wait until new migration cycle diverges them again.

the other hand by the subpopulations, which contentrate on different parts of the search space.

Support for this assumption was found by animating the population movements. The sub-
populations were found to converge until migration, and spread out again right after it just to
converge again later. This convergence-divergence cycle is visualized in Bigure

In the 160th generation, the subpopulations have converged. Right after this generation, the
migration is once again performed. Migration brings individuals from different subpopulations
into a subpopulation, causing these to compete against each other. This competition causes
temporary divergence, until a certain individual and its offspring win out and the subpopula-
tions converge again. Next migration cycle again causes the population to spread, as can be
seen in the picture of the 181th generation. High migration rate (20%) causes migration to be
an important factor in NEABE’s search.
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5.2 Expansion Behavior Analysis

Expansion behavior analysis in this section aims to give a high level understanding of the
expansion quality and explore some specific details of interest in the expansion process, such
as how specific phonemes are expanded and what is the controller’'s frame-to-frame behavior
like. The aim is more to give an idea of how the system works than to give a detailed analysis
of the system quality measured by some objective quality measures. The aim of an artificial
bandwidth expansion system for speech is to improve the subjective quality, not objective, and
therefore performing objective quality measurements is not very useful, except for giving an
easy benchmark number to compare the performance of algorithms with.

5.2.1 High Level Spectral View on Expansion Results

A good way to get a high level understanding of the expansion results and their quality is to
compare spectrograms of the expanded speech with spectrograms of the original wideband
speech. This is done in Figuge6, where the spectrogram of the narrowband source speech is
also shown.

As narrowband signals used here were created by lowpass filtering the wideband signals,
there are negligible differences in 0-4 kHz range between the narrowband and the wideband
signal. In real telephone speech, this would not be the case. It should also be noted that expan-
sion currently does not evaluate frequencies above 7.5 kHz, because speech in the wideband
speech database has been lowpass filtered with a cutoff around 7.5 kHz and therefore there ex-
ists no valid target to evaluate the expansion fitness against. In addition, when using telephone
speech the spectral gap caused by the lowband to highband transform would prevent expansion
above 7.7 kHz anyway.

Comparing wideband and artificially expanded signals in the band from 4 kHz to 7.5 kHz,
certain issues can be noted. Mirroring effects caused by the lowband to highband transform
function (LHTF) are clearly visible around the 4 kHz range. Higher up in frequency, they
can be seen, but are strongly modulated down in frequencies where the original wideband
does not have similar effects. An interesting artefact of this kind is the highest spectral peak
trajectory, which is visible in 6—7 kHz spectral band. Original wideband does not have a similar
effect. However, while this is an artefact in the objective sense, it is not audible in practice and
therefore does not cause severe quality degradation.

In general, the expansion seems to roughly match the spectral power levels of the original
wideband. Listening the speech sample, no clear artefacts can be distinguished, although the
/sl is stronger in the original wideband speech. This is is also visible in the spectrogram, where
just after 0.6s there is a clear highband power difference.
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Figure 5.6: Spectrograms for wideband, artificially expanded and narrowband samples of a Finnish
sentence “Valitettavasti en voi auttaa.” spoken by a female speaker.
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5.2.2 Low Level Spectral View on Expansion Results

To evaluate the expansion performance on different phonemes, some clear single phoneme
frames were searched. Figuse7 displays magnitude spectra of signal frafhesntaining

/al, It/ and /s/. Stop consonant frame /t/ is from silentafthis plosive, because sufficient
attenuation for the silent part is important and has caused problems in some of the prior artificial
bandwidth expanders (see for exam3€]].

As can be seen, the system models vowel sounds quite well, although the 6—7 kHz stripe that
was found in spectrogram is clearly visible here as well. Nevertheless the produced expansion
is quite accurate up to 7 kHz, the working range of the expander.

The stop consonant expansion is also good, producing sufficient attenuation, always erring
on the conservative side.

The sibilant expansion leaves something to be desired. As was noted earlier, the expansion
of /s/ is too conservative, leading to a bit muffled /s/. However, even with this weak expansion
the sibilant does not sound disturbing, probably partly because of the following sharp plosive.

The examples presented here should be seen as just that, examples. For example, the NEABE
/sl expansions produced with the feedback parameter set range from underexpansion, like the
one here, to overexpansion, which produces a metallic sounding /s/. Vowel and stop consonant
expansion processes are generally more robust, typically not producing any audible artefacts,
but they are also easier expansion tasks. The negative spectral tilt in them leads to lower power
in the highband, which reduces the quality requirements for the expansion band.

5.2.3 Controller Behavior

To learn how the expander works and what it does to achieve the results shown above, the
control points of the magnitude shaping curve produced by the neural network were plotted for
best individuals of different generations. The control point traces are shown in Eigure

In addition to neural network controlled control points shown in the figure, the expansion had
a fixed control point at 4 kHz with 0dB amplification to ensure that the expansion is continuous
over the 4 kHz mirror point, and a fixed control point-e60 dB at 8 kHz to fix the behavior
outside the 7 kHz expansion range.

Controllers from all generations seem to have a fixed default attenuation the controller holds,
unless it is reacting to something special in the input. In all other control points except point 4,
the default level seems to decrease as the evolution continues. For the last generation controller,
the default levels are arounds, —18, —27, —31 and—80 dB.

