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Preface

Brief is the flight of the brightest stars.

In February 2008, we were struck by the sudden departure of our colleague
and friend, Carlo Magi. His demise, at the age of 27, was not only a
great personal shock for those who knew him, but also a loss for science.
During his brief career in science, he displayed rare talent in both the
development of mathematical theory as well as application of mathematical
results in practical problems of speech science. Apart from mere technical
contributions, Carlo was also a valuable and highly appreciated member
of the research team. Among colleagues, he was well known for venturing
into exciting philosophical discussions and his positive as well as passionate
attitude was motivating for everyone around him. His contributions will be
fondly remembered.

Carlo’s work was tragically interrupted just a few months before the
defence of his doctoral thesis. Shortly after Carlo’s passing, we realised
that the thesis he was working on had to be finished. We, the colleagues of
Carlo, did not have a choice, it was obvious to us that finishing his work was
our obligation. It is our hope that this posthumous doctoral dissertation of
Carlo Magi will honour the life and work of our dear colleague, as well as
remind us how fortunate we were to have worked with such a talent.

Paavo Alku
Tom Bäckström

Jouni Pohjalainen
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Abstract

Linear prediction (LP) is among the most widely used parametric spec-
tral modelling techniques of discrete-time information. This method, also
known as autoregressive (AR) spectral modelling, is particularly well-suited
to processing of speech signals, and it has become a major technique that is
currently used in almost all areas of speech science. This thesis deals with
LP by proposing three novel, mathematically-oriented perspectives. First,
spectral modelling of speech is studied with the help of symmetric poly-
nomials, especially with those obtained from the line spectrum pair (LSP)
decomposition. Properties of the LSP polynomials in parametric spectral
modelling of speech are presented in the form of a review article and new
properties of the roots of the LSP polynomials are derived. Second, the
concept of weighted LP is reviewed and a novel, stabilized version of this
technique is proposed and its behaviour is analysed in robust feature extrac-
tion of speech information. Third, this study proposes novel, constrained
linear predictive methods that are targeted to improve the robustness of
LP in the modelling of the vocal tract transfer function in glottal inverse
filtering. The focus of this thesis is on the theoretical properties of linear
predictive spectral models, with practical applications in areas such as in
feature extraction of automatic speech recognition.
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Chapter 1

Introduction

Estimation of the power spectral density of discrete-time signals is a re-
search topic that has been studied in several science disciplines, such as
geophysical data processing, biomedicine, communications, and speech pro-
cessing. In addition to conventional techniques utilising the Fourier trans-
form, a widely used family of spectrum estimation methods is based on
linear predictive signal models, also known as autoregressive (AR) models
[Makhoul, 1975, Markel and Gray Jr., 1976, Kay and Marple, 1981]. These
techniques aim to represent the spectral information of discrete-time sig-
nals in parametric forms using digital filters having an all-pole structure,
that is their Z-domain transfer functions comprise only poles. The term
linear prediction (LP) refers to the time-domain formulation which serves
as the basis in the optimisation of the all-pole filter coefficients: each time-
domain signal sample is assumed to be predictable as a linear combination
of a known number of previous samples. The optimal (typically in the
“minimum mean square error” sense) set of filter coefficients is solved to
obtain the all-pole spectral model.

In speech science, linear predictive methods have a particularly estab-
lished role, due to their close connection to the source-filter theory of speech
production and its underlying theory of the tube model of the vocal tract
acoustics [Fant, 1970, Markel and Gray Jr., 1976]. The model provided
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2 CHAPTER 1. INTRODUCTION

by LP is especially well-suited for voiced segments of speech, in which AR
modelling allows a good digital approximation for the filtering effect of the
instantaneous vocal tract configuration on the glottal excitation. Conse-
quently, LP can be used as a straightforward technique to decompose a
given (voiced) speech sound into two components, an excitation and a fil-
ter, a scheme that can be applied for various purposes. In addition, the
most well-known form of linear predictive techniques, the conventional LP
analysis utilising the autocorrelation criterion, has two important practi-
cal benefits: the all-pole model provided by the method is guaranteed to
be stable and the optimisation of the model parameters can be performed
with good computational efficiency. Since the early linear predictive stud-
ies by, for example, Atal and Hanauer [1970], these techniques have been
addressed in numerous articles and many modifications of LP have been
proposed. During the past three decades, LP has become one of the most
widely used speech processing tools, applicable in almost all areas of speech
science. In addition to its role as a general short-time spectral estimation
method, LP has a crucial role in many ubiquitous speech technology areas,
especially in low bit-rate speech coding. LP is used currently, for example,
as the core element of speech compression in both the second and third
generation of mobile communications, in the VoIP technology, as well as
in the recent proposal for the next MPEG standard for unified speech and
audio coding [Chu, 2003, Gibson, 2005, Neuendorf et al., 2009].

This thesis deals with novel, mathematically-oriented methods related
to LP. The work presents three perspectives into linear predictive spectral
modelling of speech. First, a well-known means to represent linear pre-
dictive information based on the line spectrum pair (LSP) polynomials is
studied. In difference to its most widely used application as a method to
quantise linear predictive spectral models, the LSP decomposition is em-
ployed in the present work as a general spectral modelling method. Certain
new properties concerning the root locations of the LSP polynomials are
described. Second, the thesis addresses weighted linear predictive models.
These are AR models that are defined by utilising temporal weighting to the
square of the prediction error, or residual, in computing the optimal filter
coefficients. Third, the study proposes variants to the conventional LP by
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imposing constraints in the formulation of linear predictive computation to
obtain vocal tract models for glottal inverse filtering. The following three
sections address the fundamental theory in the background of these three
perspectives.
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Chapter 2

Line spectrum pairs

Linear predictive methods provide accurate models of the short-time spec-
tral envelope of speech that can be used in speech processing applications
such as speech coding. However, to enable efficient transmission of the
models, the model parameters have to be represented in a form robust to
transmission errors. One such method is the line spectrum pair (LSP) rep-
resentation [Itakura, 1975, Soong and Juang, 1984]. This representation
is based on a decomposition of a polynomial, such as the linear predictor,
into another domain, the line spectrum frequency (LSF) domain, where the
parameters can be represented as angles of polynomial zeros on the unit
circle.

The use of LSFs as a representation of the linear predictive model has
three major advantages compared to antecedent representations. Firstly,
when represented by LSFs, the stability of the predictive model can be
readily retained even when corrupted by noise. Secondly, small errors in
the LSFs produce small and well-localised errors in the model, whereby
the representation responds predictably to transmission errors. Finally, the
computational complexity of obtaining the LSFs is sufficiently low for prac-
tical applications. Due to these advantages, the LSFs appear in combina-
tion with the code excited linear prediction (CELP) method in most of the
state-of-the-art speech coders [ETSI, a,b,c, ITU-T, Cox, 1995, Neuendorf
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6 CHAPTER 2. LINE SPECTRUM PAIRS

et al., 2009].
Prior to LSP, the most suitable representations of LP coefficients were

log-area ratios (LAR) and inverse sine quantisation. However, in terms
of spectral deviation due to quantisation errors, neither of these represen-
tations is optimal [Gray Jr. and Markel, 1976]. An article from the same
time period claims that the reflection coefficients would be superior to other
coding schemes [Viswanathan and Makhoul, 1975]. In any case, the LSP
decomposition was soon found to be insurmountable to all of the above
mentioned coding schemes. Quality-wise, coding with a 31-bit represen-
tation of the LSP polynomials is equivalent to, or better than, a 41-bit
representation with reflection coefficients [Kang and Fransen, 1985].

The LSP polynomials are defined, for an order m predictor A(z), with
[Itakura, 1975, Soong and Juang, 1984]

P (z) = A(z) + z−m−1A(z−1)
Q(z) = A(z)− z−m−1A(z−1).

(2.1)

We can readily see that, using P (z) and Q(z), polynomial A(z) can be
reconstructed as

A(z) =
1
2

[P (z) + Q(z)] . (2.2)

The roots αj and βj of P (z) and Q(z), respectively, have a number of useful
properties, namely, it holds that [Schüssler, 1976, Soong and Juang, 1984,
Stoica and Nehorai, 1986]

1. αj and βj are on the unit circle |αj | = |βj | = 1 and can be written as
αj = eiπλj and βj = eiπγj .

2. λj and γj are simple and distinct λj 6= λk and γj 6= γk for j 6= k, and
λj 6= γk for all j.

3. λj and γj are interlaced, that is, γj < λj < γj+1 for all j.

Polynomials P (z) and Q(z) can be reconstructed from λj and γj , and since
A(z) can be reconstructed from P (z) and Q(z), the angles λj and γj can be
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Figure 2.1: Illustration of root loci of LSP polynomials P (z) and Q(z)
calculated from polynomial A(z).

used to uniquely describe A(z). This description is bounded since λj , γj ∈
[0, 1] (the complex conjugate λ∗j and γ∗j are redundant and can be ignored).

Conversely, if two polynomials have zeros interlaced on the unit circle,
their sum is minimum-phase [Soong and Juang, 1984]. Therefore, ensuring
the interlacing property is retained, the description is robust in terms of
stability of the all-pole model.

Properties 1 and 3 are called the unit circle property and the intra-model
interlacing property of LSP polynomials. These properties are illustrated
in Fig. 2.1.

Since the roots lie on the unit circle, the all-pole models P−1(z) and
Q−1(z) will have infinite values at these locations. In terms of the spectrum,
these roots can be seen as vertical lines at frequencies corresponding to the
angle of each root. These lines are known as the line spectrum frequencies
(LSFs) of the corresponding model.

It can be concluded that it is possible to describe the spectral envelope
of a signal through the angles of the zeros of LSP polynomials P (z) and
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Figure 2.2: Illustration of the line spectrum frequencies in the spectra of
polynomials P (z) and Q(z).

Q(z) calculated from an LP polynomial A(z). This yields a convenient
representation of the LP coefficients, since the range of the angles is limited
to [0, π], and the stability of the all-pole model corresponding to A(z) is
guaranteed if the interlacing property is retained.



Chapter 3

Weighted linear prediction

Modern speech technology applications are increasingly being used in noisy
environments such as in cars, on streets, and in restaurants. Ambient noise,
which is typically assumed to be additive, corrupts voice samples. Conse-
quently, extraction of the original spectral information of speech becomes
more difficult in, for example, speech coding and speech recognition. There
are plenty of previous studies indicating that AR-modelling, such as conven-
tional LP, is sensitive to noise [e.g. Lee, 1988, Ma et al., 1993, Hu, 1998a].
Kay has demonstrated the degradation of AR modelling in several studies
by using a simplified scheme based on the use of additive uncorrelated white
noise [e.g. Kay, 1978, 1979, 1980, Kay and Marple, 1981]. The degradation
of AR modelling is now described by assuming that the signal xn obeys the
following equation of a pth order autoregressive process:

xn =
p∑

k=1

akxn−k + en (3.1)

, where en is a zero mean, white noise process with its autocorrelation
function given by Re(k) = σ2

eδk. By assuming that noise-corruption is
additive and that the noise is white and uncorrelated with the signal xn,
the observed process can be written as yn = xn + wn, where wn is noise,
whose autocorrelation function is RW (k) = σ2

W δk. The power spectrum of

9



10 CHAPTER 3. WEIGHTED LINEAR PREDICTION

the noise-corrupted signal can now be written as

|Y (z)|2 = |X(z)|2 + |W (z)|2 = σ2
eA

−1(z)A−1(z−1) + σ2
W (3.2)

, where A(z) is the Z-transform of the AR coefficient sequence ak.
Equation 3.2 above shows clearly that in the presence of noise the power

spectrum of the signal can no longer be parametrised simply by all-pole
modelling, because the spectrum now has both zeros and poles, that is the
noise-corrupted spectrum becomes an ARMA (autoregressive moving aver-
age) process. In parametric modelling of the short-time speech spectrum,
the degradation caused by environmental noise is typically seen as smooth-
ing of the resulting AR spectrum (see Fig. 3.1); the formants indicated
by the AR spectrum computed from noisy speech are of larger bandwidth
than those shown by the AR spectrum estimated from clean speech. If the
corruption is severe, the all-pole spectrum typically fails to indicate some
of the formants. In addition, the overall dynamic range of the all-pole spec-
trum computed by LP is typically reduced when the speech is corrupted by
noise.

There are plenty of studies aiming at improving the robustness of AR
modelling with respect to noise. In speech science, this topic is called robust
LP although robustness can be sometimes related also to other artifacts
than noise, for example to the biasing of the resonances of the AR mod-
els by the spectral harmonics [El-Jaroudi and Makhoul, 1991]. In robust
LP, the basic linear predictive model used in conventional LP is typically
modified by using, for example, different error measures in model opti-
misation. An example thereof is the classical study by Lee [1988], who
used special kinds of cost functions to give more emphasis to small residual
values while attenuating residuals of large amplitude in order to improve
modelling of formants. Hu [1998b], in turn, proposed a robust approach to
LP based on the use of an orthogonal principle to facilitate the incorpora-
tion of various error minimisation criteria. Additionally, there are several
studies on improved spectral models in which filter optimisation is based
on the assumptions that the background noise is additive and white, and
that its effects can be compensated by subtracting a suitable bias from
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the zero-lag autocorrelation in the normal equations [e.g. Kay, 1980, Hu,
1998a]. It is, however, worth noting that most of the existing techniques
for computing robust linear predictive models iteratively update the filter
parameters. Furthermore, some of the previously developed modifications
of LP cannot guarantee the stability of the all-pole filter. Both of these
issues impose serious limitations especially in applications such as speech
coding and parametric speech synthesis, in which the stability of the para-
metric synthesis model is a prerequisite; in speech coding, the method also
typically needs to be implemented to work in real time with modest hard-
ware requirements. Moreover, if robust spectral models are developed based
on simplified noise models, their performance typically deteriorates when
processing speech corrupted by realistic distortion such as office noise, car
noise, or babble noise.

In the present study, robust LP was studied based on the concept of
weighted linear prediction (WLP). WLP is a method for computing all-
pole models of speech by temporally weighting the square of the residual in
model parameter optimisation. Following the notations used by Ma et al.
[1993], the residual energy of the pth-order WLP-model is expressed as

E =
n2∑

n=n1

e2
nWn =

n2∑
n=n1

(
sn −

p∑
k=1

aksn−k

)2

Wn, (3.3)

where en is the residual, Wn is the temporal weight function, and the resid-
ual energy is minimised in the time span between n1 and n2. In the case of
the autocorrelation method, n1 = 1 and n2 = N + p, and the signal is as-
sumed to be zero outside the interval [1, N ]. The optimal filter coefficients
can be determined by setting the partial derivatives of Eq. 3.3 with respect
to each ak to zero. This results in the WLP normal equations

p∑
k=1

ak

n2∑
n=n1

Wnsn−ksn−i =
n2∑

n=n1

Wnsnsn−i, 1 ≤ i ≤ p. (3.4)

Note that conventional LP is obtained as a special case of WLP: if Wn is
chosen as a finite nonzero constant for all n, it becomes a multiplier of both
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sides of Eq. 3.4 and cancels out leaving the LP normal equations [Makhoul,
1975]. Eq. 3.4 can also be expressed in matrix form as(

n2∑
n=n1

WnsnsT
n

)
a =

n2∑
n=n1

Wnsnsn, (3.5)

where a = [a1, a2, . . . , ap]T and sn = [sn−1, sn−2, . . . , sn−p]T .
In the study by Ma et al. [1993], temporal weighting was computed from

the (noisy) speech signal by using the short-time energy (STE) function

Wn =
n−k∑

i=n−M+1−k

s2
i , (3.6)

where the length of the energy window is denoted by M and the delay of
the energy envelope by k. With STE as the weighting function, WLP was
proposed by Ma et al. [1993] as an improved linear predictive method based
on emphasising those samples that fit the underlying speech production
model well. The original WLP formulation, however, did not guarantee
stability of the resulting all-pole models, hence restricting its use. This
might have been the reason why the potential idea proposed in Ma et al.
[1993] has remained largely unnoticed in the speech science community.

The idea of WLP was, however, revived recently in the work of Magi
and his co-authors. This work is based on emphasising the effects of digital
speech samples located in the glottal closed phase, known to be associated
with speech samples of large amplitude, when computing linear predictive
models. This temporal emphasis is justified by two rationales. Firstly, it
can be argued that these large-amplitude segments of speech are less vul-
nerable to have been corrupted by stationary additive noise than segments
consisting of samples of smaller amplitude. Secondly, there is plenty of
evidence in speech science indicating that formants extracted during the
closed phase of the glottal cycle are more prominent than those computed
during the glottal open phase, due to the absence of sub-glottal coupling
[e.g. O’Shaughnessy, 1987]. Hence, by emphasising the contribution of the
samples during the glottal closed phase, one is expected to obtain spectral



14 CHAPTER 3. WEIGHTED LINEAR PREDICTION

models which show better modelling of the main phonemic cues of speech
sounds, the formants, in noisy conditions.

The use of temporal weighting in the optimisation of linear predic-
tive methods was studied in study II. This work proposes a new concept,
stabilised weighted linear prediction (SWLP), which yields all-pole models
whose general performance can be adjusted by properly choosing the length
of the STE window. By choosing a large M value in Eq. 3.6, the SWLP
spectra become similar to those obtained by the conventional LP analysis.
A small value of M , on the other hand, results in SWLP filters, similar to
those computed by the minimum variance distortionless response (MVDR),
a method that has recently [e.g. Yapanel and Hansen, 2003, Dharanipra-
gada et al., 2007] attracted increasing interests in the speech recognition
community due to its favourable noise-robustness properties in the con-
text of the most widely used feature extraction method, the mel-frequency
cepstral coefficients (MFCCs) [Rabiner and Juang, 1993]. The new SWLP
method is a promising spectral modelling algorithm because it produces
stable all-pole filters whose spectral envelopes are either smooth or having
large dynamics, depending on the choice of the length of the STE window.

SWLP has already been used in speech recognition applications to re-
place the standard FFT-based spectral estimation in the process of com-
puting the MFCCs. Isolated word recognition experiments have indicated
superior performance for the proposed SWLP method in comparison to
current spectral modelling techniques, including the previously proposed
MVDR, in several different types of noise corruption scenarios [Pohjalainen
et al., 2008]. SWLP has recently been found to improve robustness in large
vocabulary continuous speech recognition, as well [Kallasjoki et al., 2009].
These results encourage the application of SWLP in various speech signal
classification and recognition tasks.



Chapter 4

Glottal inverse filtering

One of the applications for linear predictive techniques is glottal inverse
filtering (GIF). This is a traditional area of speech science which aims to
estimate the source of voiced speech, the glottal volume velocity waveform,
either from the speech pressure signal recorded by a microphone in the
free field or from the oral flow captured by a specially designed pneumo-
tachograph mask, also known as the Rothenberg mask [Rothenberg, 1973].
Research on GIF methods has been motivated for the past four decades
mainly by the needs of the basic research aiming to improve our under-
standing about the functioning of the human voice production mechanism.
However, the GIF methods have also been used, especially in the past
ten years, in a wide range of applications such as speech synthesis [Raitio
et al., 2008], speaker recognition [Plumpe et al., 1999], classification of vo-
cal emotions [Cummings and Clements, 1995, Airas and Alku, 2006], voice
conversion [Childers, 1995], and analysis of occupational voices [Vilkman,
2004, Lehto et al., 2008].

The basic principle of GIF is straightforward and based on Fant’s source-
filter theory of speech production [Fant, 1970]. According to this funda-
mental theory, the production of (voiced) speech can be considered a linear
system as S(z) = G(z)V (z)L(z), where S(z) is the (known) speech signal,
G(z) is the (unknown) glottal flow, and V (z) and L(z) correspond to the

15



16 CHAPTER 4. GLOTTAL INVERSE FILTERING

transfer functions of the vocal tract and lip radiation effect, respectively. If
the vocal tract and the lip radiation effects can be estimated from speech,
the desired output, the excitation signal of speech, can be computed by can-
celling the effects of the tract and lip radiation by filtering the speech sound
through the corresponding inverse models: G(z) = S(z)V −1(z)L−1(z). The
lip radiation effect can be estimated with reasonable accuracy as a simple
first order differentiator for low frequencies [Flanagan, 1972]. Therefore,
the essential problem in GIF is the estimation of the vocal tract transfer
function V (z).

