Analysis, Parametric Synthesis, and Control of Hand Clapping Sounds

Leevi Peltola
Helsinki University of Technology
Laboratory of Acoustics and Audio Signal Processing
Introduction

- Hand clapping is very popular audible activity in many cultures but there have not been many studies about it.
- Physically-based synthesis and control model for hand clapping would have many uses:
 - Virtual reality and computer games
 - Prettifying live recordings
 - General MIDI
 - Easily expanded to other similar sounds
Synthesis model for the sound of hand clap
- Measurements
- Analysis of test data
- The synthesis model

Control models
- One clapper
- Synchronized audience based on coupled oscillators
Measurements

- In anechoic chamber
- 3 subjects, 8 clapping modes, 5 test claps for each mode
- Also sequences for bored, natural, and enthusiastic clapping
Analysis of Test Data

- The strongest resonance peaks were extracted using linear prediction.
- Peaks were inverse filtered and resulting signals were used to derive a band-pass filter.
- Also time domain analysis (attack and decay time).
Simplified Resynthesis

- Based on two-pole resonator filter:
 \[y(n) = A_0 x(n) + 2R \cos(\theta)y(n-1) + R^2 y(n-2) \]

 where \(A_0 \) is the gain that makes the magnitude response unity at resonant frequency, \(\theta \) is the pole angle, and \(R \) is the pole radius

- Coefficients are defined from the center frequency and bandwidth

- The resonator is excited with short exponentially rising band-pass filtered noise pulses

- Implemented in Pd
Control Model for One Clapper

- Onset-to-Onset Interval (OOI) varies roughly between 240 ms for enthusiastic and 400 ms for bored clapping.
- Also some characteristics that are typical for humans when clapping:
 - Variation of OOI is larger at the start of a sequence.
 - Clapping rate is sometimes faster and sometimes slower.
 - Especially at the end of a clapping sequence the tempo is usually slowing down.
Two examples of recorded clapping sequences

(a)

(b)
Several Clappers (Synchronization)

- Also reverb is needed
- Only mathematical models for synchronization but never tested in practice
- Most popular is the Kuramoto model of coupled nonlinear oscillators (Kuramoto, 1987)
- The synchronization is explained by the doubling of clapping period (Néda et al., 2000)
 - Fast clapping -> wide distribution of clapping rate
 - Slow clapping -> reduced dispersion allows synchronization
Simulation

Clapping rate of an oscillator is controlled by following rules:

- If trailing behind the lead oscillator -> speed up
- If ahead of the lead oscillator -> slow down
- If switched to non-synchronized mode -> slow down until natural rate is achieved
- Else just keep on clapping
Comments and Future Work

- **Synthesis:**
 - More test data to get more reliable results
 - Echoes are very important
 - Computationally very light model

- **Control:**
 - Model for one clapper quite useless
 - It would be interesting to investigate the synchronization process more carefully (multi-channel measurements)
The End

- Demos
- Questions