The control for the first control point is roughly similar between the 56th and 250th gen-

2As mentioned in chaptet, there are two kinds of frames in NEABE, one used for expansion and other for

fithess evaluation. The frames displayed here are fitness evaluation frames.
3The plosive sounds, like /k/, /p/ and /t/ for instance, consist of a silent part, where the air pressure is impounded
in the mouth, and aburst part, where the pressure is abruptly released.
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Figure 5.7: Magnitude spectra for /a/, [t/ and /s/. 0 dB point has been set to the highest magnitude
of the original wideband signal in each plot. The /t/ frame is from the silent part of the plosive. WB
represents the original wideband spectrum and ABE the artificially expanded spectrum. The frames are
taken from a Finnish sentence &vtettavati en voi auttaa.” spoken by a female speaker.
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Figure 5.8: Traces of magnitude shaping spline control points in Finnish phrase “Valitettavasti en voi
auttaa.” spoken by a female speaker. Amplification at five control points (from top down), controlling
shaping spline at 4.6, 5.2, 5.9, 6.7 and 7.6 kHz respectively, are shown. Amplification in dB is shown in
y-axis, while x-axis has the number of the expansion frame. Best individuals from three different parts
of evolution are shown. The first individual is from the initial random population, the second just after
the fastest learning phase has passed and the last is the final best individual of the evolution.
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eration controller. The 250th generation controller has generally a bit more attenuation and
sometimes, unlike the 56th generation controller, increases attenuation from the default level.
In addition, the 250th generation controller is more fine tuned to the signal, changing attenua-
tion level more frequently.

Second control point has developed much more during the evolution. The 56th generation
controller generally holds a constant level arount8 to —15 dB range, whereas the 250th
generation controller has multiple attenuation levels which it uses to control the modulation in
different types of frames. One of the levels, presumably used for fricative type frames, keeps
the attenuation at 0 dB. The dynamic range of control point has thus inreased a lot from the
56th generation controller. Like for control point 1, the control has also become more fine
tuned.

Third control point is similar to second, except that the default attenuation level has increased
a lot from 56th generation version, whereas for control point two the attenuation increase was
smaller. In general the third control point has started to attenuate more, only bringing the
attenuation down for fricative frames, where it sometimes actually amplifies the lowband to
highband transformed signal.

Fourth control point mimics the behavior of the third one. The attenuation levels are differ-
ent, but the behavior is similar. An interesting detail here is that the attenuation has decreased
from the 56th generation version. Probably the 56th generation version has been only roughly
tuned and the control of the fourth control point has followed the control of the last control
point. It is also good to note that control points are by no means independent. In cubic spline,
four neighboring control points are used to set the point when interpolating. Two neighbor-
ing points control the path and two more distant points the curvature. Therefore, the 56th
generation control has produced aproximately constant level of attenuation for areas between
the fourth and the fifth control point, whereas the 250th generation control produces clearly
descending modulation curve.

On the 56th generation controller, the fifth control point has had constant value of-abut
dB, whereas the 250th generation controller has a lot more amplification, but reacts to some
points, presumably fricatives, by decreasing attenuation. The default attenuation of over 80
dB is more than that of the fixed sixth control point, which is-&0 dB. The system has for
some reason benefited from extra attenuation, most probably because it has caused the spline
between fourth and fifth control point to descend more rapidly. It is also good to note that the
last control point is outside the range evaluated by the fithess evaluation module, which ends
at 7.5 kHz. Therefore it only has to worry about fitting a part of the fourth control point side
segment as well as possible to the original wideband signal. Due to this, the control point will
overattenuate to get a better fit for the segment that is evaluated in the fithess evaluation, even if
this greatly reduces the fit in other, unevaluated, spectral regions. However, the overattenuation
is not problematic, as it is not audible due to other, louder spectral components masking it.
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It should be noted that the fifth control point needs rather great attenuation even on fricative
frames, because the LHTF mirrors low frequencies of the low band to the high frequencies of
the high band and therefore there is quite a lot of spectral power on this frequency range to
begin with. Therefore, after th# dB attenuation this region may have about equal power with
the fourth control point region after O dB attenuation.

Overall, the control points have surprisingly quantized levels. There are relatively few
smooth frame-to-frame transformations, the control points seem to react clearly or not at all.
One reason for this might be a poor feature set. If the features do not represent encountered
situations with enough resolution, a fixed region based controller may be the most robust alter-
native and therefore yield the best results.

Another possible reason is insufficient power to learn more complex relationships well
enough to produce better results than those achieved with simple classifier style controllers.
Using evolutionary learning method that can protect innovations and recombine individuals
without suffering from competing conventions problem might enable the system to learn more
fine tuned control with smoother control point transitions. Adding more control points would
also make learning smoother control point transitions easier. However, there is a tradeoff as
it would also increase the risk of overtraining (adapting to variations of learning data instead
of modeling the phenomenon producing the data) and make learning more difficult due to the
increased search space dimensionality.

Naturally, some transitions in the signal should be abrupt. For example the transitions from
silent part of the plosives to the noisy part is fast. On frame level the speech is rather station-
ary, so most of the transitions happen between the phonems. However, coarticulatory effects
should ensure that the spectral properties of the speech are changing all the time and therefore
the magnitude shaping spline should change as well.