Since the introduction of the idea of inverse filtering (IF) by Miller
[1959], many different IF methods have been developed. The methods
developed are greatly different because, for example, some of them need
user adjustments in defining the settings of the vocal tract resonances [e.g.
Price, 1989, Sundberg et al., 2005] while others are completely automatic
[e.g. Veeneman and BeMent, 1985]. From the methodological point of view,
the techniques developed can be categorised based on how the effect of the
glottal source is taken into account in the estimation of the vocal tract in the
underlying IF method. From this perspective, there are, firstly, methods
[e.g. Alku, 1992] that are based on the gross estimation of the glottal con-
tribution during both the closed and open phase of the glottal pulse using
all-pole modelling. Secondly, the use of a joint optimisation of the glottal
flow and vocal tract is possible based on synthetic, pre-defined models of
the glottal flow [e.g. Fröhlich et al., 2001, Fu and Murphy, 2006]. Thirdly, it
is possible to estimate the glottal flow using closed-phase covariance analy-
sis [Strube, 1974, Wong et al., 1979]. This is based on the assumption that
there is no contribution from the glottal source to the vocal tract during
the closed phase of the vocal fold vibration cycle. After identification of
the closed phase, LP with the covariance criterion is computed to get a
parametric, pth order inverse model for the vocal tract:

V (z) = 1 +
p∑

k=1

akz
−k. (4.1)

Closed-phase (CP) covariance analysis is among the most widely used glot-
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tal inverse filtering techniques. Since the original presentation of the method
by Strube (1974), the CP method has been used as a means to estimate the
glottal flow, for instance, in the analysis of the phonation type [Childers and
Ahn, 1995], prosodic features of connected speech [Strik and Boves, 1992],
vocal emotions [Cummings and Clements, 1995], source-tract interaction
[Childers and Wong, 1994], singing [Arroabarren and Carlosena, 2004], and
speaker identification [Plumpe et al., 1999]. Despite its prevalence the CP
analysis is known to suffer from methodological shortcomings. In particu-
lar, there are several studies indicating that the glottal flow estimates com-
puted with the CP analysis vary greatly depending on the position of the
covariance frame [e.g. Larar et al., 1985, Veeneman and BeMent, 1985, Yeg-
nanarayana and Veldhuis, 1998, Riegelsberger and Krishnamurthy, 1993].
Given the fundamental assumption of the method, that is, the computation
of the vocal tract model during an excitation-free time span, this undesir-
able feature of the CP analysis is understandable. The true length of the
glottal closed phase is typically short, which implies that the amount of
data used to define the parametric model of the vocal tract with the covari-
ance analysis is sparse. If the position of this kind of a short data frame
is misaligned, the resulting linear predictive filter typically fails to model
the vocal tract resonances, which might result in severe distortion of the
glottal flow estimates. The misalignment of the covariance frame results
typically in distortion of the glottal pulses by a sharp component, called
“jags” by Wong et al. [1979] (see Fig. 4.1). This distortion is explained by
the occurrence of roots of the linear predictive vocal tract model either on
the positive real axis of the Z-domain or at low frequencies. While these
root positions are correct in terms of the MSE-type optimisation criterion
used in linear predictive analysis, they are difficult to be interpreted by the
Fant’s source-filter theory of vowel production.

In the present thesis (studies VI and VII), the idea of constrained linear
prediction is proposed in order to alleviate problems caused by using con-
ventional LP with short data frames in defining vocal tract models. The
new approach implies imposing a pre-defined value for the gain of the linear
predictive inverse filter at two frequencies: either at ω = 0 or at ω = π. By
denoting the transfer function of a pth order linear predictive inverse filter
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Figure 4.1: Examples of glottal flows estimated by the closed phase covari-
ance analysis from the vowel /a/ produced by a male speaker. Vocal tract
transfer function was estimated with the conventional LP (upper panel)
and with the DC-constrained linear prediction (lower panel). The sharp
edges, the ”jags”, are easily seen at glottal closure instants in the upper
panel.
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by C(z) =
∑p

k=0 ckz
−k, where c0 = 1, the following equations for the filter

gain can be easily written at the two frequencies:

C(ei0) = C(1) =
p∑

k=0

ck = lDC

C(eiπ) = C(−1) =
p∑

k=0

ck(−1)k = lπ.

(4.2)

With these constraints, the optimisation of the linear prediction results in
the following normal equations:

c = p−1Γ
(
ΓTp−1Γ

)−1
b (4.3)

, where the covariance matrix p is computed from the speech signal vector
xn during the closed phase consisting of N samples as p =

∑N−1
n=0 xnxT

n ∈
R(p+1)×(p+1). In Eq. 4.3 above, Γ is a (p + 1)× 2 constraint matrix defined
as

Γ =
[
1 0 . . . 0
1 1 . . . 1

]T

(4.4)

when the constraint is imposed at ω = 0. In the case the gain of the optimal
inverse filter is constrained at ω = π this matrix is defined as

Γ =
[
1 0 0 0 . . . 0
1 −1 1 −1 . . . ±1

]T

. (4.5)

The positive real value defining the gain is given in matrix b, which is
defined as b = [1 lDC]T and b = [1 lπ]T when the constraint is imposed on
ω = 0 or at ω = π, respectively. It is also possible to impose both of the
constraints simultaneously. In this case, the matrices are defined as

Γ =

1 0 0 0 . . . 0
1 1 1 1 . . . 1
1 −1 1 −1 . . . ±1

T

(4.6)



20 CHAPTER 4. GLOTTAL INVERSE FILTERING

and
b = [1 lDC lπ]T . (4.7)

It is shown in this thesis that the proposed idea of imposing constraints
especially at ω = 0 can be used to compute such AR models for the vocal
tract that are less prone to include poles in positions of the Z-domain that
are difficult to interpret from the point of view of the classical source-
filter theory of vowel production (e.g. vocal tract roots are located on the
positive real axis). Hence, the proposed technique can be used to reduce the
vulnerability of the CP analysis to the extraction of the covariance frame
position. Examples of this phenomenon are shown in Figs. 4.1 and 4.2,
which compare results of CP analyses when the vocal tract is determined
with the conventional LP and with the proposed DC-constrained LP. It
can be seen from the obtained glottal flow estimates in Fig. 4.1 that the
false positions of the vocal tract roots determined by the conventional LP
have resulted in extensive distortion of the flow pulses by “jags” that is,
the waveform shows sharp edges especially at the instant of glottal closure.
These artifacts, however, are clearly reduced in the glottal flow estimates
computed by using the DC-constrained LP in modelling of the vocal tract.
The spectra of the corresponding vocal tract models are shown in Fig. 4.2.
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Figure 4.2: All-pole spectra of the vocal tract transfer functions used in the
computation of the glottal flow estimates shown in Fig. 4.1: conventional
LP(thin line) and DC-constrained LP (thick line).



22 CHAPTER 4. GLOTTAL INVERSE FILTERING



Chapter 5

Summary of publications

5.1 Study I

This theoretical contribution presents new proofs to the root loci of two
linear predictive models. Namely, it shows that the roots of symmetric
linear predictive models and eigenfilters are located on the unit circle. As a
side result, new information is provided on the separation of zeros expressed
in angles.

Symmetric linear predictive models are filters that minimise modelling
error under the constraint that the first and last coefficient of the filter are
set to unity. It is well known that such filters always have zeros on the unit
circle and a proof thereof is presented in [Stoica and Nehorai, 1988].

Eigenfilters represent the eigenvectors of the autocorrelation matrix.
They appear when minimising the modelling error under the condition of
unit-norm filters. As the eigenvectors of Toeplitz matrices, their properties
are well researched with respect to matrix algebra [e.g. Grenander and
Szegö, 1958], and the unit circle property of the eigenfilters corresponding
to the minimum and maximum eigenvalue is also well known [Makhoul,
1981].

The proofs presented in this contribution are based on symmetries of
the Toeplitz matrix that represent the autocorrelation of the signal as well

23
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as the fact that the autocorrelation matrix is always positive definite. By
extracting a zero, or a complex conjugate pair of zeros, from the linear
predictive model or the eigenfilter, it is possible to show that these zeros
must remain on the unit circle.

As stated above, autocorrelation matrices are positive definite, but,
as it turns out, autocorrelation matrices are in fact positive definite by
a positive margin [Delsarte et al., 1987]. In other words, this imposes a
stronger condition than the positive definite property. This property is
a result of the symmetries specific to autocorrelation matrices. Namely,
the autocorrelation lag can be stated as a matrix operation using a matrix
known as a shift matrix. The shift matrix is a nil-potent matrix and it is
a property regarding the numerical range of nil-potent matrices [Karaev,
2004] that provides the positive margin to the positive definite property
of autocorrelation matrices. Finally, this positive margin can be directly
linked to the angle between the zeros of both symmetric linear predictive
models and eigenfilters.

The presented proofs are straightforward and simpler than antecedent
proofs. In addition to the simplification of proofs, analysis of zero separa-
tion is a completely new, unanticipated result.

5.2 Study II

This article deals with a new method, stabilised weighted linear prediction
(SWLP), developed for computing robust AR models for spectral modelling
of speech. The starting point of the study is a previously known method,
weighted linear prediction (WLP), which introduces the idea of applying
temporal weighting of the square of the residual signal in LP. The origi-
nal WLP algorithm, proposed by Ma et al. [1993], used short-time energy
(STE) as a weighting function. In its original form, however, WLP does not
guarantee the stability of the all-pole models, thereby hindering the use of
the method in such applications where speech sound must be synthesised
using the all-pole model.

Study II revisits the concept of WLP by introducing a modified com-
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putation of the correlation matrix, which always leads to stable all-pole
models. This new SWLP method is shown to yield all-pole models whose
general performance can be adjusted by tuning the length of the STE win-
dow. The study compares the performance of SWLP, minimum variance
distortionless response (MVDR), and conventional LP in spectral modelling
of speech corrupted by additive noise. The comparisons are performed by
computing, for each method, the logarithmic spectral differences between
the all-pole spectra extracted from clean and noisy speech, with different
segmental signal-to-noise ratio (SNR) levels.

According to the evaluation results, the proposed SWLP algorithm is
the most robust method against zero-mean Gaussian noise and the robust-
ness is largest for the variant of SWLP utilising a short STE window length.
These findings are corroborated by a small listening test. Finally, SWLP
is compared to other short-time spectral estimation methods (FFT, LP,
MVDR) in isolated word recognition experiments using MFCC features.
Recognition accuracy obtained by SWLP, in comparison to other short-
time spectral estimation methods, improves already at moderate segmental
SNR levels for sounds corrupted by zero-mean Gaussian noise. For realistic
factory noise having low pass characteristics, the SWLP method improves
the recognition results at segmental SNR levels below 0 dB.

5.3 Study III

Line spectrum pair (LSP) decomposition is a method developed for ro-
bust quantisation of linear predictive models. It was introduced by Itakura
[1975] and its beneficial properties for quantisation were demonstrated by
Soong and Juang [1984]. While its usefulness as a practical tool was greatly
appreciated in speech coding [Kleijn and Paliwal, 1995], the full extent of
the mathematical structure remained for long forgotten in more or less ob-
scure publications. Study III collects the known results under a common
notation and methodology, as well as presents some extensions to these
results.

The three most fundamental properties of the zeros of the LSP polyno-



26 CHAPTER 5. SUMMARY OF PUBLICATIONS

mials are that 1) the zeros are on the unit circle, 2) the zeros are distinct,
and 3) the zeros corresponding to the symmetric and antisymmetric polyno-
mials are interlaced. In this contribution, a more general set of interlacing
properties, relating consecutive order polynomials, is presented and proved.

The LSP polynomials also appear as a basis of the Levinson recur-
sion, which is most often used for the solution of the coefficients of the
linear predictive model from the normal equations [Hayes, 1996]. Study III
demonstrates the commonalities of LSP and Levinson recursion, as well as
extensions to the latter, the split Levinson [Delsarte and Genin, 1986] and
Krishna’s algorithm [Krishna, 1988].

A surprising connection between LSP and constrained linear predictive
models exists and was first presented by Kleijn et al. [2003] and Bäckström
et al. [2004]. It has been shown that the LSP polynomials correspond to
filters estimated from certain low-pass and high-pass filtered signals. The
current contribution collects prior results regarding the stability of con-
strained models and their relation to LSP polynomials, as well as presents
corresponding interlacing properties of the constrained models.

Study III presents for the first time both the properties of LSP polyno-
mials and the proofs thereof in a complete and rigorous manner. This work
is a review paper in nature, but presents also new interlacing properties as
natural extensions to the given proofs.

5.4 Study IV

The line spectrum pair (LSP) decomposition, ubiquitous in speech coding,
has three celebrated properties, namely, its zeros are on the unit circle,
distinct and interlaced. Study V presents a stronger condition than the
properties of distinct and interlacing zeros, namely, that the zeros of the
LSP polynomials, the line spectral frequencies (LSFs) are separated by a
positive margin when estimated from the autocorrelation matrix of a finite
signal.

LSP is used in speech coding since it is robust to quantisation errors and
the stability of the prediction model can be readily guaranteed. When using
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LSP in quantisation, the linear predictive model is uniquely represented
by the angles of the LSP polynomial zeros. Solution of the LSFs is not
possible by analytical methods and thus numerical search methods have
to be employed. However, LSFs arbitrarily close to each other represent
problems to the numerical search methods.

The current paper provides a lower limit to the distance between LSFs
in terms of the maximal root radius of the linear predictive model. In other
words, the positive margin between the roots and the unit circle provides a
positive margin between LSFs. The proof is based on evaluating the group
delay of the LSP polynomials, whereby a relation between the maximal root
radius and maximal group delay is obtained. The final result is obtained
by applying the mean value theorem of differentials.

The presented results are useful in designing new speech coding meth-
ods, whereby knowledge of the location and distribution of LSFs can assist
in obtaining computationally effective algorithms. Alternatively, by mod-
ifying the LSFs, it is possible to constrain the root radius of the linear
predictive model, thus smoothing its spectral envelope when desired.

5.5 Study V

White-noise correction is a method used in speech coding applications em-
ploying linear predictive modelling in order to ensure stability of the model
in the presence of numerical round-off errors. Study V provides a mathe-
matical analysis of the method and presents a relation between the location
of the zeros of the linear predictive filter and level of white-noise correction.

While linear predictive modelling generally guarantees stable models, in
practical applications the inevitable numerical round-off errors jeopardise
this property. In effect, round-off errors might make the autocorrelation
matrix ill-conditioned or indeed compromise its positive definitive prop-
erty. White-noise correction is equivalent to a regularisation method that
increases all the eigenvalues of the autocorrelation matrix by a constant reg-
ularisation coefficient, thus making the matrix positive definite by a positive
margin. In terms of signal processing, white noise correction corresponds
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to adding uncorrelated white noise to the input signal.
The current work provides a relation between the regularisation coef-

ficient and the stability radius of the linear predictive model. Specifically,
the larger the regularisation coefficient, that much larger is the margin be-
tween the unit circle and the zeros of the linear predictive filter. The proof
is based on the fact that the autocorrelation values at different lags can be
represented in terms of a shift matrix and a vector consisting of the original
signal. The shift matrix is a nil-potent matrix and the numerical range of
such matrices depends on the power of nil-potency of the shift matrix [Del-
sarte and Genin, 1986]. This property of nil-potent matrices is the basis
of a proof of the convergence rate for autocorrelation coefficients depend-
ing on the lag. Using this result and by extracting a zero from the linear
predictive model, a formula for the stability radius of the linear predictive
model under white-noise correction can be readily derived.

Study IV presents properties of white noise correction, a method widely
used in speech coding, whose theoretical properties had not previously been
rigorously studied. The level of white noise correction (corresponding to
the level of regularisation and the level of added white noise) is shown to
correspond to the margin inside the unit circle within which the model
zeros must remain. As a notable side result, the current work also presents
a formula for the convergence rate of the autocorrelation of a signal.

5.6 Study VI

This study deals with the estimation of the glottal volume velocity wave-
forms with an inverse filtering approach, the closed-phase (CP) covariance
analysis. CP analysis is one of the most widely used glottal inverse filter-
ing methods, and its original form, proposed by studies of Strube [1974]
and Wong et al. [1979], uses conventional LP with the covariance crite-
rion in the modelling of the vocal tract. The data frame of the covariance
analysis is located so as to cover those samples during which there is no
excitation from the source into the tract, that is the closed phase of the
glottal cycle. Since the length of the closed phase is typically short, the
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resulting all-pole model is highly sensitive to the position of the extracted
frame. Even a minor change of the frame position might greatly affect the
Z-domain locations of the roots of the all-pole model given by LP. This un-
desirable feature of the conventional CP analysis typically results in vocal
tract models which have roots, both real and complex, at low frequencies
or roots that are located outside the unit circle. These kinds of false root
locations, in turn, result in distortion of the glottal flow estimates which
is typically seen as unnatural peaks at the instant of glottal closure, the
so-called “jags”, or as increased formant ripple during the closed phase.

The study proposes an improved version of the CP analysis based on
a combination of two algorithmic issues. Firstly, and most importantly, a
constraint is imposed on the DC gain of the inverse filter prior to the opti-
misation of the coefficients. With this constraint, linear predictive analysis
is more prone to give vocal tract models that can be justified from the
point of view of the source-filter theory of vowel production, that is they
show complex conjugate roots in the vicinity of formant regions rather than
unrealistic resonances at low frequencies. The study shows how this idea
of imposing a constraint on the DC gain of a linear predictive inverse filter
can be mathematically presented and optimised. Secondly, the new CP
method utilises an inverse filter that is minimum phase, a property that is
not typically used in glottal inverse filtering. The method is evaluated using
synthetic vowels produced by physical modelling, and natural speech. The
results show that the algorithm improves the performance of the CP-type
inverse filtering and its robustness with respect to the covariance frame
position.

5.7 Study VII

This study is a sequel to study VI and was published in a special issue in
honour of Swedish speech scientist Dr. Jan Gauffin. The idea of imposing
constraints on linear prediction is revisited by formulating the problem for
two frequencies: angular frequencies ω = 0 (that is DC) and ω = π (that
is half the sampling frequency). With these constraints, linear predictive
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analysis is more prone to give vocal tract models in the CP analysis whose
roots are located in the formant region rather than in unrealistic positions
at low frequencies. Instead of using isolated vowels produced using sus-
tained phonation as in study VI, this investigation uses more challenging
utterances recorded from continuous speech to test the performance of CP
analysis based on DC-constrained LP. The results show that the use of
DC-constrained LP gives all-pole models of the vocal tract that are less
vulnerable to errors that are made in the detection of the closed phase
location.
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Conclusions

This thesis studies LP, one of the most prevalent approaches to parametric
spectral modelling of speech, from a mathematical perspective by present-
ing novel modifications to the well-known classical LP analysis. The topic
involves three approaches into the research problem: (1) spectral models
utilizing the LSP decomposition of the LP model, (2) spectral modelling
and feature extraction of speech based on weighted LP, and (3) constrained
LP in vocal tract modelling of glottal inverse filtering. The main results
obtained in these three areas are summarised as follows.

1. Line Spectrum Pair (LSP) decomposition is widely used in speech
coding for the quantisation of the LP parameters representing the
spectral envelope of a signal. In terms of quantisation, LSP has a
number of beneficial properties such as robustness to quantisation
noise and guaranteed model stability. However, although widely used,
there were largely unresearched areas in the theory of LSP. The cur-
rent work represents an effort in filling in the blanks. Previous results
are collected from scattered sources into a review paper; interlacing
properties are described in their full extent, the connection to Levin-
son recursion is explained, and the filtering interpretation of LSP is
demonstrated. Two new results are also presented. Firstly, a rela-
tionship between the root radius of the linear predictive model and

31
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the separation of line spectral frequencies (LSFs) is demonstrated.
Secondly, the effect of white-noise correction is studied in relation to
both the linear predictive model as well as the LSFs. These results
demonstrate the rich structure of the LSP decomposition and pro-
vide a theoretical basis for the development of future speech coding
methods.

2. The idea of using temporal weighting of the squared residual in opti-
mising linear predictive models was proposed in the early 1990’s, but
during the past 15 years this idea seems to have been ignored by the
speech research community. However, as shown in this thesis, this po-
tent idea can be used to improve the noise robustness of LP analysis
and is thus well-suited for applications where noise-corrupted speech
must be modelled. This study revives the previously proposed idea of
weighted LP and, importantly, proposes a novel variant, SWLP, which
is guaranteed to result in stable all-pole synthesis filters. Unlike con-
ventional LP, the behaviour of SWLP can be controlled by selecting
the length of the short-time energy window used in the computation
of the weighting function. Hence, a new all-pole modelling method
has been developed in this thesis. In comparison to conventional LP,
this method features improved robustness in the presence of additive
noise. At the same time, it shares the important practical benefit of
conventional autocorrelation LP, that is the method can be used in
all linear predictive applications that use LP for synthesis and thus
call for stability of the resulting all-pole filter.