5.3 Subjective Speech Quality Analysis

Maximizing the subjective expansion quality is the final goal in the artificial bandwidth expan-
sion. To test the subjective quality, a small scale listening test was arranged. While it was not
possible in the present project to arrange a listening test with enough listeners for the test to
be statistically significant, it gives some idea about the expansion quality and, perhaps more
importantly, the comments given by the test subjects help to direct the future research. By ex-
ploring the issues which the subjects found especially annoying, further understanding on what
is important in the expansion task can be achieved.

“Coarticulation refers to articulators moving to predict the upcoming phonation while still performing the pre-
vious phonation. This causes phonemes to have different characteristics depending on their context, the phonemes
that are surrounding them.
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5.3.1 Listening Test

The test was arranged in the Laboratory of Acoustics and Audio Signal Processing at Helsinki
University of Technology, in a listening room which fits the ITU-R BS.116 standard. The
listening test software used was GuineaPig@3.[ The samples were listened using Sennheiser
HD580 headphones. In both parts of the two part test, 13 naive listeners (10 men and 3 women)
listened to mono sample pairs with both ears. They were allowed to listen to the samples as
many times as they liked, in the order they preferred.

The test consisted of two parts and a few items long practice period before both parts, during
which the user could adjust the volume and practice listening and answering. A short break
was held between the two parts. After the test the users were asked if they have any comments
about the test samples or the test itself.

All test samples were in Finnish and also all subjects were native Finnish speakers. The
samples used for testing were not used to train the expander, but the practicing samples were
from the expander training speech database.

Before the test, the user was given a written instruction text. A copy of the instruction text
and an English summary can be found in apperdix

Pair Comparison Test

In the first part of the test, the subjects were asked to decide which one they would rather listen
to (in Finnish “Kumpaa kuuntelisit mieluummin?”). They also had the option of choosing that
the samples sounded about the same (in Finnish “melkein sama”), indicating no preference for
either of the samples. The user interface of the test is shown in Figlire

The test pairs consisted of a narrowband sample and an artificially expanded wideband sam-
ple. The narrowband sample was produced by lowpass filtering and downsampling the original
16 kHz sample rate wideband sample into an 8 kHz sample rate narrowband sample. The arti-
ficially expanded wideband sample was then produced by expanding the narrowband sample.
The narrowband sample was then resampled to 16 kHz sample rate, because of the GuineaPig
requirements (all test samples in GuineaPig must have the same sample frequency).

The sentences used in the test are shown in TaldleThe wideband samples were good
quality recordings of clean speech without any noise or low-bitrate speech coding, sampled at
16 kHz sample rate and lowpass filtered with a cutoff around 7.5 kHz.

The test pairs were presented in random order. All pairs were presented twice, exchanging
the pair item order for the second time. In addition, two null pairs were used. One of them had
the narrowband version of senterq@twice and the other the artificially expanded version of
sentence? twice. Thus, in total there were 18 test items in the first test, and 2 test items in the
practice period before that.
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=.j Kuuntelutest, koe 7 a

A B/ stop|

Kumpaa kuuntelisit mieluummin?
FaN

v A ~ B melkein sama

El Item: 7/18 Done|

Figure 5.9: User interface of the pair comparison test. Pressitng B button plays the corresponding

test sample. The user may play the next sample while the previous one is still playing, in which case the
previous sample stops and the next sample is played. Prestsingtops the sound currently playing.

After listening to both of the samples at least once, the answer area is activated. The user selects either
A, B or melkein samand pressedoneto continue to the next pair. The question is shown between the
listening and answer areas. The number of pairs completed and the total number of pairs are shown in
the lower left corner.

Number Speaker Sentence

pl female 1 Kenkien tulisi olla valjat.

p2 female 2 Varas sieppasi timanttisormuksen.
p3 female 3 Mina olen opiskelija.

p4 female 4 En tieda mika tama on.

p5 male 1 Asiantuntijat olivat yksimielisia.

p6 male 2 Aurinko nousee idasta.

p7 male 3 Kissa ndkee hyvin pimeéssa.

p8 male 4 Koe onnistui yli odotusten.

Table 5.1: Sentences used in the pair comparison test.
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Grade Finnish Description

English Description

3 Paljon parempi

2 Parempi

1 Vahan parempi
0 Melkein sama

-1 Vahan huonompi
-2 Huonompi

-3 Paljon huonompi

Much Better
Better

Slightly Better
About the Same
Slightly Worse
Worse

Much Worse

Table 5.2: The CCR test scale. The Finnish descriptions were used in the test, the corresponding English
descriptions from the ITU-T recommendation P.800 are given as a reference.

=-j Kuuntelutesti, koe 2 j =
A B stop

Adnen B laatu didneen A verrattitng on.

—3 —2 —1 O 1 2 3
parempi
El Item: 4735 Done|

Figure 5.10: User interface of the CCR test. Pressifigor B button plays the corresponding test
sample. The user may play the next sample while the previous one is still playing, in which case the
previous sample stops and the next sample is played. Prestsingtops the sound currently playing.

After listening to both of the samples at least once, the answer area is activated. The user selects the
guality of sample B compared to the quality of sample A on the slider. The slider can be either clicked
or dragged. When released, the slider moves to the nearest integer position. The verbal description of
the selected choice appears below the slider. After selecting the grade, user goastesontinue to

the next pair. The number of pairs completed and the total number of pairs are shown in the lower left
corner.

Comparison Category Rating Test

In the second part of the test, the listeners were asked to grade the quality of the sample B com-
pared to the quality of the sample A in the scale given in Tak®e The Finnish descriptions
for the grades were used. The test user interface is shown in Fdliie
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Number Speaker Sentence

cl female 1 Kaikki odottavat talouden elpymista.
c2 female 3 K&arme nieli saaliinsa.

c3 female 4 Valitettavasti en voi auttaa.

cd female 5 Juna lahtee hetken kuluttua.

c5 male 1 Jata viesti puhelinvastaajaan.

c6 male 5 Poliisi tutkii asiaa.

c7 male 6 Ennakkosuosikki voitti kilpailun.

c8 male 7 Olutta laikkyi lattialle.

Table 5.3: Sentences used in the pair comparison test.

The test resembled the ITU-T Comparison Category Rating (CCR) test specifiéd],in [
with a few exceptions. Most notably, there were only three null pairs, one for each processing
type (i.e. narrowband, artificially expanded and wideband) and the MNRU reference condi-
tions (multiplicative noise references which are used to calibrate the judgement scale) were not
included in the test.

The test pairs consisted of a wideband sample and either a nharrowband sample or an artifi-
cially expanded sample. The narrowband and expanded samples were produced as in the pair
comparison test. The wideband samples had similar characteristics as the source material in the
pair comparison test. The sentences used in the test are shown irbTalter each sentence,
both narrowband vs. wideband and expanded versus wideband pairs were created.

The test pairs were presented in random order. All pairs were presented twice, exchanging
the pair item order for the second time. In addition, three null pairs were used. First had the
narrowband version of sentenc twice, second the wideband version of sentectévice
and third the artificially expanded versiona8 twice. In total, there were 35 test items in the
second test, and 4 test items in the practice period before that.

5.3.2 Test Results

The numerical test results are presented below. The comments the subjects made after the test
can be found in appendi.

Evaluating Test Reliability

Due to the small number of subjects in the test, no statistical analysis of the results was done,
as the number of subjects is too low for the test to be confident anyway. To get an idea of the
reliability of the listeners, the null pair results were analyzed.

In the pair test, five subjects failed at least one null test. After analyzing the results, it
was noted that all these had failed the null pair containing the artificially expanded sample.
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Pair Test Results, 13 Listeners
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Figure 5.11: Preference scores for the pair comparison test. Artificially expanded (ABE) samples are
clearly preferred over narrowband (NB) samples.

Listening the sample revealed that it had a disturbing artefact, which might make the sample
sound different if it was played again in quick succession.

In the CCR test, three listeners failed two of the null tests, grading theif to 1 instead of
zero. However, their answers to test items resembled the answers of others, so they were left
in.

Pair Comparison Test

The pair test preference scores for artificially expanded and narrowband samples are shown in
Figure5.11 along with the portion of samples rankabdout the sameAtrtificially expanded
samples are clearly preferred.

During results processing it was noted that there were quite many cases, in which the users
had preferred one type when the pair was encountered first time and another type when the pair
appeared second time. When these were considered to abtwub the samanswers instead,
the results changed considerably. The results calculated in this way are shown ing-igure

To see how the preference was distributed among test samples, results for each sample were
calculated. These are shown in Fig&rd3 As can be seen from the results, listeners show
particularly strong preference for artificially expanded sound in sapfpl@&he strongest pref-
erence for narrowband occurs in sampie
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Pair Test Results, Opposite Choices Considered "about the same"
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Figure 5.12: Pair test preference scores, when opposite preferences for the same pair are interpreted as
two about the samanswers instead. Both the ABE and the NB score decrease 9.1 percentage units.

Three of the subjects preferred ABE in all samples. In addition, one of the subjects pre-
ferred ABE over 90% of the time and rated the samplasut the sameest of the time. Two
test subjects preferred narrowband samples clearly more than others, both having narrowband
preference around 40 %. However, as neither of them rated any samples (except the null pairs)
about the samehey still preferred ABE almost 60% of the time. The other listeners preferred
narrowband once out of eight sounds.

When the opposite preferences in the same pair were interpretdzbasthe samehe per
subject results changed dramatically. Only three subjects had any preference for narrowband
at all, and one of them selectathout equalb0% of the time. All test subjects still preferred
ABE more than narrowband.

CCR Test

Comparison mean opinion scores (CMOS) for the CCR test are shown in FduteThe
difference between the narrowband and ABE CMOS scores is 0.839 points, that is, almost one
level.

To see how the preference was distributed among test samples, results for each sample were
calculated. These are shown in Fig@&rd5 As can be seen from the results, artificially ex-
panded sample8 has particularly high CMOS. Also narrowband CMOS is high for the sample.
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Pair Test Results for Each Sample, 13 Listeners
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Figure 5.13: Pair test results for each sample. Sample five shows particularly strong preference for
ABE. Narrowband gathers most support in sample seven.
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CCR Test Results, 13 Listeners
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Figure 5.14: CCR test comparison mean opinion scores for narrowband and artificially expanded sam-
ples. Artificially expanded samples have significantly higher CMOS.