3. The closed-phase (CP) analysis is a widely-used glottal inverse filter-
ing algorithm that uses linear predictive analysis with the covariance
criterion in order to estimate the vocal tract transfer function. It
has been reported in various previous studies that the CP analysis is
highly vulnerable to the correct positioning of the covariance frame.
In order to alleviate this problem, this thesis proposes the idea of con-
strained linear prediction; the linear predictive filter is optimised by
imposing certain a priori values to the filter gain at two frequencies
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(DC and π). With this idea, the root locations of the linear predictive
vocal tract model are less prone to occur in such positions that are
unrealistic from the point of view of the classical source-filter theory
of voice production. The glottal inverse filtering studies conducted in
this thesis show that the use of constrained LP makes CP analysis
less vulnerable to errors that are made in the detection of the closed
phase location.
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Abstract

This paper gives simple proofs of the root locations of two linear predictive methods: the symmetric linear prediction

model and the eigenfilter model corresponding to the minimal or maximal simple eigenvalues of an autocorrelation matrix.

The roots of both symmetric models are proved to lie on the unit circle. Differently from previous proofs, the approach

used in the present study also shows, based on the properties of the autocorrelation sequence, that the root angles of the

symmetric linear prediction model are limited to occur within a certain interval. Moreover, eigenfilters corresponding to

the minimum or maximum eigenvalue of an autocorrelation matrix that have multiplicity greater than unity are also

studied. It turns out that it is possible to characterise the whole space spanned by the eigenvectors corresponding to the

multiple eigenvalues by a single symmetric/antisymmetric eigenvector of the principal diagonal sub-block of the

autocorrelation matrix having all the roots on the unit circle.

r 2008 Elsevier B.V. All rights reserved.

Keywords: Symmetric linear prediction; Eigenfilter; Toeplitz matrix

1. Introduction

The spectral envelope of speech signals originates
from two major physiological parts of the human
voice production mechanism, the glottal excitation
and the vocal tract. The former is the source behind
the over-all spectral envelope of speech, and it is
characterised for voiced sounds as a low-pass
process. The latter is the cause of the local

resonances of the spectral envelope of speech
sounds, the formants. It is well known that linear
prediction (LP) constitutes an effective means
to estimate the spectral envelope of speech signals
by representing this information by a small number
of parameters in the form of pth order all-pole
filter [1]. Therefore, LP has become the most
widely used spectral method to model speech and
it has an established role in several speech technol-
ogy applications, especially in low-bit rate voice
coding [2]. Stability criteria of LP have been studied
widely [1,3] and it is well known that the auto-
correlation criterion guarantees the minimum-phase
property of the LP inverse filter, a feature that is a
pre-requisite for most speech technology applica-
tions of LP.
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While the conventional LP analysis computed
with the autocorrelation criterion always gives a
minimum-phase inverse filter, there also exist
constrained linear predictive models in which the
impulse response of the inverse filter is symmetric.
Two such variants of LP are represented by
symmetric LP [4,5] and the eigenfilter model
corresponding to the minimal and maximal simple
eigenvalue of the autocorrelation matrix [5,6]. While
symmetric models have been used in such applica-
tions as in the estimation of sinusoidals [5,7] their
use in speech technology has remained limited. The
rationale behind this is obvious: the over-all
structure of speech sounds calls for using such
filters that are both stable and capable of mimicing
the spectral envelope of speech, which is typically of
a low-pass nature and comprises local resonances of
finite bandwidth. Due to known z-domain proper-
ties of symmetric impulse responses [8] this kind of
spectral behaviour cannot be implemented with a
symmetric LP model. Therefore, the use of sym-
metric linear predictive models are not feasible in
spectral modelling of speech if the underlying
spectrum is to be modelled in a similar manner as
in the conventional LP, that is by a single all-pole
filter computed directly from the speech signal.
Contrary to this prevailing understanding, sym-
metric linear predictive methods can be successfully
used also in spectral modelling of speech if they are
implemented as a parallel structure, as indicated by
a recent study [9]. This study is based on a previous
investigation by Stoica and Nehorai [5], who
showed that conventional autocorrelation LP can
be interpreted with the help of two symmetric linear
predictive polynomials. Unfortunately, the impor-
tant relationship between the conventional and the
symmetric LP presented by Stoica and Nehorai has
remained largely unnoticed in speech science.

The present paper addresses mathematical prop-
erties of two symmetric linear predictive models
optimised with the autocorrelation criterion, which,
in principle, can be used in the implementation of
stable all-pole spectral models of speech based on
the similar parallel structure as used by Stoica and
Nehorai [5] and Alku and Bäckström [9]. More
specifically, a new proof is given to show that the
roots of the symmetric LP are located on the unit
circle. In contrast to the previous proofs [4,5,10], the
root angles of the symmetric LP are shown here to
be limited to occur within a certain interval. It will
also be proved that the roots of the eigenfilter
corresponding to the maximal or minimal simple

eigenvalue of the symmetric positive definite auto-
correlation matrix lie on the unit circle. This
property has been proved without considering the
case of multiple eigenvalues [6,11–13]. Here, we give
a detailed treatment to the case where the eigenfilter
corresponds to the maximal or minimal multiple

eigenvalue of the symmetric positive definite auto-
correlation matrix.

2. Results

Consider the root locations of a monic symmetric
LP inverse filter

AðzÞ ¼ 1þ a1z
�1 þ � � � þ ap=2�1z

�p=2þ1 þ ap=2z
�p=2

þ ap=2�1z
�p=2�1 þ � � � þ a1z

�pþ1 þ z�p. (1)

In order to make the notation simple, only even-
order polynomials are considered here. The case of
odd-order polynomials can be treated similarly.

The coefficient vector a ¼ ½1 a1 � � � ap=2 � � �

a1 1�T of the inverse filter of symmetric LP can be
solved from the equation [5]:

Rpþ1a ¼ g½1 0 � � � 0 1�T, (2)

where Rpþ1 ¼ toepfr0; . . . ; rpg 2 Rðpþ1Þ�ðpþ1Þ is the
autocorrelation matrix of signal xn and rk ¼PN�k�1

i¼0 xixiþk ¼ xTSkx. Here, N is the length of
the signal vector x ¼ ½x0 � � � xN�1�

T and Sij ¼

dj�iþ1 is the N �N down-shift matrix, while g is
the filter gain factor.

Theorem 1. The zeros of the pth order inverse filter

AðzÞ of a symmetric LP model lie on the unit circle.

Proof. First, factor out a general factor of the
symmetric polynomial: AðzÞ ¼ ð1þ az�1 þ z�2ÞBðzÞ.
Then, the coefficient vector a can be written in
factored form as a ¼ B ½1 a 1�T, where B 2 Rðpþ1Þ�3

is the convolution matrix B ¼ ½b Sb S2b�. Here
b ¼ ½b0 � � � bp=2�1 � � � b0 0 0�T, where bi are the
coefficients of the symmetric polynomial BðzÞ and
Sij ¼ dj�iþ1 is the pþ 1� pþ 1 down-shift matrix.
Multiplying Eq. (2) from the left by BT yields

BTRpþ1B½1 a 1�T ¼ g½b0 0 b0�
T. (3)

Then, BTRpþ1B ¼ toepfr̂0; r̂1; r̂2g is the autocorrela-
tion matrix of the convolved signal xn � bn.
Furthermore, it is positive definite and due to the
Sylvester criterion2 r̂20 � r̂2140 so jr̂0j4jr̂1j. From
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Eq. (3), 2r̂1 þ ar̂0 ¼ 0, which implies

jaj ¼ 2
jr̂1j

jr̂0j
o2 (4)

then the general factor 1þ az�1 þ z�2 of the
symmetric polynomial AðzÞ has its roots on the unit
circle concluding the proof. &

Corollary 1. The symmetric LP model of order p and

analysis frame length N can have roots e�iok only

inside the interval

ok 2 p
1

N þ p� 1
; 1�

1

N þ p� 1

� �
. (5)

Proof. Since the symmetric positive definite Toe-
plitz matrix BTRpþ1B is the autocorrelation matrix
of the convolved signal cn ¼ xn � bn, the autocorre-
lation sequence can be written as r̂k ¼ cTSkc. Hence,
the autocorrelation sequence belongs to the numer-
ical range of the nilpotent down-shift matrix Sk 2

RðNþp�2Þ�ðNþp�2Þ with power of nilpotency
dðN þ p� 1Þ=ke, where d�e indicates rounding up-
ward to the closest integer. The numerical range of
matrix Sk is a circle with its centre at the origin and
radius not exceeding cosðp=ðN þ p� 1ÞÞ [14]. From
[15] the following inequality is obtained:

jr̂1jpr̂0 cos
p

N þ p� 1

� �
. (6)

Eq. (4) gives

a 2 �2 cos
p

N þ p� 1

� �
; 2 cos

p
N þ p� 1

� �� �
.

Finally, polynomial 1þ az�1 þ z�2 has its roots on the
unit circle at e�io0 , where o0 ¼ arccosð�a=2Þ. &

Note that Corollary 2 implies that the estimated
model cannot estimate sinusoidals at certain fre-
quencies. However, since the input signal can have
components at all frequencies, the estimate must be
biased. The same conclusion was drawn in [5].

Next, consider the root locations of the eigen-
filters of autocorrelation matrix Rpþ1 corresponding
to the simple minimum or maximum eigenvalue

V ðzÞ ¼ v0 þ v1z�1 þ � � � þ vp=2�1z
�p=2þ1 þ vp=2z

�p=2

� ðvp=2�1z
�p=2�1 þ � � � þ v1z�pþ1 þ v0z

�pÞ.

(7)

The coefficients vi can be solved from the equation

Rpþ1v ¼ l0v, (8)

where Rpþ1 ¼ toepfr0; . . . ; rpg 2 Rðpþ1Þ�ðpþ1Þ, l0 is
the minimum or maximum eigenvalue, and v ¼

½v0 � � � vp=2 � � � � v0�
T is the corresponding eigen-

vector.

Theorem 2. The zeros of the pth order eigenfilter

V ðzÞ corresponding to the minimum or maximum

simple eigenvalue of a symmetric positive definite

Toeplitz matrix Rpþ1 lie on the unit circle.

Proof. Start by factoring the polynomial as
V ðzÞ ¼ ð1� az�1ÞUðzÞ, where aa0. The coefficient
vector v can be written in factored form as
v ¼ U½1 � a�T, where U 2 Cðpþ1Þ�2 is the convolu-
tion matrix U ¼ ½u Su�, u ¼ ½u0 � � � up�1 0�T, and
S is as in Theorem 1. Multiplying Eq. (8) from the
left by UT yields

UTRpþ1U½1 � a�T ¼ l0UTU½1 � a�T. (9)

The symmetric positive (or negative) semidefinite
matrix D can then be formed:

D ¼ UTðRpþ1 � l0IÞU ¼
z W

W z

" #
, (10)

whereby Eq. (9) can be written as

D½1 � a�T ¼ 0. (11)

The numerical range of a symmetric matrix Rpþ1 �

l0I is a closed interval on the real axis whose
endpoints are formed by the extreme eigenvalues of
Rpþ1 � l0I. Therefore, and since l0 is the smallest or
greatest simple eigenvalue of the matrix Rpþ1, from
z ¼ uTðRpþ1 � l0IÞu ¼ 0 it would follow that
ðRpþ1 � l0IÞu ¼ 0, whereby u ¼ v. This is a contra-
diction since aa0. Hence za0. Moreover, because
detðDÞ ¼ 0 then Wa0 and Da0.

Finally, from Eq. (11)

z� aW ¼ 0;

Wþ az ¼ 0:

(
(12)

Then Wþ a2W ¼ 0) jaj ¼ 1. &

Next, consider the case of eigenvectors corre-
sponding to the minimum/maximum eigenvalue of a
symmetric positive definite Toeplitz matrix Rpþ1 of
multiplicity m greater than 1.

Corollary 2. Let the multiplicity m of the minimum

or maximum eigenvalue l0 of a symmetric positive

definite Toeplitz matrix Rpþ1 be m 2 f1; . . . ; pþ 1g.
Then there exists an eigenfilter F ðzÞ of order p�mþ

1 that has all its roots on the unit circle. Moreover,
the coefficient vector f of the polynomial F ðzÞ
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characterises all eigenvectors corresponding to the

eigenvalue l0.

Proof. Let the multiplicity of the maximum/mini-
mum eigenvalue l0 be m 2 f1; . . . ; pþ 1g. Then the
rank of the positive/negative semidefinite matrix
Rpþ1 � l0I is equal to p�mþ 1. From [16] it
follows that the matrix Rp�mþ2 � l0I, defined as
the principal diagonal sub-block of matrix Rpþ1�

l0I, is of rank p�mþ 1. Then there exists
a symmetric/antisymmetric vector f 2 Rp�mþ2 such
that

ðRp�mþ2 � l0IÞf ¼ 0, (13)

where l0 is the minimum/maximum simple eigenva-
lue of the positive definite symmetric Toeplitz
matrix Rp�mþ2 and f is the corresponding eigenvec-
tor. From Theorem 2 it follows that the roots of the
eigenfilter F ðzÞ of order p�mþ 1 corresponding to
the eigenvector f are on the unit circle.

Define the linearly independent zero padded
vectors f i as

f i ¼ ½0 � � � 0|fflfflfflfflffl{zfflfflfflfflffl}
i zeros

fT 0 � � � 0|fflfflfflffl{zfflfflfflffl}
m�i�1 zeros

�T,

8i ¼ 0; . . . ;m� 1. (14)

Due to the symmetric Toeplitz structure,

fTi ðRpþ1 � l0IÞf i ¼ fTðRp�mþ2 � l0IÞf ¼ 0,

8i ¼ 0; . . . ;m� 1. (15)

Since ðRpþ1 � l0IÞ is positive/negative semidefinite,
it must be that ðRpþ1 � l0IÞf i ¼ 0; 8i ¼ 0; . . . ;
m� 1. Then

Rpþ1f i ¼ l0f i; 8i ¼ 0; . . . ;m� 1: & (16)

3. Conclusion

Congruent proofs that the roots of the symmetric
LP model and the eigenfilter model corresponding
to the minimal or maximal simple eigenvalue of
positive definite symmetric Toeplitz matrix lie on
the unit circle have been presented. Moreover, a
new limit is derived for the root angles of the
symmetric LP model. In the case of multiple
eigenvalues the theory characterising all the eigen-
vectors corresponding to that eigenvalue has been

presented. Furthermore, in this case the eigenfilter
obtained has all its roots on the unit circle.
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Abstract

Weighted linear prediction (WLP) is a method to compute all-pole models of speech by applying temporal weighting of the square of
the residual signal. By using short-time energy (STE) as a weighting function, this algorithm was originally proposed as an improved
linear predictive (LP) method based on emphasising those samples that fit the underlying speech production model well. The original
formulation of WLP, however, did not guarantee stability of all-pole models. Therefore, the current work revisits the concept of
WLP by introducing a modified short-time energy function leading always to stable all-pole models. This new method, stabilised
weighted linear prediction (SWLP), is shown to yield all-pole models whose general performance can be adjusted by properly choosing
the length of the STE window, a parameter denoted by M.

The study compares the performances of SWLP, minimum variance distortionless response (MVDR), and conventional LP in spectral
modelling of speech corrupted by additive noise. The comparisons were performed by computing, for each method, the logarithmic spec-
tral differences between the all-pole spectra extracted from clean and noisy speech in different segmental signal-to-noise ratio (SNR) cat-
egories. The results showed that the proposed SWLP algorithm was the most robust method against zero-mean Gaussian noise and the
robustness was largest for SWLP with a small M-value. These findings were corroborated by a small listening test in which the majority
of the listeners assessed the quality of impulse-train-excited SWLP filters, extracted from noisy speech, to be perceptually closer to ori-
ginal clean speech than the corresponding all-pole responses computed by MVDR. Finally, SWLP was compared to other short-time
spectral estimation methods (FFT, LP, MVDR) in isolated word recognition experiments. Recognition accuracy obtained by SWLP,
in comparison to other short-time spectral estimation methods, improved already at moderate segmental SNR values for sounds cor-
rupted by zero-mean Gaussian noise. For realistic factory noise of low pass characteristics, the SWLP method improved the recognition
results at segmental SNR levels below 0 dB.
� 2009 Published by Elsevier B.V.

Keywords: Linear prediction; All-pole modelling; Spectral estimation

1. Introduction

Linear prediction (LP) is the most widely used all-pole
modelling method of speech (Makhoul, 1975). The preva-
lence of LP stems from its ability to estimate the spectral
envelope of a voice signal and to represent this information

by a small number of parameters. By modelling the spectral
envelope, LP captures the most essential acoustical cues of
speech originating from two major parts of the human
voice production mechanism, the glottal flow (which is
the physiological source behind the over-all spectral enve-
lope structure) and the vocal tract (which is the cause of
the local resonances of the spectral envelope, the for-
mants). In addition to its ability to express the spectral
envelope of speech with a compressed set of parameters,
LP is known to guarantee the stability of the all-pole mod-
els, provided that the autocorrelation criterion is used.
Moreover, implementation of the conventional LP can be
done with a small computational complexity. LP analysis,

0167-6393/$ - see front matter � 2009 Published by Elsevier B.V.
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however, also suffers from various drawbacks, such as the
biasing of the formant estimates by their neighbouring har-
monics (El-Jaroudi and Makhoul, 1991). This is caused by
aliasing that occurs in the autocorrelation domain and the
phenomenon is, in general, most severe for high-pitch
voiced speech. Additionally, it is well-known that the per-
formance of LP deteriorates in the presence of noise (Sam-
bur and Jayant, 1976). Therefore, several linear predictive
methods with an improved robustness against noise have
been developed (Lim et al., 1978; Zhao et al., 1997; Shi-
mamura, 2004). However, it is worth noticing that most
of these robust modifications of LP are based on the itera-
tive update of the prediction parameters. Weighted linear
prediction (WLP) uses time-domain weighting of the
square of the prediction error signal (Ma et al., 1993). By
emphasising those data segments that have a high signal-
to-noise ratio (SNR), WLP has been recently shown to
yield improved spectral envelopes of noisy speech in com-
parison to the conventional LP analysis (Magi et al.,
2006). In contrast to many other robust methods of LP,
the filter parameters of WLP can, importantly, be com-
puted without any iterative update.

When the order of LP increases, the spectral envelopes
given by LP might over-estimate the underlying speech
spectrum (Murthi et al., 2000). This occurs especially in
the analysis of voiced speech of sparse harmonic structure,
in which case LP models not only the spectral envelope but
also the multiples of the fundamental. The minimum vari-
ance distortionless response (MVDR) method tries to cope
with this problem by providing a smooth spectral envelope
even when the model order is increased. MVDR is popular
in array processing but it has recently also attracted
increasing interest in speech processing where it has been
used, for example, in the feature extraction of speech recog-
nition (Wölfel et al., 2003; Dharanipragada et al., 2007;
Wölfel et al., 2005; Yapanel and Hansen, 2003).

This study addresses the computation of spectral enve-
lopes of speech from noisy signals by comparing three
all-pole modelling methods: the conventional LP, MVDR,
and WLP. Because the original version of WLP presented
in (Ma et al., 1993) does not guarantee stability of the
all-pole model, the idea of WLP is revisited by developing
weight functions which always result in a stable all-pole
model. It will be shown that with a proper choice of param-
eters the proposed stabilised WLP method yields spectral
envelopes similar to those given by low order MVDR
model but with improved robustness against additive back-
ground noise.

2. Weighted linear prediction

The discussion is begun by briefly presenting the optimi-
sation of the filter parameters in WLP. Both in conven-
tional LP and in WLP, sample xn is estimated by a linear
combination of the p past samples. This estimate can be
formulated as

x̂n ¼ �
Xp

i¼1

aixn�i; ð1Þ

where coefficients ai 2 R 8i ¼ 1; . . . ; p. The prediction error
enðaÞ, the residual, is defined as

enðaÞ ¼ xn � x̂n ¼ xn þ
Xp

i¼1

aixn�i ¼ aT xn; ð2Þ

where a ¼ ½a0 a1 � � � ap�T with a0 ¼ 1 and xn ¼ ½xn � � � xn�p�T .
The goal is to find the coefficient vector a, of a pth order
FIR predictor, which minimises the cost function EðaÞ, also
known as the prediction error energy. This problem can be
formulated as the constrained minimisation problem

minimise EðaÞ;
subject to aT u ¼ 1;

ð3Þ

where the unit vector u is defined as u ¼ ½1 0 � � � 0�T . This
minimisation depends on the nature of the cost function
EðaÞ. The cost function in the WLP method is defined as

EðaÞ ¼
XNþp

n¼1

ðenðaÞÞ2wn: ð4Þ

In matrix notation, Eq. (4) can be written as

EðaÞ ¼ aT
XNþp

n¼1

wnxnxT
n

 !
a ¼ aT Ra; ð5Þ

where R ¼
PNþp

n¼1 wnxnxT
n . Here the signal xn is assumed to

be zero outside the interval [1,N], R corresponds to the
autocorrelation matrix if and only if 8n ¼ 1; . . . ;
N þ p;wn ¼ 1. According to Eq. (4), the formulation allows
us to temporally emphasise the square of the residual sig-
nal. It should be noticed that in difference to conventional
LP the autocorrelation matrix R is weighted.