The expansion performs worst in sample two. The difference between expanded and narrow-
band samples is smallest in sample but ABE still has higher CMOS. The difference is
largest in sample2.

Expanded sample CMOS scores do not seem to directly follow narrowband CMOS scores,
although some correlation does exist. Poor narrowband CMOS seems to be dampened by ABE,
leading to only slight CMOS reduction in expanded samples.

Two listeners assigned ABE a CMOS ove0.5. Three listeners gave it a CMOS ofl.5
or less. All subjects considered narrowband CMOS to be urde35. No one rated ABE
worse than narrowband, the smallest difference was 0.25 CMOS points, while the largest was
1.5 CMOS points.

One of the subjects who preferred narrowband about 40% of the time in the pair test still
graded the ABE samples 0.875 CMOS points higher than the narrowband samples.

In 13 cases a listening test subject could not distinguish between artificially expanded sample
and original wideband sample in either of the pairs (that is, the subject rated both WB-ABE
comparison and ABE-WB comparison as 0). Eight listeners had at least one of these cases. Five
of the listeners could not distinguish difference in sente®e single subject gave artificially
expandea8sentence a CMOS worse thafri. The subject rated it as2. However, when the
pair came in reverse order, the subject rateglit
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CCR Test Results for Each Sample, 13 Listeners
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Figure 5.15: CCR test comparison mean opinion scores for each sample. Expansion has highest CMOS
in sample 8, as does the narrowband. Worst ABE scores are in sample two, in which the narrowband
also performs worst. The highest difference between expanded and narrowband samples can be found
in sample 2, whereas the difference is lowest in sample 5.
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5.3.3 Result Analysis

The tests indicate clear preference for the artificial bandwidth expansion system. Even with
the low number of subjects the support in the pair tests is so clear that it seems improbable that
narrowband speech would be preferred in a larger test. All subjects preferred expanded speech
more often than narrowband. The clearly higher average CMOS in CCR coupled with the fact
that all subjects rated ABE higher than the narrowband lends further support to the preference
for the expansion. As expanded speech is preferred in all samples of both tests, there are no
cases where the majority of the listeners would feel that the artificial bandwidth expansion
degrades the sound quality. This is clearly visible in pair test results. As shown in Bid2re
after opposite choices for the same sentence are considered equivalboutdhe saméhe
preference for narrowband is only 3.4%.

For some samples, the expansion quality seems to be almost indistinguishable. Sentence
c8 seems to be a prime example. It often scored a 0 and always at least a -1 (with a single
exception mentioned i8.3.2 in which the grading is not very consistent).

Problematic /s/ Expansion

What makes8 so easy for the expander? Looking at the sentence it can be seen that it has no
/sl. There is only one other sample with no &1, Its ABE CMOS score is the third best of

all samples. It seems that expansions without /s/ produce better results than expansions with
/sl. This leads us to believe that the expansion of /s/ is problematic. From experience with
other artificial bandwidth expansion algorithn28] 30], the sibilants are known to be difficult

to expand correctly, so it is not surprising to find their expansion problematic here. Further
support for the difficulties in /s/ can be found from the comments made by the listening test
subjects. Most of them noted something about the /s/. The /s/ was either too metallic (indicating
too much power in the high frequencies) or spoken with a lisp (indicating too little power in
the high frequencies).

Interestingly,c8 has much better CMOS tha, even though neither of them has any /s/.
However,c4is spoken by a female speaker with (according to some listeners) an annoying way
of speaking. One test subject mentioned that the expansion fits better for male than for female
speakers. According to him, if the voice already has a high pitch, it may become annoyingly
metallic after expansion. While there are some slight differences in test scores for male and
female voices, there is little support for this claim in the test results.

Sentenc@5seems to be an example of a successful /s/ expansion. It has no notable artefacts
and its ABE preference is highest of all pair comparison test sentences. Studying its expansion
process might reaveal what makes a sibilant expansion successful.

Sentence7 is an archetype of a problematic expansion sentence. It has multiple /s/'s which
have been somewhat underexpanded. In addition, one of them produces a long hissing artefact,
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which further degrades the sentence quality. When the sentence was expanded with the “direct”
parameter set (see sectidr for parameter set details), which produces a sharper expansion,
the sibilants were not underexpanded, but the artefacts got worse. The hissing can also be heard
in the narrowband sample, where it annoys less as there are no content in the high frequency
band. Therefore, it seems likely thaf is a somewhat pathological expansion case, where the
narrowband artefacts prevent proper expansion.

Poor /s/ expansion is the key to relatively low CMOS difference between the expanded sam-
ple and the narrowband sampledh. Again there is an audible artefact in the narrowband,
which is then emphasized by the expansion process.

Exploring the Narrowband Preference in Pair Comparison

As mentioned in5.3.2 two subjects preferred narrowband samples considerably more than
others. For one of them the preference decreased considerably when opposite choices for the
same sentence are considered equivalent to selealiogt the same For the other, prefer-

ence after that was still over 20%. However, he graded the ABE samples in CCR test 0.875
CMOS points higher than the narrowband samples, which is over the average difference of
0.839 CMOS points.

There is evidence of a similar phenomenon in other artificial bandwidth expansion quality
tests, for example in30]. People are used to listening to narrowband samples, so especially
when no wideband reference is available, they tend to prefer the sound type they have heard
before.

However, here the explanation is lacking. If being used to listening to narrowband samples
were the cause, the results should be similar for most of the test subjects.

So perhaps the subject simply preferred narrowband samples for their softness. When asked
to rate the quality of the samples in CCR, he may have put more emphasis on the clarity of the
samples and less on how pleasing the sample sounds.

Improving Sound Quality on Poor Narrowband Samples

In section5.3.2 an interesting phenomenon was found in the CCR test results. As seen in
Figure5.15 even when the narrowband quality is very poor, the expansion quality roughly
retains its level. The expanded samples remain areahdCMOS whether the narrowband
source is at-2.5 CMOS or at—1.5 CMOS. While there is far too little data to make any definite
conclusions, it could be speculated that the high frequency content added by the expansion
improves the perceived quality even when the added content amplifies the narrowband artefacts.
This might not be the case with a sharper, more aggressive expander, but with this somewhat
conservative expansion strategy the artefacts are not emphasized too much, while enough high
frequency power is still added to improve the sound clarity.
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Conclusions

In this thesis, an algorithm that uses neuroevolution to produce solutions for the artificial band-
width expansion problem was presented. The algorithm consists of two separate parts, the
online subsystem, which does the actual expansion, and the evolution part, which configures
the parameters of the online subsystem to produce high quality results with a given data set.
The expansion works by first generating initial high frequency data from the narrowband signal
using simple, well known bandwidth expansion methods, and then shaping the highband using
a cubic spline based magnitude shaping function controlled by a neural network.

The algorithm behavior was analyzed and the quality of the expansion produced by it evalu-
ated using a listening test. Turned out that the algorithm was capable of yielding high quality
artificial expansions for clean speech. The expanded speech was clearly preferred by the lis-
teners in a short listening test, and was rated almost one CMOS point higher in comparison
category rating (CCR) test, than the corresponding narrowband source sound, when the origi-
nal wideband signal was used as a reference. The expansion was also quite robust. The CCR
score remained high even when the narrowband score decreased.

More important than the current bandwidth expander and its results is the developed expan-
sion evolution architecture. Because of the modular design, it is easy to modify and adjustments
to the behavior of the expander can be made easily. This offers flexibility rarely seen in other,
typically hand tuned, expanders. Because of the minimized internal dependencies between
different parts of the algorithm, exploring new features sets, lowband to highband transform
functions, magnitude shaping functions and neural network architectures is simple. Adapting
the expander to new languages, adding postprocessing and tuning the expansion to be more
conservative or aggressive can be done by making simple changes to the system and/or the
data used in the learning process.

96
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6.1 Future Work

For the current implementation, many of the modules were selected to resemble the earlier
method to ensure low number of variables in the development phase and thus ease the system
implementation. By making selections that were known to work, the idea of automatically
evolving solutions could be tested with less risk of system failing because of poorly chosen
expansion method. For this reason, there is still a lot of research to be made to realize the full
potential of this new method.

Using psychoacoustical metrics in the fithess evaluation would probably improve the expan-
sion results. The system would be directed to model expansion features that are important for
the human hearing, instead of aiming for a good expansion in the spectral mean square sense.

The feature set used by the neural network of the expander could be improved. By sys-
tematically testing a large set of features available in the literature and searching for a set that
yields the best subjective results, the quality of the expansion could be improved. Or instead of
trying to come up with feature sets, direct expansion from spectral (or cepstral) components to
spectral components could be attempted.

Adjusting the way the system learns would probably be helpful. Changing the neuroevo-
lution algorithm to NEAT or ESPJ6] would avoid the competing conventions problem, en-
abling the efficient use of recombination. More efficient learning algorithm would ensure that
the evolved solutions are as efficient as possible, using the underlying expansion mechanism to
its fullest extent. Even more importantly, NEAT based evolution would allow tackling search
spaces with higher dimensionality, as it starts minimally and therefore evolves efficiently on
higher dimension problem spaces as well.

Incremental training, explained by Gomez itg], could be used to learn more complex
expansion models. By evolving solutions to simpler problems before trying to tackle the actual
problem, the evolution can be guided to find solutions to problems that would be too hard for
it when starting with random population. In this case, incremental training would be an ideal
tool when teaching the expansion to handle real noisy telephone signals.

The expansion consistency could possibly be improved by introducing artificial noise to the
evolution process. As described by Gonie&}[ making the controller behavior noisy often
forces the evolved solutions to be robust.

In addition to the ideas mentioned before, ideal structure of the expander could be searched
for. Avoiding the spectral gap induced by the lowband to highband transform function, improv-
ing the magnitude shaping function and searching for an effective neural network architecture
would all improve the potential expansion quality the expander could achieve.
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Appendix A

The Listening Test Instructions

The following listening test instruction text was given to the user before starting the test. The
subject could refer the instructions at any point of the test. The instructions are in Finnish.
They briefly explain the parts of the test, what the subject is supposed to do in each part, the
use of the user interface and the scale used in the CCR test.
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Onhjeita kuuntelukokeeseen

Tasséa kokeessa on kaksi osaa, joissa molemmissa kuunnellaan lausepareja. Osien valilla pide-
taan lyhyt virkistystauko.