Matrix R, defined in Eq. (5), is symmetric but does not
possess the Toeplitz structure. However, it is positive defi-
nite, thus making the minimisation problem in Eq. (3) con-
vex. Using the Lagrange multiplier minimisation method
(Bazaraa et al., 1993), it can be shown (Bäckström, 2004)
that a, which solves the minimisation problem in Eq. (3),
satisfies the linear equation

Ra ¼ r2u; ð6Þ
where r2 ¼ aT Ra is the error energy. The corresponding
WLP all-pole filter is obtained as HðzÞ ¼ 1=AðzÞ, where
A(z) is the z-transform of a.

3. Model formulation

The key concept of WLP, introduced in Eq. (4), is the
time-domain weight function wn. By choosing an appropri-
ate waveform for wn, one can either temporally emphasise
or attenuate the square of the residual signal prior to the
optimisation of the filter parameters. In (Ma et al., 1993)
the weight function was chosen based on the short-time
energy (STE)
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wn ¼
XM�1

i¼0

x2
n�i�1; ð7Þ

where M is the length of the STE window. The perfor-
mance of WLP was analysed in the original study by Ma
et al. (1993) by using only clean speech represented by a
small set of both synthetic and natural vowels. In the cur-
rent study, however, the idea of weighting is motivated
from the point of view of computing linear predictive mod-
els of speech that are more robust against noise than the
conventional LP. From this perspective, the use of the
STE window can be justified by two arguments. Firstly,
as illustrated in Fig. 1a, the STE function over-weights
those sections of the speech waveform which consist of
samples of large amplitude. It can be argued that these seg-
ments of speech are less vulnerable to additive, uniformly
distributed noise in comparison to values of smaller ampli-
tude. Hence, by emphasising the contribution of these
strong data values in the computation of all-pole models
one is expected to get spectral models which show better
robustness in noisy conditions. Secondly, there is plenty
of evidence in speech science indicating that formants ex-
tracted during the closed phase of a glottal cycle are more
prominent than those computed during the glottal open
phase due to the absence of sub-glottal coupling (Wong
et al., 1979; Yegnanarayana et al., 1998; Childers and
Wong, 1994; Krishnamurthy et al., 1986). Hence, emphasis
of the contribution of the samples occurring during the
glottal closed phase is likely to yield more robust acoustical
cues for the formants. Especially in the case of wideband
noise, this kind of emphasising should improve modelling

of higher formants in comparison to spectral models such
as the conventional LP, which treat all data samples
equally.

Fig. 1b illustrates how the STE weight function focuses
on the glottal closed phase. In this example, the STE func-
tion was computed from the clean /a/ vowel shown in the
upper panel of Fig. 1. The glottal flow was estimated from
the same clean vowel using the inverse filtering algorithm
presented in ( Alku, 1992). Even though WLP enables
emphasising the contributions of samples occurring during
the closed phase, it is worth noticing that the goal of the
method is not to try to define the vocal tract filter precisely
during the closed phase, as is the case in the so-called
closed phase covariance method of glottal inverse filtering
(Wong et al., 1979; Huiqun et al., 2006).

The stability of the WLP method with the STE weight
function, as proposed in (Ma et al., 1993), however, can
not be guaranteed. Therefore, a formula for a generalised
weight function to be used in WLP is developed here so
that the stability of the resulting all-pole filter is always
guaranteed. The autocorrelation matrix from Eq. (5) can
be expressed as

R ¼ YT Y ; ð8Þ
where Y ¼ ½y0 y1 � � � yp� 2 RðNþpÞ�ðpþ1Þ and y0 ¼

ffiffiffiffiffi
w1
p

x1 � � �
�ffiffiffiffiffiffi

wN
p

xN 0 � � � 0�T . The columns yk of the matrix Y can be
generated via the formula

ykþ1 ¼ Byk; k ¼ 0; 1; . . . ; p � 1; ð9Þ
where

B ¼

0 0 � � � 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2=w1

p
0 0 � � � 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w3=w2

p
0 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wNþp=wNþp�1

p
0

2
66666666664

3
77777777775
:

ð10Þ
The derivation of this stabilised WLP method can be ex-
pressed as follows. The weights are first calculated using
Eq. (7) such that if wi ¼ 0 a small constant is added to
the coefficient ðwi ¼ 10�6Þ and, before forming the matrix
Y from Eq. (8), the elements of the secondary diagonal
of the matrix B are defined (observe this difference in com-
parison to the original study by Ma et al. (1993)) for all
i ¼ 1; . . . ;N þ p � 1 as

Biþ1;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wiþ1=wi

p
; if wi 6 wiþ1;

1; if wi > wiþ1:

(
ð11Þ

Henceforth, the WLP method computed using matrix B,
defined above, is called the stabilised weighted linear predic-

tion (SWLP) model, where the stability of the correspond-
ing all-pole filter is guaranteed due to Eq. (11) (see
Appendix A).

0 0.005 0.01 0.015 0.02 0.025
−1

−0.5

0

0.5

1

1.5

time/s

A
m

pl
itu

de

Clean speech waveform
Corrupted speech waveform
STE weight function

0 0.005 0.01 0.015 0.02 0.025

0

0.5

1

1.5

time/s

A
m

pl
itu

de

Glottal flow
STE weight function

a

b

Fig. 1. Upper panel: time-domain waveforms of clean speech (vowel /a/
produced by a male speaker), additive zero-mean Gaussian white noise
corrupted speech (SNR = 10 dB), and short-time energy (STE) weight
function (M = 8) computed from noisy speech according to Eq. (7). Lower
panel: glottal flow estimated from the clean vowel /a/ together with STE
weight function (M = 8) computed also from the clean speech signal.
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4. Results

The behaviour of SWLP in spectral modelling of speech
is demonstrated in the two examples shown in Figs. 2 and
3. In these figures, the analysed speech sounds (vowels /a/
and /e/ in Figs. 2 and 3, respectively) are shown together
with the STE weight functions in the upper panels. The
lower panels show spectra of parametric all-pole models
of order p = 10 computed with three techniques: conven-
tional LP with the autocorrelation criterion, minimum var-
iance distortionless response, and the proposed SWLP. In
order to demonstrate the effect of the weight function
length, the SWLP analysis was computed using M values
equal to 8 (left panels) and 24 (right panels). The examples

depicted demonstrate two characteristic features of SWLP.
First, the weight function computed by the STE clearly
emphasises those segments of speech where the data values
are of large amplitude while segments of small amplitude
values are given lesser weights. Second, the shape of the
all-pole spectrum computed by SWLP is, in general,
smooth. However, the behaviour of the SWLP spectrum
depends on the length of the STE window: with M = 8,
the SWLP shows a very smooth spectral behaviour remi-
niscent of low order (p = 10) MVDR, but for the larger
M value the sharpness of the resonances in the SWLP spec-
trum increases and its general spectral behaviour
approaches that of LP. The reason behind this is evident
by referring to Eq. (10): the larger the value of M the more
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Fig. 2. Time-domain waveforms of clean speech (vowel /a/ produced by a male speaker) and short-time energy (STE) weight function (upper panels) and
corresponding all-pole spectra of order p = 10 computed by LP, MVDR, and SWLP (lower panels). SWLP analysis was computed by using two different
values for the length of the STE window: M = 8 (left panels) and M = 24 (right panels).
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Fig. 3. Time-domain waveforms of clean speech (vowel /e/ produced by a female speaker) and short-time energy (STE) weight function (upper panels) and
corresponding all-pole spectra of order p = 10 computed by LP, MVDR, and SWLP (lower panels). SWLP analysis was computed by using two different
values for the length of the STE window: M = 8 (left panels) and M = 24 (right panels).
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elements of matrix B are equal to unity. In other words, the
general spectral shape of the SWLP filter can be made sim-
ilar to MVDR by selecting a small value of M and it can be
adjusted to behave in a manner close to LP by using a lar-
ger value of M.

The following result section is divided into three major
parts. First, objective spectral distortion measurements
were computed for LP, MVDR, and SWLP by using the
spectral distortion criterion, SD2. Next, small scale subjec-
tive tests were organised in order to obtain subjective evi-
dence for the performance of low order MVDR and
SWLP. It is well known that the SD2 measure favours
smooth spectra. Therefore, automatic speech recognition
tests were conducted as the third experiment to get evi-
dence on the performance of the different short-time spec-
tral estimation methods in the presence of noise.

The main focus in the experiments of this study was to
measure how the proposed SWLP method works for
speech corrupted by additive noise and, in particular, to
compare the performance of SWLP to that of LP and
MVDR in spectral modelling of noisy speech. All the
experiments reported in this study were conducted using
the sampling frequency of 8 kHz and the bandwidth of
4 kHz. The prediction order in all methods tested was set
to p = 10, thereby fulfilling the known rule between the
bandwidth and the prediction order (Markel and Gray,
1976). In addition, MVDR was also computed using a high
model order (p = 80) which is a typical choice in studies in
which MVDR has been used in automatic speech recogni-
tion (Wölfel et al., 2005; Dharanipragada et al., 2007). Cor-
rupted signals with desired segmental signal to noise ratios
(SNR) were generated by adding noise to clean speech
sounds. Two types of noise were used: white zero mean
Gaussian sequences produced by random number genera-
tor and factory noise recorded in realistic circumstances
(Varga et al., 1992). Segmental SNR was computed as an
average SNR over all 20 ms frames in the speech signal
(Kleijn and Paliwal, 1995).

4.1. Objective spectral distortion measurements

Objective evaluation of the effect of noise on all-pole
modelling was computed by adapting the widely used spec-
tral distortion criterion, SD2 (Rabiner and Juang, 1993;
Gray et al., 1979). With this measure, the difference
between all-pole spectra computed from clean and noisy
speech is computed as follows:

V ðxÞ ¼ log10P 1ðxÞ � log10P 2ðxÞ; ð12Þ

where P1 and P2 denote power spectra of the all-pole filters
computed from clean and noisy speech, respectively

P iðxÞ ¼
r2

i

jAiðejxÞj2
i ¼ 1; 2: ð13Þ

In Eq. (13), the gains ri of the all-pole filters are adjusted so
that the impulse response energies of the filters become

equal. Since power spectra are computed using FFT, the
discrete version of SD2 must be used

SD2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N s

XN s�1

i¼0
jV ð2pfiÞj2

s
; ð14Þ

where N s is the length of the discrete FFT spectra.
The experiments here were begun by running a test to

analyse how much the performance of SWLP is affected
by additive Gaussian noise for different values of M.
Speech data, taken from the TIMIT database (Garofolo,
1993), consisted of 12 American English sentences from
four different dialect regions produced by six female and
six male speakers. The frame length was 25 ms (200 sam-
ples) and no pre-emphasis was used. The total number of
speech frames analysed in this test was 654, comprising
both voiced and unvoiced speech sounds. The difference
in the SWLP spectral models computed from clean and
noisy samples was quantified in five different segmental
SNR categories by using SD2. The experiments were con-
ducted by using six different values (4, 8, 12, 16, 20, 24)
of the STE window length M.

The results obtained from the first experiment are shown
in Fig. 4. The data depicted show that the effect of noise on
SWLP modelling depends greatly on the choice of the STE
window length M: the smaller the value of M the larger the
robustness of SWLP against noise. By referring to the
examples shown in Figs. 2 and 3, this behaviour can be
explained by the effect the value of M has on the shape of
the STE function and, consequently, on the general shapes
of the SWLP spectral models. In the case of a small M
value, temporal fluctuations in the weighting function are
greater than those computed with a larger value of M (see
Figs. 2a and c & 3a and c). Consequently, the weighting
in the case of a small M value emphasises samples of large
amplitude more than the weight function defined with a lar-
ger M value. In the case of zero-mean Gaussian additive
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Fig. 4. Spectral distortion values (SD2) between SWLP envelopes of order
p = 10 computed from clean and noisy speech. The length of the STE
window was varied in six steps from M = 4 to M = 24. Speech was
corrupted by additive zero-mean Gaussian white noise in five segmental
SNR categories. SD2 values were computed as an average over all the
analysed segments consisting of 654 frames from the TIMIT database.
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noise, this implies that the all-pole models are computed by
emphasising speech samples of larger local SNR over those
with small local SNR. Hence, the resulting SWLP model
computed with a small M value is less vulnerable to additive
Gaussian noise. The results shown in Fig. 4 can also be
understood from the point of view of the general shape of
the SWLP filter (see Figs. 2b and d & 3b and d). In the case
of a small M value the all-pole model indicates, also in the
case of clean speech, a smoother spectral behaviour than the
model computed with a larger M value. In other words, the
poles of the SWLP filter computed from speech with large
SNR tend to be closer to the origin of the z-plane when
the STE function is computed with a small M value. It is
understandable that an all-pole filter which has a smooth
spectral envelope is less sensitive to noise than a model with
sharp resonances, which also explains why Fig. 4 shows the
best performance for the lowest value of M.

The second experiment was conducted to compare the
performance of the proposed SWLP method to that of con-
ventional LP and MVDR in spectral modelling of noisy
speech. Since the behaviour of SWLP depends greatly on
the value of the STE window length M, it was decided to
compute the SWLP by using two different values for this
parameter: a large value of M = 24 corresponding to
SWLP which behaves similarly to the conventional LP,
and a small value M = 8, yielding SWLP filters of smooth
spectral shape similar to those computed by low order
(p = 10) MVDR. The greatest M value used in previous
experiments was 24, and hence it was selected to represent
the SWLP with a large M value. The selection of the small
M value was accomplished by running a special experiment
in which the value of M that yielded the largest similarity
between the all-pole spectra given by SWLP and MVDR
(p = 10) was searched for. This was done by running an
experiment where SD2 was computed between the MVDR
and SWLP all-pole envelopes by varying the STE window
length M from 4 to 24. The SD2 values were computed as
an average over the entire (uncorrupted) training data con-
sisting of 650 frames from TIMIT. The result of the exper-
iment showed that the smallest spectral distortion value
between SWLP and MVDR spectra was achieved with
M = 8. Hence, all the further comparisons between SWLP
and low order (p = 10) MVDR were computed by using the
parameter value M = 8.

Performance of LP, MVDR, and SWLP was compared
by measuring, for each method, how much the all-pole
models computed from clean speech differ from those com-
puted from noisy speech. SD2 was used as an objective dis-
tance measure between the all-pole spectra extracted from
clean and noisy signals. Again, noise corruption was done
by adding zero-mean Gaussian noise to the clean utter-
ances with five segmental SNR levels. Data consisted of
12 sentences, produced by 6 females and 6 males, taken
from the TIMIT database. (These utterances were different
from those used in the search of the M value yielding the
largest similarity between SWLP and MVDR spectra).
The total number of speech frames was 650. The SD2 value

for each method in each segmental SNR category was com-
puted as an average over the SD2 values obtained from
individual frames.

The results obtained in comparing the robustness of the
three all-pole modelling techniques are shown in Fig. 5. As
a general trend, all methods show an increase in SD2 when
segmental SNR decreases. This over-all trend implies, nat-
urally, that the spectral difference between the clean all-
pole model and the one computed from noisy speech
increases for all the methods analysed when the amount
of noise is raised. In comparing conventional LP and
MVDR, the results here are in line with previous findings
indicating that LP is sensitive to noise while MVDR shows
a clearly better performance (Magi et al., 2006). The behav-
iour of SWLP, however, shows the best robustness against
additive Gaussian noise. In particular, SWLP with a small
M value is able to tackle the effect of additive Gaussian
noise more effectively than any of the other methods tested.

4.2. Small scale subjective tests

Next, in order to get tentative subjective evidence for the
performance of low order MVDR and SWLP in the mod-
elling of both clean and noisy speech, a small listening test
was organised. In this test, subjects (n = 13) listened to
200 ms sounds synthesised by exciting MVDR and SWLP
filters of order p = 10 by impulse trains. The all-pole filters
were computed with MVDR and SWLP both from clean
and noisy utterances corrupted with additive zero-mean
Gaussian noise with SNR = 10 dB. The utterances con-
sisted of eight Finnish vowels produced by one male and
one female subject. The test involved a perceptual compar-
ison between three sounds (the reference sound, sounds A
and B). The reference was always the original, clean vowel.

10 15 20 25 30

1

2

3

4

5

6

7

8

SNR (dB)

S
D

2 
(d

B
)

LP

MVDR(p=10)

MVDR(p=80)

SWLP(M=24)

SWLP(M=8)

Fig. 5. Spectral distortion values (SD2) between all-pole envelopes
computed from clean and noisy speech with LP (p = 10), MVDR
(p = 10 and p = 80) and SWLP (p = 10 with M = 8 and M = 24), where
p is the model order and M is the length of the STE weight function.
Speech was corrupted by additive zero-mean Gaussian white noise in five
segmental SNR categories. SD2 values were computed as an average over
all the analysed segments consisting of 654 frames from the TIMIT
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Sounds A and B were synthesised utterances produced, in
random order, by impulse train excited MVDR and SWLP
filters. In order to involve no pitch difference between the
three sounds, the impulse train was always extracted from
the reference signal. In addition, the loudness of the three
sounds were normalised by adjusting the intensity levels
of the sounds to be equal. The listener was asked to evalu-
ate which one of the two alternatives (A or B) sounded
more like the reference. In case the listener found that
the quality difference between sound A and the reference
was equal to that of sound B and the reference, she or he
replied with No preference. The listener was allowed to lis-
ten to the three sounds as many times as she or he wished.
The procedure was then repeated for all the vowels includ-
ing both clean and noisy speech.

The results, shown in Table 1, indicated that for clean
male vowels, the listeners preferred the quality of the all-
pole filters computed by SWLP over that given by MVDR:
in 71% of all comparisons, they rated the vowels synthesised
by SWLP to be closer in quality to the original speech, while
only in 17% of the cases the listeners were in favour of
MVDR. However, there were differences between the vow-
els: for /a/, /e/, /o/, /ä/, and /ö/, all the listeners preferred
the sound synthesised by SWLP while for /i/ and /u/ SWLP
was preferred only in approximately 10% of the cases. For
these two vowels, both SWLP and MVDR failed to model
the second formant properly. MVDR, however, modelled
the over-all spectral envelope of the original vowel sound
slightly better which might have explained the higher pref-
erence of MVDR. When listening to the sounds synthesised
from noisy speech, the responses were even more in favour
of SWLP: in 73% of all the cases, the vowels produced by
SWLP filters were preferred, while those synthesised by
MVDR filters were preferred in only 1% of the responses.
For clean female vowels, the listeners preferred SWLP in
46% of the cases while MVDR was assessed better in 19%
of the comparisons. Again, when listening to the sounds
synthesised from noisy speech, the listeners favoured the
sounds synthesised by SWLP: in 45% of the cases, it was
considered to yield quality closer to the original speech,
while MVDR was preferred only in 5% of the cases.

4.3. Automatic speech recognition tests

As the third main part of the experiments, the perfor-
mance of the proposed SWLP method was tested in feature
extraction of a speech recogniser. In the field of automatic

speech recognition (ASR), the mel-frequency cepstral coef-
ficient (MFCC) representation is, by far, the most popular
method of feature extraction. The stages of the MFCC
computation for one speech frame can be outlined as fol-
lows (O’Shaughnessy, 2000): (1) estimation of the short-
time magnitude spectrum; (2) computation of logarithmic
mel-filterbank energies using triangular bandpass filters in
the frequency domain; and (3) discrete cosine transforma-
tion of the logarithmic filtered energies. In the first stage,
simple FFT (periodogram) spectrum estimation is typically
used; however, it is not the best spectrum estimation
method in terms of robustness when the signal is corrupted
by noise. Indeed, it has been argued that both LP and
MVDR spectrum estimation, when substituted as the first
stage of the MFCC computation, improve noise robustness
of the features in certain cases (de Wet et al., 2001; Dhara-
nipragada et al., 2007). This raises the question of whether
SWLP could also offer improvement to the robustness of
ASR systems.

The performance of six different spectrum estimation
methods was evaluated in ASR: FFT, LP (p = 10), MVDR
with p = 10 and p = 80, and SWLP (p = 10) with M = 8
and M = 24. This resulted in six slightly different 12-dimen-
sional MFCC feature vectors, which were tested in isolated
word recognition (IWR). The goal was to focus on the
effect that the short-time spectrum in itself has on robust-
ness. This means that the information given to the recogn-
iser only involved the shape of the short-time spectrum. For
this reason, neither the zeroth MFCC coefficient, which
reflects frame energy, nor the inter-frame D/DD-coefficients
were included in the feature vector. It is well known that
the inclusion of D/DD-coefficients, which characterise the
temporal changes of the spectrum, in the feature vector
generally improves the performance of an ASR system
(O’Shaughnessy, 2000). The D/DD-coefficients are, how-
ever, based on short-time spectral estimation methods.
Hence, it is reasonable to assume that whenever the spec-
trum estimation is distracted by noise, this will also have
a negative effect on the obtained D/DD-coefficients, result-
ing in lower recognition performance.

The use of IWR as the test problem can be justified by
two reasons. First, state of the art continuous speech rec-
ognisers rely heavily on language models to improve their
performance. Because language modelling compensates
for shortcomings in the acoustic modelling, it may in an
unpredictable fashion mask or distort the relative perfor-
mance differences between the different features. Second,
the acoustic modelling in both continuous and connected
speech recognition benefits from long-time temporal struc-
ture. Instead, by focusing on IWR with vocabularies con-
sisting of fairly short and common words, which might
differ by just one phoneme, it can be argued that the feature
evaluation concentrates more effectively on the importance
of the correct identification of phonetic units based on the
short-time spectrum.

The IWR system used in the present study is based on
dynamic time warping (DTW) (O’Shaughnessy, 2000).

Table 1
Subjective evaluation between impulse train exited SWLP (M = 8) and
MVDR filters of order p = 10. All-pole filters were computed from clean
and noisy (SNR = 10 dB) male and female vowels.

Preferred method Male vowels Female vowels

Clean (%) Noisy (%) Clean (%) Noisy (%)

MVDR 17 1 19 5
SWLP 71 73 46 45
No preference 12 26 35 50
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DTW has been widely replaced by HMM methods in con-
tinuous speech recognition, the main focus of current ASR
research. However, DTW is still well suited for IWR tasks
and provides a good test bench for the present purpose of
feature evaluation.

The idea of DTW is to compute a meaningful time-
aligned distance between two templates, a test template
T(n) consisting of NT feature vectors and a reference tem-
plate R(n) consisting of N R feature vectors, by warping their
time axes in order to synchronise acoustically similar seg-
ments in the templates. The time alignment is accomplished
by finding the minimum-cost path through a grid of
NT � NR nodes, where each node (i, j) corresponds to a pair
of feature vectors (T(i), R(j)) and has an associated cost
d(T(i),R(j)). In the current implementation, d(T(i),R(j))
was chosen to be the squared Euclidean distance between
the two MFCC feature vectors T(i) and R(j). The optimised
DTW distance was given by the sum of the node costs along
the best path. The current system uses the so-called con-
strained endpoints version of DTW, where the path is
required to start from grid node (1,1) and end at node
ðNT ;NRÞ (O’Shaughnessy, 2000). The local continuity con-
straints of the present implementation dictate that along
any permitted path any grid node (i,j) can be reached by
one move only from one of the nodes ði� 1; jÞ, ði; j� 1Þ,
or ði� 1; j� 1Þ. Exceptions naturally occur at grid bound-
aries where i = 1 or j = 1. In addition to these constraints,
at most two consecutive moves from ði; j� 1Þ to (i, j) are
permitted, except at the grid boundary where i ¼ NT .

The training templates were clustered (Rabiner and
Juang, 1993) using complete link agglomerative clustering
(Theodoridis and Koutroumbas, 2003). This involves com-
puting pairwise DTW distances between all training tem-
plates corresponding to the same vocabulary word. For
each word in the vocabulary, 10 clusters were generated
and one reference template was chosen from each cluster.
The representative template for each cluster was chosen
as the one with the minimum average distance between it
and every other template in the same cluster. During the
recognition phase, each test template (test word) was recog-
nised as follows. DTW distances were computed between
the test template and each reference template (of which
there are 10 for each word in the vocabulary). For each
vocabulary word, the average of the three smallest DTW
distances was computed. The recognition decision was then
made based on the smallest such averaged distance. Similar
averaging is suggested in (Rabiner and Juang, 1993).

The test material consisted of words extracted from con-
tinuous speech in the TIMIT database. The vocabulary of
the recognition task was the 21 words in the two ‘‘SA” sen-
tences spoken by every speaker in TIMIT. These sentences
were ‘‘She had your dark suit in greasy wash water all
year” and ‘‘Don’t ask me to carry an oily rag like that”.
The training set consists of these words spoken by 136 ran-
domly chosen male and 136 female speakers in the ‘‘train”

subset of TIMIT (this number was chosen because it is the
number of female speakers in the TIMIT ‘‘train” subset).

The testing set has the words spoken by 50 randomly cho-
sen male and 50 randomly chosen female speakers in the
TIMIT ‘‘test” subset (which has completely different speak-
ers from the ‘‘train” subset). Thus, the training and testing
sets contained totals of 5712 and 2100 word tokens, respec-
tively. A similar TIMIT-based corpus (albeit with slightly
different sizes of the training and testing sets and non-bal-
anced male–female speaker populations) was used in (Wu
et al., 1993), where the best evaluated HMM-based recogn-
isers using single-frame acoustic features achieved a word
recognition performance of 91.0%.

The speech material was down-sampled to 8 kHz for the
evaluation. All features were computed using a frame
length of 20 ms and a frame shift of 10 ms. No pre-empha-
sis was used. Noise corruption was done by adding prere-
corded, down-sampled noise from the Noisex-92 database
(Varga et al., 1992) to the test data with seven different seg-
mental SNR levels. Two types of noise were used: white
noise and factory noise recorded in a carproduction hall.
The averaged power spectra of these two noise signals
are shown in Fig. 6. It can be seen that the two noise types
have very different characteristics, as the spectrum of the
factory noise has a steep downward slope.

The correct recognition rates for the two noise types are
shown in Tables 2 and 3. For each noise type and segmen-
tal SNR level, the two best scores are shown in boldface.
With clean speech, the two most conventional methods,
FFT-MFCC and LP-MFCC, showed the best perfor-
mance. The results for FFT-MFCC and LP-MFCC are
in agreement with a previous study, which found LP-based
MFCC features to be more robust than their FFT-based
counterparts in moderate noise conditions (de Wet et al.,
2001). MVDR-MFCC with p = 10 slightly outperformed
FFT-MFCC in white noise with some segmental SNR lev-
els, while MVDR-MFCC with p = 80 showed, in general,
modest improvement over FFT-MFCC in factory noise.
Considering that the factory noise used here is of a low-
pass type, like most other real-world noises used in other
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Fig. 6. The averaged power spectra of white noise and car factory noise
from the Noisex-92 database (Varga et al., 1992), after re-sampling the
signal to 8 kHz. The spectra were estimated using Welch’s method with a
20 ms window.
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studies, the latter observation appears to be well in line
with the findings reported in the literature (e.g. Dharani-
pragada et al., 2007). The SWLP-MFCC features were
superior to the other methods in white noise conditions,
in particular when used with the parameter value M = 8.
With factory noise, SWLP-MFCC became the best method
when speech was severely corrupted by noise (that is
SNR < 0 dB), and in these cases SWLP-MFCC was on
an average 10% units better than the baseline FFT-MFCC.

The results indicate that SWLP-based feature extraction
outperformed the other techniques in recognition of speech
corrupted by white noise already at segmental SNR value
of 20 dB. In the case of factory noise, the major improve-
ments achieved by SWLP occurred at clearly smaller seg-
mental SNR values of �5 dB and �10 dB. The difference
in the performance of SWLP between the two noise types
can be explained by the fact that in the case of white noise,
upper frequencies of voiced speech are masked by noise
already at reasonably high segmental SNR levels. This, in
turn, implies that traditional spectral modelling techniques,
such as LP, cannot model upper formants properly from
speech corrupted by white noise. The proposed SWLP,
however, emphasises the contribution of speech samples
during the closed phase of the glottal cycle and thereby
models formants during the time span inside the funda-

mental period when the resonances are more prominent
(see Section 3). This implies that higher formants modelled
by SWLP are less likely to be masked by additive noise as
severely as those modelled by LP and, consequently, the
acoustical cues embedded in them will be more effectively
used in the feature extraction. The spectral envelope of fac-
tory noise, however, is of a low-pass nature and reminds
that of voiced speech. Therefore, higher formants of speech
corrupted by factory noise are not distorted severely until
at the lowest segmental SNR categories below 0 dB. Hence,
the improved recognition accuracy achieved by the pro-
posed SWLP method takes place at the lowest values of
the segmental SNR range in the case the additive noise is
of low-pass nature.

5. Summary

LP was analysed in this study by using temporal weight-
ing of the residual energy. The work is based on the previ-
ous study by Ma et al. (1993) where the concept of WLP
was introduced by applying short-time energy waveform
as the weighting function. In contrast to the original work
by Ma et al., the present study established a modified STE
weighting which guarantees the stability of the resulting all-
pole filter. This new method, named stabilised weighed lin-
ear prediction, was then compared to two known all-pole
modelling methods, conventional LP and minimum vari-
ance distortionless response, by analysing speech corrupted
by additive noise. It was shown that the proposed SWLP
method gave the best performance in robustness against
noise when quantifying the difference between the clean
and noisy spectral envelopes using the objective spectral
distortion measure SD2. This finding was also corroborated
by a small subjective test in which the majority of the listen-
ers assessed quality of impulse train excited SWLP all-pole
filters extracted from noisy speech to be perceptually closer
to original clean speech than the corresponding all-pole
responses computed by MVDR. Finally, SWLP was com-
pared to other short-time spectral estimation methods in
isolated word recognition experiments. It was shown to
improve recognition accuracy already at moderate segmen-
tal SNR values for sounds corrupted by white noise. For
realistic factory noise of low pass characteristics, the pro-
posed method improved the recognition results at segmen-
tal SNR levels below 0 dB.

In difference to the original work by Ma et al. (1993), the
present study also focused on how the length of the STE
window, the parameter M, affects the general shapes of
the all-pole envelopes given by WLP. It was shown, impor-
tantly, that by choosing the value of M properly, the
behaviour of SWLP can be adjusted to be similar to either
LP (corresponding to large M values) or to MVDR (corre-
sponding to small M values). This makes SWLP an attrac-
tive method for speech processing because it enables, with
the same method, the computation of stable all-pole filters
that yield spectral envelopes which are either smooth or of
large dynamics. In particular, we believe that the proposed

Table 2
Correct recognition rates (%) with white noise. Two best scores are shown
in boldface.

Feature vector Signal to noise ratio (dB)

Clean 20 15 10 5 0 �5 �10

FFT-MFCC 90.9 86.5 78.3 61.7 42.1 24.6 13.3 8.7

LP-MFCC 91.6 87.8 80.0 65.9 49.9 32.7 15.7 7.2
MVDR-MFCC,

p = 10
89.5 84.8 75.8 60.3 44.2 28.0 13.1 6.9

MVDR-MFCC,
p = 80

89.7 85.2 76.6 61.7 45.0 25.8 12.3 6.2

SWLP-MFCC,
M = 8

88.7 86.7 82.5 73.7 58.0 38.5 19.2 9.5

SWLP-MFCC,
M = 24

90.3 87.8 84.3 73.6 54.0 32.0 15.4 7.2

Table 3
Correct recognition rates (%) with car factory noise. Two best scores are
shown in boldface.

Feature vector Signal to noise ratio (dB)

Clean 20 15 10 5 0 �5 �10

FFT-MFCC 90.9 89.3 88.0 86.0 78.8 65.5 43.2 22.9
LP-MFCC 91.6 91.2 90.5 88.4 83.3 69.7 49.3 26.8
MVDR-MFCC,

p = 10
89.5 87.9 85.6 82.0 73.3 57.2 38.4 21.5

MVDR-MFCC,
p = 80

89.7 89.8 88.1 86.4 81.1 68.1 45.9 24.4

SWLP-MFCC,
M = 8

88.7 88.4 87.1 83.5 78.6 67.1 50.9 30.4

SWLP-MFCC,
M = 24

90.3 89.2 87.3 85.3 79.4 67.9 51.9 34.8
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SWLP method when combined with a properly chosen
value of M might become a potential technique in the
development of new feature detection methods for recogni-
tion of noisy speech. This argument is justified by the
increasing interest shown recently in the speech recognition
community towards the MVDR technique, due to its
promising performance in producing cepstral features for
the recognition of noisy speech (Wölfel et al., 2003; Dhara-
nipragada et al., 2007). The current study, however, shows
evidence that MVDR is outperformed in robustness by the
proposed SWLP in cases when the level of noise corruption
is moderate to high. Hence, there are promising areas of
future study in examining how the concept of WLP affects
the recognition of noisy speech, when used in a state-of-
the-art HMM-based continuous speech recognition
framework.

Appendix A. Stability of SWLP all-pole filter

In this section, a proof is presented for the minimum
phase property of the SWLP inverse filter AðzÞ ¼ 1þ
a1z�1 þ � � � þ apz�p, where the coefficients ai are solved from
Eq. (6). The structure of the proof is similar to that given in
(Delsarte et al., 1982), but for the sake of completeness a
more detailed treatment is given in the following:

Rewrite Eq. (6) in the case when the autocorrelation
matrix R is factorised as R ¼ YT Y and Y ¼ ½y0 y1

� � � yp� 2 RðNþpÞ�ðpþ1Þ

yT
0 y0 yT

0 y1 � � � yT
0 yp

yT
1 y0 yT

1 y1 � � � yT
1 yp

..

. ..
. . .

. ..
.

yT
p y0 yT

p y1 � � � yT
p yp

2
666664

3
777775

1

a1

..

.

ap

2
66664

3
77775 ¼

r2

0

..

.

0

2
66664

3
77775: ðA:1Þ

In the SWLP model formulation, the columns yi of matrix
Y were generated via Eq. (9), using matrix B from Eq. (11).
However, the column vectors yi of matrix Y can be ex-
pressed by the following reverse equation:

yk ¼Mykþ1 k ¼ 0; 1; . . . ; p � 1; ðA:2Þ

where

M :¼

0 1=B2;1 0 � � � 0

0 0 1=B3;2
. .

. ..
.

..

. ..
. . .

. . .
.

0

0 0 � � � 0 1=BNþp;Nþp�1

0 0 � � � 0 0

2
666666664

3
777777775

ðA:3Þ

and Biþ1;i are the elements of matrix B from Eq. (11). Ma-
trix M, defined in Eq. (A.3), is a nilpotent3 operator with

power of nilpotency n ¼ N þ p. Moreover, the norm of
the Hilbert space for the matrix M is clearly equal to

kMk2 ¼ max
n
f1=Bnþ1;ng ¼ max

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wn=wnþ1

pn o
: ðA:4Þ

Note that, according to Eq. (11), 1 6 Bnþ1;n <1; 8n which
implies that kMk2 6 1.

Defining the matrices Y0 :¼ ½y0 y1 � � � yp�1� 2 RðNþpÞ�p

and Y1 :¼ ½y1y2 � � � yp� 2 RðNþpÞ�p and corresponding
subspaces Y0 :¼ spanfy0; . . . ; yp�1g � CNþp and Y1 :¼
spanfy1; . . . ; ypg � CNþp (where the base field is C), respec-
tively. Note that the reverse Eq. (A.2) can be written in a
more compact form

Y0 ¼MY1: ðA:5Þ
Next, define the symmetric linear projection operator
P : CNþp ! Y1 as

P :¼ Y1ðYT
1 Y1Þ�1

YT
1 : ðA:6Þ

Thus, for all v 2 Y1 the projection operator has the
property

Pv ¼ v: ðA:7Þ
By rearranging Eq. (A.1), the coefficients a ¼ ½a1 � � � ap�T
can be solved from the equation

a ¼ �ðYT
1 Y1Þ�1

YT
1 y0: ðA:8Þ

From this equation yet another important property for the
projection operator P is obtained

Py0 ¼ Y1ðYT
1 Y1Þ�1

YT
1 y0 ¼ �Y1a: ðA:9Þ

Lemma 1. The zeros of the inverse filter A(z) of the SWLP
model are the nonzero eigenvalues of linear operator

PM : CNþp ! Y1.

Proof. Take the eigenpair (v,k) of the linear operator PM,
where the eigenvector v 2 Y1 can be expressed as v ¼ Y1n,
where n ¼ ½n1 � � � np�T 2 Cp is the coordinate vector with
respect to the basis of space Y1. Using Eqs. (A.5), (A.7),
(A.9) gives

kY1n ¼ PMY1n ¼ PY0n ¼ Py0 Py1 � � �Pyp�1

� �
n

¼ �Y1a y1 � � � yp�1

� �
n ¼ Y1Cn; ðA:10Þ

where

C ¼

�a1

�a2 I ðp�1Þ�ðp�1Þ

..

.

�ap 0 � � � 0

2
66664

3
77775 ðA:11Þ

is the companion matrix of the inverse filter A(z), that is the
zeros of A(z) are the eigenvalues of C. According to Eq.
(A.10)

3 Matrix A is nilpotent with power of nilpotency n if n is the smallest
integer such that An ¼ 0.

410 C. Magi et al. / Speech Communication 51 (2009) 401–411



Y1Cn ¼ kY1n;

Y1ðCn� knÞ ¼ 0;

Cn ¼ kn;

ðA:12Þ

where the last implication is due to the fact that

fx 2 CpjY1x ¼ 0g ¼ ;: �

Theorem 1. The zeros of the inverse filter A(z) of the SWLP

model are located inside a circle with centre at the origin and

radius

q ¼ max
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wn=wnþ1

pn o
cos

p
N þ p þ 1

� �
:

Proof. Take a normalised eigenvector v 2 Y1 and the cor-
responding eigenvalue k 2 C of the linear operator PM.
Straightforward calculation gives

k ¼ kkvk2 ¼ vTkv ¼ vT PMv ¼ ðPvÞT Mv ¼ vT Mv

2FðMÞ: ðA:13Þ

Hence, the zeros of the inverse filter A(z) belong to the
numerical range FðMÞ of nilpotent linear operator M. It
has been proved in (Karaev, 2004) that the numerical range
of the nilpotent operator M with power of nilpotency
N + p is a circle (open or closed) with centre at the origin

and radius q not exceeding kMk2 cos p
Nþpþ1

� �
. Hence,

according to Eq. (A.4), the zeros of the inverse filter
A(z) of the SWLP model are located inside a circle
with centre at the origin and with radius q ¼
maxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wn=wnþ1

pn o
cos p

Nþpþ1

� �
. Note that, in the SWLP

method, maxn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wn=wnþ1

pn o
6 1 according to Eq. (11),

which guarantees the stability of the corresponding all-pole
filter 1/A(z). h

References

Alku, P., 1992. Glottal wave analysis with pitch synchronous iterative
adaptive inverse filtering. Speech Comm. 11 (2), 109–118.

Bazaraa, M., Sherali, H., Shetty, C., 1993. Nonlinear Programming:
Theory and Algorithms, 2nd ed. John Wiley & Sons Inc., New York.
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Abstract

This review presents mathematical properties of line spectrum pair polynomials, especially those related to the location

of their roots, a.k.a. line spectral frequencies. The main results are three interlacing theorems for zeros on the unit circle,

which we call the intra-model, inter-model and filtered-model interlacing theorems.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Line spectrum pair (LSP) decomposition is a
method developed for robust representation of the
coefficients of linear predictive (LP) models [1].
Explicitly, the angles of LSP polynomial roots are
called line spectrum frequencies (LSFs) and they
provide an unambiguous representation of the LP
model. Since linear prediction is the de facto
standard (as well as, in most cases, a written
standard) for spectral modelling of speech [2] and
LSP its standard representation, the LSPs are
ubiquitous in speech processing. The prevalence of
LSP relies on its strong mathematical properties,
namely that the stability of the LP model is
guaranteed with simple criteria in the LSF domain

and robustness of the LSF representation to
quantisation noise [3]. Due to their simplicity of
use, LSFs are also frequently used in other areas of
speech processing, such as speech recognition,
enhancement and analysis (e.g. [4–8]).

Line spectral polynomials were first introduced in
speech processing by Itakura [1] and their most
essential properties presented by Soong and Juang
[3]. However, these properties had been indepen-
dently proved earlier by Schüssler in a more general
context [9].

The purpose of the current article is to provide an
up-to-date review of the mathematical theory of
LSP and give a consistent set of proofs for that
theory. In order to keep the size of the article
reasonable, we have purposely excluded all applica-
tions of LSP and restricted the scope of this article
to the theory of LSPs only. Most theorems are given
complete proofs, many of which are new or have
significant extensions to prior proofs. The goal has
been to make the theorems accessible to all while
retaining mathematical rigour. Some parts of the
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current work are based on the doctoral thesis of the
first author [10]. However, this review contains
newer results, developed after the doctoral thesis as
well.