Ensimmaisessa osassa tehtavanasi on valita &aninaysieigpda kuuntelisit mieluummin
(A tai B). Mikali naytteet kuulostavat mielestési niin samanlaisilta, ettet osaa niista miellyt-
tdvampaa, valitsmelkein sama

Toisessa osassa vertaat kahta daninaytetta ja kenku, naytteenB laatu ndytteeseerm
verrattuna mielestast

3 paljon parempi
2 parempi

1 vahan parempi
0 melkein sama
-1 v&han huonompi
-2 huonompi

-3 paljon huonompi

Ennen kumpaakin osaa on muutaman lauseparin mittainen harjoitusjakso, jonka aikana paaset
harjoittelemaan vastaamista. Harjoittelujakson aikana sinulla on mahdollisuus séataa aanen-
voimakkuus haluamallesi tasolle naytolla olevaa ddnensaadinta kayttaen, seka tarvittaessa esit-
taé testiohjelman kayttoon liittyvia kysymyksia.

Testissa voit kuunnella lauseparin aania valitsemassasi jarjestyksessa haluamasi maaran ker-
toja. Kun olet kuunnellut molemmat naytteet vahintdan kerran, aktivoituu vastausosa ja voit
valita vastauksesi. Kun olet antanut mielipiteesi, voit siirtya seuraavaan naytepariin painamalla
donenappia.

Pyydamme, ettet keskustele testiin liittyvisté asioista muiden kokeeseen osallistuvien kanssa
ennen kuin hekin ovat tehneet testin.

Kiitos avustasi!



Appendix B

Comments on the Listening Test

Comments the subjects made after the listening test. Comments by different subjects have
been separated by a horizontal line. Additions and clarifications made by the author are in
parenthesis.

Comments were written down by the author during a short interview after the test. Not all
comments were written down, typically emphasis was put on the comments that had not been
said before. Two of the listeners had no comments to make.

Original Comments in Finnish

— Suurimmassa osassa aania korkeampi oli selkeampi.

— Kun &anet tulivat toisen kerran, kuuntelutilanne oli tavallaan eri, koska aanet olivat edeltavien
aanten takia erilaisessa kontekstissa ja tuli ehkéa valittua eri tavalla.
— Jos aanet kuitenkin erilaiset, vaikea valtalkein sama

— Junasta puhuva naisdani jotenkin “arsytti” minua eniten. Ei siis mitenkaan niin, etta
olisin jotenkin inhonnut kyseista naytetté/puhujaa - se vain osui eniten korvaan. Muut
puhujat puhuivat mielestéani ihan normaalisti/neutraalisti, mutta tdssa naytteessa puhu-
ja painotti sitd viimeista sanaa jotenkin hassusti/epéatavallisesti. Tuntui siltd ettd puhuja
puhui suomea “vaarin”, kun painotti vimeisen sanan viimeista tavua kun painotuksen
olisi pitéanyt olla sanan alussa. (Muillakin oli samantyylisid kommentteja, mutta koska
puhetyyli ei varsinaisesti liity kaistanlaajennukseen, on ne jatetty pois.)

— Yleensa /s/:t ja ehk& /r/:tkin tuntuivat aiheuttavan eniten eroa naytteiden valilla - siis etta
yleensa toinen oli selkeasti parempi kuin toinen kun tuli sellaisia naytteita joissa naita
kirjaimia oli. Esim. se oluesta jotain puhuva nayte ei eronnut A:n ja B:n valilla koskaan
niin selkedasti kun siina ei ollut paljon /s/:a4 tai /r/:aa.
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— Aika usein toinen nayte oli jotenkin yleisesti epaselvempi - siis ei niin etta se olisi ol-
lut hiljaisempi, vaimeampi tai vaikeampi kuulla, vaan niin ettd ihan kuin puhuja olisi
puhunut nenéliinan tms. takaa, eli &anteet olivat kaikki yhtalailla epatarkkoja ja epateravia.

— Osa naytteista matalia aania, jolloin vaikea kuulla eroja matalilla taajuuksilla.

— Arsytti hirveasti, jos “korjaus” pahensi /s/:n dssévikaa.

— Diskanttien korostaminen paransi selkeytta.

— Tynnyrimaisyys puurouttaa (Adnen) nopeasti, vaikea saada selvaa.

— Jos diskanttia liikaa, sarkee /s/:t, mutta edelleen saa selvaa. (vastakohtana edelliseen)

— Joissain tapauksissa (kaistanlaajennus) jopa sattuu korvaan. Viesti tulee perille, mutta
aani on "kova”. Seurauksena kokemus ei ole miellyttava, mutta a4ani on selkea.

— Pahin kombinaatio on matala aani ja tylpistetty (tylpistys viittaa kapeakaistaisiin a&aniin)

— Toiset &énet olivat aina vahan kovempia korvaan

— (Keinotekoinen kaistanlaajennus) vahan metallinen, mutta ei minua haittaa vaan kuunte-
len mieluummin

— Tunkkaiset aanet arsyttavat, mieluummin metallinen kuin tunkkainen. Metallinen on
selkeampi. (Tunkkaisuus viittaa tdssa kapeakaistaisiin aaniin.)