Concerning vocabulary, the abbreviation LSP
refers in some sources to Line Spectrum Pair
polynomials and in others to line spectral poly-
nomials. Moreover, the operation yielding LSP
polynomials has been called LSP transformation,
LSP decomposition or simply LSP. Since there is
virtually no difference in meaning, we will use all
forms interchangeably. The LSFs, which refer to the
angle (frequency) of the zeros of LSP polynomials,
are sometimes loosely used to refer to LSP methods
in general, but we prefer to use LSFs to denote the
actual angle or frequency only. The LSP decom-
position is based on a transformation of a poly-
nomial to its symmetric and antisymmetric parts,
and many different names have appeared to denote
these symmetries. According to our understanding
the following terms are equivalent: symmetric, self-
reciprocal, and palindromic polynomial. The same
terms apply for the antisymmetric polynomial but
with a prefix of either ‘‘anti’’, ‘‘skew’’, or ‘‘con-
jugate’’. A polynomial AðzÞ that has all its zeros
inside the unit circle is said to be minimum-phase,
or equivalently, its inverse A�1ðzÞ is said to be
stable. If it has all zeros outside the unit circle, it is
maximum-phase and if the zeros are on the unit
circle it is sinusoidal.

2. Definitions and basic properties

The reciprocal polynomial of an mth order poly-
nomial AðzÞ ¼

Pm
l¼0 alz

�l is A#ðzÞ ¼ z�mAðz�1Þ. A
polynomial AðzÞ is said to be symmetric if AðzÞ ¼

A#ðzÞ and antisymmetric if AðzÞ ¼ �A#ðzÞ. Both
types of polynomials are linear-phase FIR filters,
when interpreted as transfer functions. It follows
that if zi is a zero of a symmetric or antisymmetric
polynomial, then also z ¼ z�1i must be a zero.

Zeros of symmetric and antisymmetric real poly-
nomials can thus be in the following constellations:

(1) root quadruples symmetric to the unit circle and
real axis (zi, z�i , z�1i , z�i

�1),
(2) root pairs on the unit circle symmetric to the real

axis (zi, z�i ),
(3) root pairs on the real axis symmetric to the unit

circle (zi, z�1i ),
(4) trivial zeros at zi ¼ �1.

Specifically, simple trivial zeros of symmetric and
antisymmetric polynomials must appear in the
following combinations [11]:

m Symmetric Antisymmetric

Even None z ¼ þ1, z ¼ �1
Odd z ¼ �1 z ¼ þ1

The proof of this result is trivial.

Definition 1. The LSP decomposition (with displa-
cement kX0) of a polynomial AðzÞ of order m is

PkfAgðzÞ ¼ AðzÞ þ z�m�kAðz�1Þ,

QkfAgðzÞ ¼ AðzÞ � z�m�kAðz�1Þ. ð1Þ

The ðmþ kÞth order polynomials PkfAgðzÞ and
QkfAgðzÞ are called the LSP polynomials. We will
often write this as PkfAg and QkfAg, when that
short form does not cause confusion.

Immediately, we notice that PkfAg is symmetric
and QkfAg is antisymmetric and so we obtain (for
any k)

1
2 ½PkfAgðzÞ þ QkfAgðzÞ� ¼ AðzÞ. (2)

The LSP decomposition is therefore a bijective
transformation.

In applications, the most commonly used dis-
placements are k ¼ 0 and 1, but because most
theoretical results generalise nicely over all kX0, we
will apply this more general notation.

Definition 2. We say that two real polynomials
F1ðzÞ and F2ðzÞ (not necessarily of the same order)
are interlaced on the unit circle if

(1) all zeros z ¼ zl of FjðzÞ are on the unit circle,
that is, FjðzlÞ ¼ 0 3 jzlj ¼ 1;

(2) zeros of F1ðzÞ and F2ðzÞ are simple and distinct,
with the exception of possible simple trivial
zeros at z ¼ �1;

(3) the N non-trivial zeros za� 1 of F1ðzÞ and
F2ðzÞ are interlaced on both the upper and the
lower halves of the unit circle, that is, the zeros
z
ðjÞ
l ¼ expðiyðjÞl Þ of F jðzÞ have

� po � � �oyð2Þ
N=2�1oyð1Þ

N=2�1oyð2Þ
N=2oyð1Þ

N=2o0

0oyð1Þ
N=2þ1oyð2Þ

N=2þ1oyð1Þ
N=2þ2oyð2Þ

N=2þ2o � � �op.

(Note that N is always even since we have
omitted trivial zeros.)
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Moreover, we will define the relation 7, such that
F1ðzÞ7F 2ðzÞ means that F 1ðzÞ and F2ðzÞ interlace
on the unit circle and F 1ðzÞ has a zero-pair closer to
z ¼ 1 (the angle zero).

The interlacing property is illustrated in Fig. 1.
We can now state the most famous LSP property,

the intra-model interlacing property, in the following
theorem.

Theorem 3. Let AðzÞ be a real polynomial with all

zeros inside the unit circle. Then the zeros of the LSP

polynomials are interlaced on the unit circle

PkfAg7QkfAg

for all kX0. Conversely, if the zeros of two real

polynomials of the same degree, one symmetric and

the other antisymmetric, are thus interlaced, then

their sum always has all zeros within the unit circle.

This theorem has been proved in [3] (for k ¼ 1)
and in [9] (for all kX0). Note that the theorem holds
for kX0 in both directions.

Fig. 2 illustrates this property.
Since the roots of LSP polynomials lie on the unit

circle, they can, in principle, be readily found.
Moreover, the zeros of the LSP polynomials define
the polynomial unambiguously up to scaling and we
can reconstruct the LSP polynomials from their
zeros (and scaling coefficients) and thereby obtain
the original AðzÞ as well. The zeros can, in turn, be
represented by their angles only, since they lie on the
unit circle. Finally, the angles are bounded and if

the ordering property is ensured, the minimum-
phase property of the reconstructed AðzÞ is retained.
It is therefore this theorem that justifies the use of
LSP in speech coding.

We can also note that if the LSP transform is
calculated with displacement kX1, then the first
coefficients of PkfAg and QkfAg will be equal to that
of AðzÞ. The scaling of the LSP polynomials for
kX1 is thus known by construction.

Behind the scenes, it is well known that some
speech coding standards (e.g. AMR-WB [12])
choose to communicate the scaling coefficient
instead of using displacements kX1 in order to
circumvent patented technology. Such methods are
usually based on the concept of immittance spectral
pairs (ISP) defined as [13]

IðzÞ ¼
Q0fAgðzÞ

P0fAgðzÞ
.

Due to the similarity of definitions, many theorems
of LSP find a correspondence in ISP [13,14].

Another interlacing theorem can be derived using
the reflection coefficients of a polynomial AðzÞ.
Recall that a minimum-phase polynomial can be
unambiguously constructed using the recursion

Anþ1ðzÞ ¼ AnðzÞ þ Gnz�n�1Anðz
�1Þ. (3)

The polynomial Anþ1ðzÞ is minimum-phase iff
jGnjo1 and AnðzÞ is minimum-phase. This is also
the basis for the Schur–Cohn and Marden–Jury
stability tests [15]. Conversely, the reflection coeffi-
cient Gn 2 ð�1;þ1Þ guarantees that all zeros of
Anþ1ðzÞ are within the unit circle given that the
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previous order polynomial AnðzÞ has all zeros within
the unit circle. Quite clearly, we can write equiva-
lently

Anþ1ðzÞ ¼
1þ Gn

2
P1fAngðzÞ þ

1� Gn

2
Q1fAngðzÞ.

(4)

Often we define an ¼ ð1þ GnÞ=2 whereby simply
Anþ1ðzÞ ¼ anP1fAng þ 1� anð ÞQ1fAng and the in-
crease in polynomial order becomes interpolation
between LSP polynomials with an 2 ð0; 1Þ. This
recursive relation is employed in the Levinson
recursion (see Section 3).

Theorem 4. Let polynomials AnðzÞ, Anþ1ðzÞ and

Anþ2ðzÞ, related through Eq. (4), be minimum-phase.

Then the zeros of the LSP polynomials with

displacements k 2 f0; 1g are interlaced in the follow-

ing combinations:

PkfAnþ1g7PkfAng, (a)

QkfAnþ1g7QkfAng, (b)

PkfAng7QkfAnþ1g, (c)

PkfAnþ1g7QkfAng, (d)

PkfAnþ2g7PkfAng, (e)

QkfAnþ2g7QkfAng. (f)

This property is called the inter-model interlacing

property and is illustrated in Fig. 3 (together with
the intra-model interlacing property of Theorem 3).

Cases (a) and (b) have been previously proved in
[16,17] and complete proof for cases (a)–(f) will
follow.

Proof. From Eq. (4), we observe that P0fAnþ1g ¼

ðð1þ GnÞ=2ÞP1fAng and it thus suffices to prove case
k ¼ 1 whereby k ¼ 0 will directly follow.

To simplify notations, let PnðzÞ ¼ P1fAngðzÞ and
QnðzÞ ¼ Q1fAngðzÞ. By substituting Eq. (4) into
Eq. (1) we obtain

Pnþ1ðzÞ ¼
1þ Gn

2
PnðzÞ þ

1� Gn

2
QnðzÞ

þ z�n�2 1þ Gn

2
Pnðz

�1Þ

þ z�n�2 1� Gn

2
Qnðz

�1Þ

¼
1þ Gn

2
PnðzÞð1þ z�1Þ

þ
1� Gn

2
QnðzÞð1� z�1Þ, ð5Þ

where we have used PnðzÞ ¼ z�n�1Pnðz
�1Þ and

QnðzÞ ¼ �z�n�1Qnðz
�1Þ.

Now, if PnðziÞ ¼ 0 for some zia� 1, then
Pnþ1ðziÞ ¼ ðð1� GnÞ=2ÞQnðziÞð1� z�1i Þa0 for all
Gn 2 ð�1;þ1Þ, since the zeros of PnðzÞ and QnðzÞ

do not overlap. The zeros of PnðzÞ and QnðzÞ do
therefore not coincide and, by analogy, the zeros of
QnðzÞ and Pnþ1ðzÞ do not coincide.

Letting Gn travel from �1 to þ1 along the real
axis, we find that the zeros of Pnþ1ðzÞ will travel (on
continuous tracks [18]) from the zeros of PnðzÞð1þ
z�1Þ to the zeros of QnðzÞð1� z�1Þ. Since (1) the
zeros will remain on the unit circle for all Gn due to
Theorem 3, (2) the zeros do not coincide with those
of PnðzÞ or QnðzÞ, and (3) the zeros of PnðzÞ and
QnðzÞ are interlaced by Theorem 3, then the zeros of
Pnþ1ðzÞ must remain between the zeros of PnðzÞ or
QnðzÞ. The zeros are thus interlaced as Pnþ1ðzÞ7
PnðzÞ and Pnþ1ðzÞ7QnðzÞ.

This proves cases (a) and (c), while cases (b) and
(d) follow by analogy.

Similarly as in Eq. (5), we can derive an equation
for Pnþ2ðzÞ using PnðzÞ and QnðzÞ to obtain

Pnþ2ðzÞ ¼
1þ Gn

2
PnðzÞð1þ Gnþ1z�1 þ z�2Þ

þ
1� Gn

2
QnðzÞð1� z�2Þ. ð6Þ

With an identical rationale as for cases (a)–(d) and
using Eq. (6), we find that Pnþ2ðzÞ is interlaced with
PnðzÞ, thus proving case (e). Note that Pnþ2ðzÞ is not
interlaced with QnðzÞ because, in Eq. (6), the zero
QnðziÞ ¼ 0 does not imply that Pnþ2ðziÞ would be
non-zero.

Again, case (f) follows by analogy. &

Corollory 5. The LSP polynomials on consecutive

displacements of a polynomial AðzÞ with all zeros

inside the unit circle are interlaced in the following
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combinations (kX0):

Pkþ1fAg7PkfAg, (a)

Qkþ1fAg7QkfAg, (b)

PkfAg7Qkþ1fAg, (c)

Pkþ1fAg7QkfAg, (d)

Pkþ2fAg7PkfAg, (e)

Qkþ2fAg7QkfAg. (f)

Proof. Let AnðzÞ ¼ AðzÞ, Gnþh ¼ 0 (hX1) and define
AnþhðzÞ through Eq. (4). Then PkþhfAng ¼

PkfAnþhg and QkþhfAng ¼ QkfAnþhg. The desired
results follows directly from Theorem 4. &

We will call this interlacing property the displace-

ment interlacing property.

3. Levinson recursion

The Levinson recursion is an efficient algorithm
for the solution of Toeplitz systems [19,20]. Its
connection to LSPs is well known [21]. In speech
processing it is most often used to solve the
coefficients of linear predictive systems [2,22]. This
topic has, however, been covered in numerous other
works (e.g. [22,23]) and we will only point out those
details that are of relevance to LSP or those that are
necessary preliminaries for Section 4.

In order to justify the Levinson recursion, we will
first present the linear predictive model. Given a
wide-sense stationary signal xn, we define an mth
order linear estimate x̂n of future samples by
x̂n ¼ �

Pm
k¼1akxn�k. The estimation error is

en ¼ xn � x̂n ¼ xn þ
Xm

k¼1

akxn�k.

By minimising the expected value of the squared
error E½e2n�, we obtain the normal equations

Ra ¼ s2½1 0 0 � � � 0�T, (7)

where R is the real symmetric Toeplitz autocorrela-
tion matrix, a ¼ ½a0 . . . am�

T the model parameters
(with a0 ¼ 1) and s2 the residual energy or the
minimum prediction error variance.

The Levinson recursion, which can be used to
solve Eq. (7), can then be stated as follows: let us
assume that on iteration step l, we have the
intermediate solution al ¼ ½al;0 al;1 . . . al;l �

T (with

al;0 ¼ 1) such that

Rlal ¼

r0 r1 r2 � � � rl

r1 r0 r1 � � � rl�1

r2 r1 r0 � � � rl�2

..

. ..
. ..

. . .
. ..

.

rl rl�1 rl�2 � � � r0

266666664

377777775
al;0

al;1

..

.

al;l

2666664

3777775 ¼ s2l

1

0

..

.

0

266664
377775,

(8)

where Rl is the ðl þ 1Þ � ðl þ 1Þ symmetric Toeplitz
autocorrelation matrix and s2l the minimum predic-
tion error variance.

In vector notation, the LSP transform in Eq. (1)
corresponds to

Pkfalg ¼
al

0k

" #
þ

0k

Jal

" #
,

Qkfalg ¼
al

0k

" #
�

0k

Jal

" #
,

where J is the row-reversal matrix, and 0k is a k � 1
vector of zeros. Clearly,

Rlþ1P1falg ¼ ½s2l þ gl ; 0; . . . ; 0; gl þ s2l �
T

¼ ĝþl ½1; 0; . . . ; 0; 1�
T

Rlþ1Q1falg ¼ ½s2l � gl ; 0; . . . ; 0; gl � s2l �
T

¼ ĝ�l ½1; 0; . . . ; 0;�1�
T, ð9Þ

where gl ¼
Pl

k¼0al;krl�k.
The Levinson step is then obtained using Eq. (4)

and we have

Rlþ1alþ1 ¼ Rlþ1
1þ Gl

2
P1falg þ

1� Gl

2
Q1falg

� �
¼ ðs2l þ GlglÞ; 0; . . . ; 0; ðgl þ Gls2l Þ
� �T

.

Choosing Gl such that the last term is zero,
gl þ Gls2l ¼ 0, we obtain a form identical to
Eq. (8) for l þ 1 with s2lþ1 ¼ s2l þ Glgl , and we have
completed one recursion step. Numerous proofs are
available to show that the final model AðzÞ ¼Pm

l¼0am;lz
�l is minimum-phase if R is positive

definite [22,24–27].
There are some improvements to the Levinson

algorithm, namely the split Levinson algorithm [21]
and Krishna’s algorithm [28]. The split Levinson is
based on a three-term recursion instead of the two-
term recursion in the conventional Levinson, redu-
cing the required multiplications to half. Numeri-
cally, the split Levinson is weakly stable [29],
and since Krishna’s algorithm employs a similar
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recursion, one is led to believe that it is also weakly
stable, even though the authors are not aware of any
proof thereof.

The split Levinson algorithm is based on the
intermediate solution

Rl ~al ¼ Z½1 0 0 . . . 0 1�T, (10)

where Z is a scalar. The iteration is based on the
three-term equation

~aT
lþ1 ¼ d½0 ~aT

l�1 0� þ ½ ~aT
l 0� þ ½0 ~aT

l �,

where scalar d is chosen so that the structure of
Eq. (10) is retained. Observe how nicely the inter-
model interlacing between P1fAl�1g, P1fAlg and
P1fAlþ1g correlates with this three-term recursion.
In fact, it is the inter-model interlacing theorem that
ensures that the zeros of the LSP polynomials
remain on the unit circle and interlaced.

Observe also that if al is the solution to Eq. (8),
then

RlP0falg ¼ 2s2l ½1 0 0 . . . 0 1�T

and Eq. (10) is thus the symmetric part of the
conventional Levinson solution. A similar split
algorithm could be developed for the antisymmetric
part as well.

Krishna’s algorithm is otherwise identical to the
split Levinson, but it is based on the intermediate
solution

Rlbal ¼ Z½þ1;�1;þ1;�1;þ1;�1;þ1; . . . �T, (11)

where we choose either ‘‘þ’’ or ‘‘�’’ according to
preference. (Interestingly, this equation appears also
as a solution to an inverse problem for transmission
lines [30].) It can be readily shown that this means
that in Krishna’s method, the trivial zeros are
omitted from intermediate solutions. This fact can
be easily observed by the following calculations. Letbal ¼ ½bal;0 . . .bal;l �

T be the solution to Eq. (11) (with
‘�’ signs and l even) and bAlðzÞ its z-transform.
Adding a trivial zero z ¼ �1 to bAlðzÞ, that is,
forming ð1þ z�1Þ bAlðzÞ, in vector notation, and
multiplying by Rlþ1, corresponds to

Rlþ1

bal;0 0bal;1 bal;0

..

. ..
.

bal;l bal;l�1

0 bal;l

26666666664

37777777775
þ1

þ1

" #
¼ Z

þ1

�1

þ1

..

.

x

26666666664

37777777775
þ Z

x

þ1

�1

..

.

þ1

26666666664

37777777775

¼ Z

1þ x

0

..

.

0

1þ x

26666666664

37777777775
,

which is obviously equivalent to Eq. (10).

4. Constrained linear prediction

A surprising and intriguing connection exists
between LSP and a modified linear predictive model
called constrained linear prediction (CLP) [31,32]. It
is a theoretical result interesting in its own right.

The constrained linear predictive models consid-
ered here are models where the frequency response
of the model is constrained to attenuate certain
frequency regions. This is achieved by shaping the
spectrum of the input signal with fixed FIR filters
and estimating the original signal from the filtered
signal. Consequently, the predictive power of the
model is concentrated to those frequency regions
which are not filtered out by the FIR filter.

Specifically, the CLP model is constructed as
follows. Let us define a linear predictive model
where future samples of signal xn are estimated from
past filtered samples of xn. The modelling error
becomes

en ¼ xn þ
Xm�1
h¼0

a0hx̂n�h, (12)

where x̂n ¼ cn � xn is the filtered input signal and the
a0h’s are the model parameters. Let CðzÞ ¼

PN
l¼0clz

�l

be the transfer function of the filter and n�1i its
zeros. In vector form this equation becomes
en ¼ bTxþ a0TCTx, where C is the convolution
matrix corresponding to CðzÞ and b ¼ ½1 0 . . . 0�T.
In the current context, only the case N ¼ 1 is
relevant, and we will, in the following, thus consider
only filters CðzÞ with a single zero n�1.

Our objective is to minimise the expected value of
e2n from Eq. (12). This can be easily achieved by
defining a ¼ bþ Ca0, whereby we have en ¼ aTx. In
the optimisation problem, we can use the convex
objective function aTRa, where R is the symmetric
Toeplitz autocorrelation matrix, similarly as in
classical LP, but with the constraint that vector a

must be of the form a ¼ bþ Ca0. The constraint can
readily be included in the minimisation problem
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using Lagrange coefficient g and the null-space c0n of
convolution matrix C (whereby CTc0n ¼ 0), where
c0n ¼ ½1 n n2 . . . nm�T.

Now, the constrained objective function for our
optimisation function becomes zða; gÞ ¼ aTRa�

ða� bÞTc0ng. Through some straightforward calcula-
tions, the minimum of the expected value of the
squared error becomes [32]

Ra ¼ g½1 n n2 . . . nm�T (13)

and we can show that if jnjo1 with n 2 C, then a has
all its zeros within the unit circle. For jnj ¼ 1 it has
zeros on the unit circle and jnj41 zeros outside the
unit circle. Moreover, if n ¼ 0, then a becomes the
conventional LP model, whose minimum-phase
property is well known [22,24–26,33].

Theorem 6. Let vector a ¼ ½a0 . . . am�
T be a solution

to Eq. (13), R a positive definite symmetric Toeplitz

matrix and scalar g chosen such that a0 ¼ 1. Then the

z-transform AðzÞ of a has all its zeros

� inside the unit circle if jnjo1,
� on the unit circle if jnj ¼ 1,
� outside the unit circle if jnj41.

The proof has appeared in [32].

If n ¼ �1, then Eq. (13) becomes identical to Eq.
(11), thereby tying the constrained linear predictive
model to Levinson recursion and LSP. In fact, if
n ¼ �1 then the constrained linear predictive model
becomes an estimate of future samples of xn using

averaged or differentiated past samples of xn

[31,34,35]. Consequently, the zeros of symmetric
LSP polynomials are shifted in the FFT spectrum
towards zero, since it is based on an averaged input
signal, whose spectral components close to the
Nyquist frequency are attenuated. Similarly, the zeros
of antisymmetric LSP polynomials are shifted towards
the Nyquist frequency, since it is based on a
differentiated input signal, whose spectral components
close to zero are attenuated. See Fig. 4 for illustration.

On the other hand, since solutions to Eq. (13)
have all zeros inside the unit circle for jnjo1 their
symmetric and antisymmetric parts (the LSP poly-
nomials) have zeros on the unit circle due to
Theorem 3. Explicitly, solutions to the equations

RP0fang ¼ g

1þ nm

nþ nm�1

n2 þ nm�2

..

.

nm þ 1

26666666664

37777777775
,

RQ0fang ¼ g

1� nm

n� nm�1

n2 � nm�2

..

.

nm � 1

2666666664

3777777775
ð14Þ

have all zeros on the unit circle due to Theorem 3.
Note that the LSP polynomials of an are real if n 2
R or jnj ¼ 1. (For complex n with jnj ¼ 1, an can be
scaled to real by division with ð1� nmÞ, since ðnk �

nm�kÞ=ð1� nmÞ is real for all k.) With n ¼ 0, Eq. (14)
becomes exactly the solution of a step in the split
Levinson recursion.

An intriguing special case is n!�1. For example,
in Eq. (14), when n!þ1, we observe that Q0fang !

0. However, by dividing the equation by 1� n, we
obtain a scaled model a�n ¼ an=ð1� nÞ that does not
converge to zero. By similar scalings, we obtain non-
zero vectors a�n ¼ an=ð1� nÞ at the limit

all m; n!þ1,

RQ0fa
þ
n g ¼ g 1; 1�

2

m
; 1�

4

m
; . . . ;�1þ

2

m
;�1

� �T
,

m even; n!�1,

RQ0fa
�
n g ¼ g 1;�1þ

2

m
; 1�

4

m
; . . . ; 1�

2

m
;�1

� �T
,
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m odd; n!�1,

RP0fa
�
n g ¼ g 1;�1þ

2

m
; 1�

4

m
; . . . ;�1þ

2

m
; 1

� �T
.

These polynomials having coefficients a�n all have
zeros on the unit circle due to continuity (polynomial
zeros follow continuous tracks for continuous trans-
formations of the polynomial coefficients [18]).

While it could seem that we now have come quite
far from the central topics in LSP theory, the
following theorem will bring us right back and
demonstrate yet another interlacing property of
LSP. Its proof has not been presented before, and
we are therefore bound to present the full proof
even if it is long and rather complex.

Theorem 7. Let xn be a wide-sense stationary process

and cn and dn the impulse response coefficients of two

first-order real FIR-filters with z-transforms CðzÞ and

DðzÞ, whose zeros are z ¼ m�1 and z ¼ y�1, respec-

tively, with �1omoyoþ 1. Calculate the LP

models ac and ad , respectively, for xn filtered with

cn and dn. Then the LSP polynomials of AcðzÞ and

AdðzÞ corresponding to ac and ad , respectively, are

interlaced in the following pairs:

P0fAcg7P0fAdg, (a)

Q0fAcg7Q0fAdg, (b)

P0fAcg7Q0fAdg, (c)

P0fAdg7Q0fAcg. (d)

Note that in contrast to the constrained LP model
in Eq. (12), which estimates future values of the
original signal xn from filtered past values, in
Theorem 7 we have used the conventional LP that
estimates future filtered values from past filtered
values.

Fig. 5 illustrates the generation of LSP poly-
nomials in Theorem 7. We will denote these
interlacing properties as the filtered-model interla-

cing property. In addition to the interlacing pairs
listed in Theorem 7, naturally, the intra-model
interlacing properties of Theorem 3 are still valid.
The filtered-model interlacing property is illustrated
in Fig. 6.

Since the proof is long and complex, it is
presented in Appendix A.

5. Other topics

In speech coding, traditionally, the LSP poly-
nomials are not as much of interest as the angles of
their roots, the LSFs. Since the roots lie on the unit
circle, it is sufficient to express their angle only for a
complete description of the root. In the spectral
domain, unit circle zeros (or poles) appear as
vertical lines, thereby warranting the name line
spectral frequencies (see Fig. 4).

The problem thereby becomes finding one of the
roots of given LSP polynomials. Since the poly-
nomials are symmetric and antisymmetric, they
have only m=2 or ðm� 1Þ=2 degrees of freedom,
and we can expect that root finding should benefit
from this symmetry. Indeed, for symmetric poly-
nomials, we can use the Chebyshev transform and
substitute x ¼ zþ z�1 to obtain a real polynomial
of x with all zeros on the real axis in the interval
x 2 ½�2;þ2� [36]. By removal of trivial zeros, the
same operation can be done for antisymmetric
polynomials as well [11]. While the Chebyshev
transform is widely used, it has received a rigorous
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mathematical treatment only recently in [37]. The
root-finding problem has, anyhow, received a lot of
attention (e.g. [3,36,38–40]), but it still is the most
computationally costly step in spectral modelling of
speech coding applications. In order to improve
root-finding algorithms, it is possible to develop
statistical distributions for the location of zeros [41].

It has been proved that ‘‘the poles of symmetric
linear prediction models lie on the unit circle’’ [33].
It is important to realise, however, that this is true
only if we use explicit constraints to fix the first and
last coefficients of a causal predictor to be equal to
unity, but that it is not true for all symmetric LP
models. In practical applications, the only value for
the first coefficient that makes sense is naturally
unity, but it is possible to use other constraints that
enforce symmetry and only afterwards scale the
predictor to make the first coefficient equal to unity.
For example, the forward–backward predictive
model (which has been reinvented several times)
constrains the middle coefficient to be equal to unity
and thus has the normal equations [42–46]

Ra ¼ g½0 . . . 0 1 0 . . . 0�T,

where the single ‘‘1’’ is the middle coefficient. It can
be easily verified through experiments that this
model often has zeros off the unit circle even though
it is symmetric. The presented proof for the unit-
circle property of (anti)symmetric polynomials in
Eq. (14) is thus relevant since it provides a general
formula which ensures the unit circle property of
symmetric polynomials. Using these equations, we
can generate an arbitrary number of polynomials
with zeros (interlaced) on the unit circle. The
authors are, however, not aware of any similar
solutions that would have all zeros off the unit
circle.

It would be tempting to try to use LSFs as a basis
for sinusoidal modelling; after all, the LSP decom-
position generates two models with zeros on the unit
circle, which are in the spectral domain equivalent
to sinusoidal models. In other words, we could use
minimum-phase polynomials for the generation of
sinusoidal models with the aid of LSP decomposi-
tion. However, in the presence of noise, the LSFs
are inconsistent and biased estimates of sinusoidal
signals [47,48].

6. Conclusions

In this work, we have presented a review of the
properties of line spectrum pair polynomials. The

most significant results are three interlacing theo-
rems, which can be summarised as follows:

Intra-model interlacing—the interlacing of the
zeros of the symmetric and antisymmetric LSP
polynomials on the unit circle.

Inter-model interlacing—the interlacing of the
zeros of the LSP polynomials of consecutive order.

Filtered-model interlacing—the interlacing of the
zeros of LSP polynomials of LP models calculated
from signals filtered with first-order FIRs.

In addition, we presented an interlacing relation
which is of lesser importance, the displacement

interlacing, or the interlacing of LSP polynomials
of consecutive displacement.

These interlacing properties provide a rich basis for
studies in many subfields of speech processing, for
example, spectral modelling of speech with stable all-
pole models for speech coding and enhancement, and
improved features for speech recognition. Moreover,
we have to keep in mind that linear prediction is used
in a wide range of applications other than speech
processing, such as geology, economics, transmission
line theory, and systems identification. The possible
applications of the presented results therefore have a
very wide range and large potential.

Appendix A. Proof for Theorem 7

Since the proof of Theorem 7 is rather complex, we
have factored it into three preliminary lemmas, which
we will present before presenting the main proof.

Lemma 8. Let xn be a wide-sense stationary process

and cn the impulse coefficients of a first-order FIR-

filter that has a zero at z ¼ n�1. Calculate the

conventional LP model ac from the filtered signal cn �

xn and the constrained LP model an with Eq. (13).
Then the LSP polynomials (displacement k ¼ 0) of ac

and an are equal up to scaling.

Proof. Defining a vector c0n ¼ ½1 n n2 . . . nm�T and
the row-reversal matrix J, we can write Eq. (14) as

RmP0fang ¼ gðc0n þ Jc0nÞ.

Define the convolution matrix Cn for cn as

Cn ¼

1 0 . . . 0

n 1 . .
. ..

.

0 n . .
.

0

..

. . .
. . .

.
1

0 . . . 0 n

2666666664

3777777775
.
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Convolving a zero n�1 to P0fang is then equivalent
to CnP0fang and we obtain

Rmþ1CnP0fang

¼ Rmþ1

P0fang 0

0 P0fang

" #
1

�n�1

" #

¼ g
c0n þ Jc0n b

b c0n þ Jc0n

" #
1

�n�1

" #
¼ gð1� n�2Þĉ0n þ gðnm þ n�2 þ n�1bÞ½1 0 0 � � � 0 1�T,

where the symmetric Toeplitz matrix Rmþ1 is a
positive definite extension to Rm (such extensions are
always readily available) and ĉ0n ¼ ½1 n . . . nmþ1�T.
Since CT

n c0n ¼ 0, we can multiply from the left by CT
n

to obtain

~RmP0fang ¼ ~g½1 0 0 . . . 0 1�T, (A.1)

where ~g ¼ gðnm þ n�2 þ n�1bÞ and ~Rm ¼ CT
n Rmþ1Cn

is the autocorrelation matrix of the filtered signal.
Comparing Eq. (A.1) to Eq. (9), we observe that
P0fang is the symmetric part of a conventional LP
model (with autocorrelation matrix ~Rm). In other
words, the symmetric part of an LP model from a
filtered signal is therefore equal to the constrained LP
model with the same filtering. A similar proof for the
antisymmetric LSP polynomial is, mutatis mutandis,
readily available by the same approach. &

Lemma 9. Let the symmetric LSP polynomials

P0famg and P0fayg be solutions to

RmP0famg ¼ gðc0m þ Jc0mÞ and

RmP0fayg ¼ gðc0y þ Jc0yÞ,

where c0n ¼ ½1 n n2 . . . nm�T, and let P0fAmgðzÞ and

P0fAygðzÞ be their z-transforms.
Iff y is a zero of P0fAmgðzÞ then m is a zero of

P0fAygðzÞ and all the other zeros are equal.
The same holds for antisymmetric LSP polyno-

mials.

Note that if m is real, then the zeros of P0fAmg lie
on the unit circle and consequently, ymust be on the
unit circle for the lemma to apply.

Furthermore, as a corollary, observe that if the
polynomials P0fAmg and P0fAyg have a joint root n,
we then can form a new polynomial P0fAng for
which RmP0fang ¼ gðc0n þ Jc0nÞ. Then P0fAmg and
P0fAng have joint roots except for n and m, and
likewise, P0fAng and P0fAyg have joint roots except
for n and y. It follows that P0fAmg and P0fAyg have
joint roots except for m and y. In other words, it is

not possible that some roots would be joint and
some not, but rather, it is all or nothing.

Proof. The lemma is symmetric with respect to m
and y and it is thus sufficient to prove it in one
direction ‘‘)’’ and we obtain the other direction
‘‘(’’ by analogy.

Define the convolution matrix Cm with the
second-order FIR-filter ½1;�ðmþ m�1Þ; 1� and let
P0famg be the solution to

RmP0famg ¼ gðc0m þ Jc0mÞ.

Convolve two zeros m and m�1 to P0famg, that is,
CmP0famg, and we obtain

Rmþ2CmP0famg

¼ Rmþ2

P0famg 0 0

0 P0famg 0

0 0 P0famg

2664
3775

1

�ðmþ m�1Þ

1

2664
3775

¼ g

c0m þ Jc0m b1 b2

b1 c0m þ Jc0m b1

b2 b2 c0m þ Jc0m

26664
37775

1

�ðmþ m�1Þ

1

2664
3775

¼ g

1þ mm � ðmþ m�1Þb1 þ b2

�m�1 � mmþ1 þ b1

0

..

.

0

�m�1 � mmþ1 þ b1

1þ mm � ðmþ m�1Þb1 þ b2

26666666666666664

37777777777777775
¼ g u0 u1 0 0 . . . 0 u1 u0½ �T,

where u0 ¼ 1þ mm � ðmþ m�1Þb1 þ b2 and u1 ¼
�m�1 � mmþ1 þ b1.

Now if y is a zero of P0famg, then also y�1 is a
zero since P0famg is symmetric. We can therefore
deconvolve both zeros to obtain P0famg ¼ Cyd,
where Cy is defined as above. By defining b̂1 ¼
u1 þ y�1 þ ymþ1 and b̂2 ¼ u0 þ ðyþ y�1Þu1 þ y�2þ
ymþ2, and following the above calculation in reverse,
we obtain

Rmþ2CmP0famg

¼ Rmþ2CmCyd ¼ g u0 u1 0 0 . . . 0 u1 u0½ �T

ARTICLE IN PRESS
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¼ g

1þ ym
� ðyþ y�1Þb̂1 þ b̂2

�y�1 � ymþ1
þ b̂1

0

..

.

0

�y�1 � ymþ1
þ b̂1

1þ ym
� ðyþ y�1Þb̂1 þ b̂2

266666666666666664

377777777777777775

¼ g

c0y þ Jc0y b̂1 b̂2

b̂1 c0y þ Jc0y b̂1

b̂2 b̂2 c0y þ Jc0y

26664
37775

1

�ðyþ y�1Þ

1

2664
3775

¼ Rmþ2

P0fayg 0 0

0 P0fayg 0

0 0 P0fayg

2664
3775

1

�ðyþ y�1Þ

1

2664
3775

¼ Rmþ2CyP0fayg. ðA:2Þ

Now Rmþ2CmP0famg ¼ Rmþ2CyP0fayg according to
Eq. (A.2), then CmP0famg ¼ CyP0fayg since Rmþ2 is
full rank, and it follows that P0famg and P0fayg

have all the same zeros except for y and m,
respectively. The proof for antisymmetric LSP
polynomials is analogous. &

Lemma 10. Let the set of vectors di be such that

those ai that solve Rai ¼ di are minimum-phase for

all positive definite, symmetric, real, Toeplitz ma-

trices R. Furthermore, let a be the solution to

Ra ¼ Dg,

where D ¼ ½d0 d1 d2 . . .� and g ¼ ½g0 g1 g2 . . . �
T. If

gi40 8i, then a is minimum-phase.

This lemma has been proved in [32]. Now, we are
finally ready to proceed to the proof of Theorem 7.

Proof of Theorem 7. Let us study the symmetric
LSP polynomial P0fang and the antisymmetric LSP
will again follow by similar arguments.

We now observe that:

(1) According to Lemma 8, the LSP polynomial of
a conventional LP model formed from the
filtered signal cn � xn has the form

RmP0famg ¼ gðc0m þ Jc0mÞ, (A.3)

where m�1 is the single zero of the FIR-filter cn.

(2) According to Theorem 3, the zeros of P0famg

solving Eq. (A.3) are separate and on the unit
circle.

(3) Choosing m ¼ 0 in Eq. (A.3), we arrive to a form
identical to Eq. (10), and therefore, P0fam¼0g is
the LSP polynomial of order m of the unfiltered
signal.

(4) Choosing m ¼ �1 in Eq. (A.3), we arrive to a form
identical to Eq. (11) and therefore, P0fam¼�1g is
the LSP polynomial of order mþ 1 of the
unfiltered signal, with one trivial zero removed.

(5) Since LSP polynomials of consecutive orders are
interlaced according to Theorem 4, then also
P0fam¼0g and P0fam¼�1g are interlaced.

(6) Due to Theorem 9, polynomials P0fang and
P0faygcannot have joint zeros unless all zeros
are equal (which would imply n ¼ y).

(7) The zeros of P0fang follow continuous tracks as
a function of n [18].

Let P0fang and P0fayg solve Eq. (A.3) for some
scalars n and y with �1pnoypþ 1. Now suppose
that the zeros of P0fang and P0fayg are not

interlaced. If we let bn travel from �1 to n and by
from þ1 to y, then at bn ¼ �1 and by ¼ þ1 the zeros
of P0fabng and P0fabyg are interlaced, but for bn ¼ n
and by ¼ y they are not interlaced. Therefore, there
must exist a point bn 0 2 ð�1; nÞ and by 0 2 ðy;þ1Þ
where the zeros pass each other, that is they
overlap, since the transformation is continuous
and the zeros are always on the unit circle. Since
the two models cannot have joint zeros unless all
zeros are equal, then our assumption must be false,
the zeros of P0fang and P0fayg must be interlaced.
This proves cases (a) and (b).

Let an solve Ran ¼ gc0n , where c0n ¼ ½1 n . . . nm�T

and an is thus minimum-phase. Then, also an;G is
minimum-phase if it solves

Ran;G ¼ g½c0n þ Gc0n � (A.4)

and G 2 ð�1;þ1Þ, since adjusting G 2 ð�1;þ1Þ
corresponds to adjusting the last reflection coeffi-
cient in the open interval ð�1;þ1Þ.

Let a1 and a2 be solutions to Eq. (A.4) with n1, G1

and n2, G2, respectively, and then their sum a ¼

a1 þ a2 is minimum-phase due to Lemma 10. More-
over, then P0fag ¼ P0fa1g þP0fa2g and Q0fag ¼

Q0fa1gþ Q0fa2g.
If we go arbitrarily close to the edges, G1 !þ1

and G2!�1 then Q0fa1g ! 0 and P0fa2g ! 0.
It follows that a! P0fa1g þ Q0fa2g. Since a is
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minimum-phase as long as we stay inside the limits
(even when we go arbitrarily close to the limits),
then P0fa1g and Q0fa2g must be interlaced for all
inside points Gi; ni 2 ð�1;þ1Þ. Furthermore, since
P0fa1g andP0fa2g are interlaced due to the first part
of this proof, P0fa1g and Q0fa2g are interlaced also
at the edges G1 ¼ 1 and G2 ¼ �1 as long as the nis
are strictly inside ni 2 ð�1;þ1Þ. This proves cases (c)
and (d). &
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Minimum Separation of Line Spectral Frequencies
Tom Bäckström, Member, IEEE, Carlo Magi, and Paavo Alku

Abstract—We provide a theoretical lower limit on the distance of
line spectral frequencies for both the line spectrum pair decompo-
sition and the immittance spectrum pair decomposition. The result
applies to line spectral frequencies computed from linear predic-
tive polynomials with all roots within a zero-centered circle of ra-
dius 1.

Index Terms—Immittance spectrum pair, linear prediction, line
spectrum pair, root finding, speech coding.

I. INTRODUCTION

L INE SPECTRUM pair (LSP) decomposition is a fre-
quently used method in speech processing as a representa-

tion of linear predictive models [1]. In the LSP decomposition,
a linear predictive (LP) polynomial is decomposed into
two polynomials, one symmetric and one antisymmetric, the
zeros of which are separate, on the unit circle and interlaced [2].
Since the zeros are on the unit circle, they can be represented
by their angles only, the line spectral frequencies (LSFs). Given
an LP polynomial , the computation of LSFs calls for
numerical root-finding algorithms, which generally employ
finite step-sizes or search grids in their iteration process. These
root-finding algorithms typically use Chebyshev-polynomials
in expression of the LSP decomposition [3]. If the LSFs lie
arbitrarily close to each other, it is impossible to determine
a fixed step-size small enough to ensure that all zeros are
found. Conversely, a lower limit on LSF separation enables
us to choose a step-size small enough such that all zeros are
recovered.

Our result applies to a polynomial whose zeros are, in
the complex plane, within a circle centered at origin with radius

. For example, predictive polynomials, calculated
with the autocorrelation method, have zeros within a radius of

, where is window length (in
samples) and model order [4].

II. DERIVATION OF LOWER LIMIT

Given a real LP polynomial of order
, the corresponding LSP polynomials are defined as [2]

(1)
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Alternatively, and slightly more generally, we can decompose
into symmetric and antisymmetric polynomials and
, respectively, as

(2)

where . The notation thus encompasses both LSP
, and the immittance spectrum pair (ISP) forms [5].