— 1,2,3 arvostelu vaikea. (Misté tietdd) minka arvoinen on kolmonen? Ongelmana on se, et-
ta kun asteikko alkaa selkiytyd, onkin jo antanut esim. kakkosen sille kaikkein huonoim-
malle.

— Kumulatiivisesti alkoi arsyttamaan samat piirteet. Siksi myéhemmin tuli ehkéa arvosteltua
ankarammin.

— Miesaanille metallisuus (kaistanlaajennus) sopii, naisaanille ei. (Metallisuus viittaa kaistan-
laajennuksessa esiintyvaan ylataajuuksien ylikorostumiseen, jota esiintyy joissain laa-
jennetuissa /s/ danteissa.)

— Useinmiten se, jossa aanenlaatu tuntui olevan parempi, tuntui olevan “kovempi”. Pehmeat
olivat tavallaan miellyttdvampid, mutta epaselvempia.

— Aika moni sanoo /s/:n dssavikaisesti, kuin /f/:n.
— “Kovemmat” selkedmpid, mutta kovuus ei miellyttavaa. (Testihenkild oli kuitenkin kayt-
tanyt selkeyttd laatukriteerind ja pisteyttanyt siksi kaistanlaajennetut paremmin.)

— /s/:sta helppo huomata danen laatu.
— Melko samainohtui matkalla. (Testihenkil® ei kayttdnyt melko samaa kertaakaan paritestis-
sda, edes null-pareille.)
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— Alkaa hakea “liikaa” eroja.
— Paremmat kirkkaampia, ei puuromaisia.

— Toiset &anet kuulostavat &&dnenvoimakkuudeltaan kovemmilta kuin toiset. (Taméa kom-
mentti tuli useammaltakin kuuntelijalta.)

Comments Translated to English

— In most of the samples, higher pitched sound was clearer.

— When the same test item came second time, the listening context was different and there-
fore | sometimes chose differently.
— If there was a clear difference in samples, it was hard to chalosest the same

— The female voice talking about the train annoyed me the most. Not that | hated the sam-
ple or the speaker, it just sounded bad. In my opinion, the other speakers were speaking
quite normally/neutrally, but in this sample the speaker stressed the last word somehow
weirdly. It felt like the speaker was pronouncing Finnish in the wrong way, because she
was stressing the last syllable when she should have been stressing the beginning of the
word. (Other subjects also had comments dealing with the style of speech speaker in
some particular sample had, but as the speech style has no great relevance to the artificial
bandwidth expansion, other such comments have been left out.)

— Usually /s/’s and maybe /r/’'s seemed to cause the most difference between samples. One
of the samples in the pair was clearly better in pairs which had these kinds of phonemes.
For example in the pair where the speaker said something about beer (c8) there was no
clear difference between the samples because it had no /s/ or /r/.

— Quite often one of the samples was somehow more unclear. Not that it was more silent
or harder to hear, it was more like the speaker was speaking with a handkerchief etc. in
front of his face. The phonemes were all equally muffled and unclear.

— Some of the test samples were low pitch voices. In them it was difficult to hear differ-
ences in the lower frequencies.

— It was extremely annoying, if “the fix” worsened the lisp in /s/.

— Enhancing discants improved clarity.

— Barrel likeness makes it (the speech) muddy fast, it is hard to make out what the speaker
is saying.

— If there is too much discant, it breaks the /s/, but it is still easy to make out what the
speaker is saying. (as opposed to the last item)
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— In some cases it (artificial bandwidth expansion) even hurts the ear. The message is clear,
but the voice is “hard”. As a consequence the experience is not pleasant, but the speech
is clear.

— The worst combination is low pitched voice and bluntness (bluntness is referring to nar-
rowband sounds)

— Some of the samples were always a bit “harder” (sharper) for the ear.

— (Artificial bandwidth expansion is) a bit metallic, but | don’t mind. | rather listen to it.

— Muffled sounds are annoying, | prefer metallic to muffled. Metallic is more clear. (Muf-
fled refers to narrowband sounds here.)

— Grading on a scale of 1-3 is hard. How do you know which sound should be given a
three? The problem is that when you start to have a feel what kind of scale we are on,
you have already given a two for the worst sound in the test.

— Same sound features started to annoy cumulatively more and more. Therefore later sam-
ples may have gotten worse grades.

— Metallic sound (artificial bandwidth expansion) was good for male voices, but not for
female voices. (The metallic sound refers to the overamplification of high frequencies,
which is sometimes encountered in /s/ of the artificially expanded samples.)

— Most of the time the sample in which quality seemed to be higher felt “harder”. The
softer samples were in a way more pleasing, but unclearer.

— Quite many of the (test sample) speakers say /s/ with a lisp, like an /f/.

— "Harder” sounds were more clear, but the hardness was not pleasing. (The test subject
had nevertheless defined clarity to be an important part of quality and therefore given
higher grades for the expanded samples.)

— Itis easy to determine the quality of the sound from /s/’s.
— | totally forgot about theabout the samewhile doing the test. (The test subject never
usedabout the sama the pair comparison test, not even for null pairs.)

— One tries to find differences “too hard”.
— The better samples were more clear, not muffled.

— Some sounds sounded louder than the others. (This comment was given by multiple
listeners.)
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