Polynomials can be rewritten as

where is all-pass. Then zeros of
appear at points , where .

The phase of can be written as [6, p. 235]

and its negative derivative, the group delay as [6, p. 238]

where are the zeros of . We also note that
for all . Now, the zeros of appear at points

where .
The group delay is limited from above by

(3)

where . Note that the group delay can reach
the limit only at angle and when all roots of lie at
the same point in the Z-domain for all . For of
real coefficients, this implies that all the roots are located at the
same point on the real axis.

Since is continuous, we can use the Mean Value The-
orem with , and we have

1070-9908/$25.00 © 2006 IEEE
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since . As zeros of appear at , we
set and obtain a lower limit for the LSF separation
as

(4)

III. CHEBYSHEV TRANSFORMATION DOMAIN

Generally, root-finding algorithms do not search roots di-
rectly from , but first, remove trivial zeros at
and second, perform the Chebyshev transformation to reduce
the complexity of root-finding [3]. Let us denote the Cheby-
shev-transformed polynomial with . Then ,
where . In the Chebyshev domain, the zeros
of become , and . Then, a
lower limit for separation of LSFs in Chebyshev domain for

is

(5)

Note that . This limit varies as a function of , and
it is therefore useful, in root-finding in the Chebyshev domain,
to use a step-size that varies with .

IV. NUMERICAL EXAMPLES AND DISCUSSION

The acquired lower limits of root separation for ISP and LSP
are illustrated in Fig. 1 as a function of maximum root radius

for . The continuous line represents the
theoretical lower limit of (4). The worst-case polynomial, that
is, the polynomial with all zeros at the same point on the real
axis, is depicted with a dotted line. The fact that this polyno-
mial is indeed the worst case in terms of LSF separation is evi-
dent from (3). Minimum root separation obtained from LP poly-
nomials computed from natural speech signals, represented by
eight Finnish sustained vowels /a/, /e/, /i/, /o/, /u/, /y/, /ä/, and /ö/,
sampled at 8 kHz, are depicted with dashed lines. Varying max-
imum root radius was acquired by substitution of variables

. It is evident that the worst-case polynomial
is well below the typical range of with vowel sounds,
since the roots of are, in general, distributed to cover the
whole frequency range, and only some roots are close to in
amplitude. However, polynomials close to the worst-case poly-
nomial can occur, even though they are undoubtedly extremely
rare. Therefore, the worst case must be taken into account when
designing practical applications.

We find also that the lower limit is a very accurate estimate,
since the worst-case polynomials have a minimum root sepa-
ration that is practically equal to the lower limit. Furthermore,
we observe that ISP has always a larger minimum separation,
since ISP polynomials have one root fewer than LSP polyno-
mials. However, the difference between root separation of ISP
and LSP is, for , negligible. The LSP limit is thus a
reasonable lower limit for both LSP and ISP.

Fig. 1. Minimum root separation�! of (a) an ISP and (b) an LSP polynomial
of degree m = 8 as a function of maximum root radius r . Continuous line
is the theoretical lower limit, dotted line is a simulation result for the worst-case
polynomial, and dashed lines are examples of eight Finnish vowels.

TABLE I
TYPICAL COMBINATIONS OF MODEL ORDER m, SAMPLING FREQUENCY

F , AND FRAME LENGTH l (WHERE N = F l=1000) FOR LINEAR

PREDICTION WITH THE AUTOCORRELATION METHOD AND THEIR

CORRESPONDING MINIMUM LSF SEPARATION �!. THE PARAMETER

VALUES SELECTED ARE IN USE IN SPEECH CODING APPLICATIONS [7]–[9]

A list of minimum LSF separation for commonly used model
orders is given in Table I [7]–[9]. We observe that the theoret-
ical minimum LSF separations are rather small. For example,
AMR-NB uses a search grid with step-size (rad), which
is several orders of magnitude larger than the values obtained in
Table I [8]. Moreover, numerical round-off errors can increase
the limits used in Table I and thus decrease LSF separation
limits. However, these values for LSF separation are not directly
comparable since coders generally use white-noise correction
and lag-windowing of the autocorrelation, both of which, effec-
tively, reduce , thus also increasing the minimum separa-
tion of LSFs.

As a final example, we present one potential application of the
derived lower limit of line spectral frequencies. Fig. 2 shows a
speech spectrum of the Finnish vowel /i/, produced by a male
speaker and sampled at 16 kHz (only the lower audio band of
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Fig. 2. Illustration of bandwidth expansion of a spectral peak by constraining
the LSF separation for the vowel /i/. The thin continuous line represents the
speech spectrum, the thick continuous line an all-pole model with an underesti-
mated formant bandwidth, and the dashed line an all-pole model with constraint
on the LSF separation. Spectra have been displaced by 10 dB for visual clarity.

4 kHz is displayed for visual clarity). The continuous line rep-
resents an all-pole model of order estimated from the
speech signal. In this spectral model, the original LP parameters
have been distorted by quantization that has resulted in a severe
underestimation of the bandwidth of the first formant located at
approximately 260 Hz. The minimum LSF separation for this
model is corresponding to the maximum root radius
of . Limiting the LSF separation to 0.32 yields a
maximum root radius of . Consequently, the sharp
spectral peak at the first formant has been removed from the
corresponding all-pole model, as shown by the dashed line in
Fig. 2.

V. CONCLUSION

We have derived a lower limit for the distance of adjacent
line spectral frequencies for both the LSP decomposition and

the ISP decomposition. The acquired theoretical limit can make
applications using line spectra more efficient. This result applies
to polynomials whose roots lie in an origin-centered circle of
radius .

The current results could be used, for example, in either of
the following purposes. First, numerical root-finding algorithms
for extraction of LSFs can use the lower limit as a resolution
threshold below which it is unnecessary to search for roots.
Second, LP models can be modified to remove excessively sharp
peaks by altering LSFs. By moving LSFs further away from
each other, we can guarantee a minimum bandwidth for spec-
tral peaks.
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Tom Bäckström, Carlo Magi. “Effect of white-noise correction on linear
predictive coding”, IEEE Signal Processing Letters, Vol. 14, No. 2, pp.
148-151, 2007.

Copyright c© 2009 IEEE. Reprinted, with permission, from IEEE Signal Process-
ing Letters, “Effect of white-noise correction on linear predictive coding”, Tom
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Effect of White-Noise Correction
on Linear Predictive Coding

Tom Bäckström, Member, IEEE, and Carlo Magi

Abstract—White-noise correction is a technique used in speech
coders using linear predictive coding (LPC). This technique gen-
erates an artificial noise-floor in order to avoid stability problems
caused by numerical round-off errors. In this letter, we study the
effect of white-noise correction on the roots of the LPC model. The
results demonstrate in analytic form the relation between the noise
floor level and the stability radius of the LPC model.

Index Terms—Autocorrelation function, linear predictive coding
(LPC), numerical stability, speech coding, stability radius, white-
noise correction.

I. INTRODUCTION

I N SPEECH processing, linear prediction is a classical and
often used method for modeling of the spectral envelope of a

speech signal [1]. The envelope is represented by an th-order
polynomial , and the coefficient vector

is calculated from the normal equations

(1)

where is the autocorrelation matrix that is of size
, symmetric, real, and has Toeplitz structure. If

is positive definite, then is minimum-phase, i.e.,
it has all zeros inside the unit circle, and is stable. In
some circumstances, which will be discussed in more detail in
Section III, the stability criterion can be strengthened. Specif-
ically, linear predictive models calculated using the autocorre-
lation criterion have their roots within an origin-centered circle
of radius , where is the frame length in
samples [2].

However, when the autocorrelation is represented in the fi-
nite-length memory of a computer, the inevitable round-off er-
rors can make the matrix ill-conditioned or even jeop-
ardize its positive definite property. In addition, problems in
estimation of the spectrum can move zeros closer to the unit
circle. It follows that the roots of can be arbitrarily close
to the unit circle or no longer remain within the unit circle, and
the model could become unstable. Zeros close to the unit circle
are not only troublesome in view of stability but also since the
formants corresponding to such zeros have an unnaturally low
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bandwidth. Such formants cause severe reduction of perceived
speech quality.

To fence these problems, it is possible to modify the autocor-
relation matrix in such a way that the positive definite property
is ensured by a positive margin. By adding a small positive con-
stant to the autocorrelation at lag (where is an el-
ement of the autocorrelation sequence at lag ), or equivalently,
using the modified autocorrelation matrix

(2)

all eigenvalues of are increased by , and for a suffi-
ciently large , matrix is positive definite and well-con-
ditioned. This is a typical approach used in regularization of
ill-conditioned matrices [3]. It has been used in speech coding
for at least a quarter century [4], and it is being used in most
of the major speech coding standards employing linear predic-
tive coding, including, e.g., G.729, AMR, AMR-WB, and Speex
[5]–[8]. Usually, we set , where is a small constant.
The choice of defining using is natural, since it can be in-
terpreted as adding an artificial noise floor to the input signal,
whose level depends only on the energy of the input signal.
However, we find it surprising that, at least as far as the authors
are aware, there is no conclusive evidence in the literature as
to the behavior of the roots of as a function of . Indeed,
there are surprisingly few publications concerning white-noise
correction overall.

In this letter, we are concerned with the roots of as a
function of in the analytical case, where no round-off er-
rors are present. We will show that the zeros lie in an origin-cen-
tered circle of radius , that is, the zeros are within the unit
circle by a positive margin , where is a de-
creasing function of . This result is useful, for example, in the
quantization of line spectral frequencies (LSFs), a representa-
tion of the linear predictive coefficients [9], since we can, with
the aid of the stability radius, obtain a lower limit for the separa-
tion of LSFs and thus specify the required accuracy of numerical
operations [10].

II. AUTOCORRELATION CONVERGENCE RATE

FOR FINITE SEQUENCES

The autocorrelation sequence of a signal , with
, can be defined as

1070-9908/$25.00 © 2006 IEEE
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Fig. 1. Illustration of the upper limit for the autocorrelation sequence of signals
of length N = f10; 20;50;100g.

Define the down-shift matrix as , that is,

. . .
...

...
. . .

. . .
...

. . .

By setting , the autocorrelation can now be
written as

The matrix is nilpotent with power of nilpotency ,
where signifies rounding upward to the closest integer. The
numerical radius, defined as , for
a nilpotent operator is , where
is the power of nilpotency [11]. The autocorrelation sequence is
therefore, for , limited as

(3)

This limit is illustrated in Fig. 1.

III. ROOT LOCI WITH WHITE-NOISE CORRECTION

The coefficients of a linear predictive model
are, in the autocorrelation method, cal-

culated from the normal equations of (1). Applying white-noise
correction to (1), we obtain

(4)

Following the principal idea of [12, Ch. 5], let be a zero
of and therefore , with

. In matrix form, we have

...
...

Multiplying (4) from the left by , we obtain

(5)

We can readily see that the matrix is the
autocorrelation matrix of the convolved signal . This
signal is of length , and we thus have

with due to (3). By defining
, we obtain , where

is the principal sub-matrix of .
Similarly, is the autocorrelation matrix of the

sequence . This sequence is of length , and we thus have

with and .
Substituting and into (5), we obtain

Solving for and using the limits of and , we find that

Finally, by choosing , we conclude that

(6)

Note that when , the result simplifies to
, and it thus agrees with prior works [2].
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Fig. 2. Maximal root radius of the linear predictive model (m = 8)with white-
noise correction as a function of � scaled by kR k. The dash-dotted line is the
theoretical limit from (7), and the continuous line is the highest observed root
radius for 1000 randomly generated models.

Moreover, when the window length is large , then
and (6) reduces to

(7)

As this limit is only slightly looser than that of (6), we can often
use this simpler form.

Fig. 2 illustrates the limit of (7). In Fig. 2, we have used
on the x-axis instead of in order to show the limit

for all possible values of . We observe that for large , the
limit is loose. The reason for this is that the limit used for
overshoots, as it does not take into account the fact that all zeros
of travel simultaneously toward zero as a function of .
However, since is small in practical applications, this is not a
significant problem.

IV. CHOICE OF SCALING COEFFICIENT

Traditionally, the white-noise correction level has been de-
fined using the lag 0 autocorrelation , that is, . It is a
choice motivated by convenience—the value of the scaling coef-
ficient need not be calculated but can be extracted directly from
the autocorrelation sequence. In addition, as is equal to the
signal energy, the white-noise correction level is always set in
relation to the signal energy, which is a well-warranted choice.
The proof in Section III, however, used a different scaling

. In this section, we will describe the relation of these
two coefficients.

Let denote the trace of a matrix, and its eigenvalues,
with as the maximal eigenvalue; then due to the Toeplitz
structure [13]

(8)

On the other hand, we can also limit from below by

(9)

Both limits are sharp in the sense that they can be reached
for some combination of the eigenvalues . In other
words, lies in the interval ,
and we can estimate below by . This scaling,

, gives a slightly larger stability radius but
agrees with convention. The limits corresponding to (6) and
(7), using , are thus

(10)

(11)

V. DISCUSSION AND CONCLUSIONS

In this letter, we have presented, in analytic form, an upper
limit for the stability radius of the LP model as a function of
white-noise correction level. Specifically, we showed that the
maximum radius of the roots of the LP model is a decreasing
function of the white-noise correction level , with for
all .

While we have discussed theory of white-noise correction in
detail, most speech coders apply other modifications to the au-
tocorrelation sequence as well. These modifications enhance, in
effect, the condition number, and we should expect that the sta-
bility radius will decrease correspondingly. Detailed analysis of
these modifications is left for further study.

Even though white-noise correction is applied to alleviate
problems caused by numerical round-off errors, our analysis in
this letter has been purely analytical. Practical applications of
our results should therefore take into account issues of numer-
ical accuracy as well.

The presented results are mainly of theoretical interest but
also useful in determining the required accuracy of the root-
finding process of the LSP representation [9]. The distance of
adjacent LSFs is relative to the stability radius, and an upper
limit for the latter gives us a lower limit on the former [10].
Specifically, for stability radius , the minimum separation
of LSFs is

(12)

where for LSP, and for immittance spectrum pair
(ISP) [9], [14]. Using (6) and (12), we have calculated the min-
imum separation of LSFs for some common parameter combi-
nations in Table I.
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TABLE I
TYPICAL COMBINATIONS OF MODEL ORDER m, SAMPLING FREQUENCY

F , FRAME LENGTH l (WHERE N = F l=1000), AND WHITE-NOISE

CORRECTION LEVEL � AND THEIR CORRESPONDING STABILITY

RADIUS r AND MINIMUM LSF SEPARATION �! FROM (10) AND (12)
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Closed phase �CP� covariance analysis is a widely used glottal inverse filtering method based on the
estimation of the vocal tract during the glottal CP. Since the length of the CP is typically short, the
vocal tract computation with linear prediction �LP� is vulnerable to the covariance frame position.
The present study proposes modification of the CP algorithm based on two issues. First, and most
importantly, the computation of the vocal tract model is changed from the one used in the
conventional LP into a form where a constraint is imposed on the dc gain of the inverse filter in the
filter optimization. With this constraint, LP analysis is more prone to give vocal tract models that are
justified by the source-filter theory; that is, they show complex conjugate roots in the formant
regions rather than unrealistic resonances at low frequencies. Second, the new CP method utilizes
a minimum phase inverse filter. The method was evaluated using synthetic vowels produced by
physical modeling and natural speech. The results show that the algorithm improves the
performance of the CP-type inverse filtering and its robustness with respect to the covariance frame
position. © 2009 Acoustical Society of America. �DOI: 10.1121/1.3095801�

PACS number�s�: 43.70.Gr, 43.70.Jt �CHS� Pages: 3289–3305

I. INTRODUCTION

All areas of speech science and technology rely, in one
form or another, on understanding how speech is produced
by the human voice production system. In the area of voice
production research, glottal inverse filtering �IF� refers to
methodologies that aim to estimate the source of voiced
speech, the glottal volume velocity waveform. The basis for
these techniques is provided by the classical source-filter
theory, according to which the production of a voiced speech
signal can be interpreted as a cascade of three separate pro-
cesses: the excitation, that is, the glottal volume velocity
waveform, the vocal tract filter, and the lip radiation effect
�Fant, 1970�. In order to compute the first of these processes,
IF methodologies estimate the second and third processes
typically in forms of linear, time-invariant digital systems
and then cancel their contribution from the speech signal by
filtering it through the inverse models of the vocal tract and
lip radiation effect. Since the lip radiation effect can be esti-
mated at low frequencies as a time-derivative of the flow
�Flanagan, 1972�, which is easily modeled digitally by a

fixed first order finite impulse response �FIR� filter, the key
problem in IF methods is the estimation of the vocal tract.

Among the main methodologies used to analyze human
voice production, IF belongs to the category of acoustical
methods. As alternatives to the acoustical methods, it is pos-
sible to investigate voice production with visual inspection
of the vocal fold vibrations or with electrical �e.g., Lecluse
et al., 1975� or electromagnetic methods �Titze et al., 2000�.
Visual analysis of the vibrating vocal folds is widely used
especially in clinical investigation of voice production. Sev-
eral techniques, such as video stroboscopy �e.g., Hirano,
1981�, digital high-speed stroboscopy �e.g., Eysholdt et al.,
1996�, and kymography �Švec and Schutte, 1996�, have been
developed, and many of them are currently used in daily
practices in voice clinics. Acquiring visual information about
voice production, however, always calls for invasive mea-
surements in which the vocal folds are examined either with
a solid endoscope inserted in the mouth or with a flexible
fiberscope inserted in the nasal cavity. In contrast to these
techniques, a benefit of glottal IF is that the analysis can be
computed from the acoustic signal in a truly non-invasive
manner. This feature is essential especially in such research
areas in which vocal function needs to be investigated under
as natural circumstances as possible, for instance, in under-
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b�Deceased in February 2008.
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standing the role of the glottal source in the expression of
vocal emotions �Cummings and Clements, 1995; Gobl and
Ní Chasaide, 2003; Airas and Alku, 2006� or in studying
occupational voice production �Vilkman, 2004; Lehto et al.,
2008�. In addition to its non-invasive nature, glottal IF pro-
vides other favorable features. IF results in a temporal signal,
the glottal volume velocity waveform, which is an estimate
of a real acoustical waveform of the human voice production
process. Due to its direct relationship to the acoustical pro-
duction of speech, estimates of glottal excitations computed
by IF can be modeled with their artificial counterparts to
synthesize human voice in speech technology applications
�Klatt and Klatt, 1990; Carlson et al., 1991; Childers and Hu,
1994�.

Since the introduction of the idea of IF by Miller �1959�,
many different IF methods have been developed. The meth-
ods can be categorized, for example, based on the input sig-
nal, which can be either the speech pressure waveform re-
corded in the free field outside the lips �e.g., Wong et al.,
1979; Alku, 1992� or the oral volume velocity captured by a
specially designed pneumotachograph mask, also known as
the Rothenberg mask �e.g., Rothenberg, 1973; Hertegård
et al., 1992�. In addition, methods developed to do IF differ
depending on whether they need user adjustments in defining
the settings of the vocal tract resonances �e.g., Price, 1989;
Sundberg et al., 2005� or whether the analysis is completely
automatic �e.g., Veeneman and BeMent, 1985�. From the
methodological point of view, the techniques developed can
be categorized based on how the effect of the glottal source
is taken into account in the estimation of the vocal tract in
the underlying IF method. From this perspective, there are,
firstly, methods �e.g., Alku, 1992� that are based on the gross
estimation of the glottal contribution during both the closed
and open phase of the glottal pulse using all-pole modeling.
By canceling the glottal contribution from the speech signal,
a model for the vocal tract is computed with linear prediction
�LP� �Rabiner and Schafer, 1978� although other spectral en-
velope fitting techniques such as those based on the penal-
ized likelihood approach �Campedel-Oudot et al., 2001� or
cepstrum analysis �Shiga and King, 2004� could, in principle,
be used as well. Secondly, the use of a joint optimization of
the glottal flow and vocal tract is possible based on synthetic,
pre-defined models of the glottal flow �e.g., Milenkovic,
1986; Kasuya et al., 1999; Fröhlich et al., 2001; Fu and
Murphy, 2006�. Thirdly, it is possible to estimate the glottal
flow using closed phase �CP� covariance analysis �Strube,
1974; Wong et al., 1979�. This is based on the assumption
that there is no contribution from the glottal source to the
vocal tract during the CP of the vocal fold vibration cycle.
After identification of the CP, covariance analysis is used to
compute a parametric all-pole model of the vocal tract using
LP.

CP covariance analysis is among the most widely used
glottal IF techniques. Since the original presentation of the
method by Strube �1974�, the CP method has been used as a
means to estimate the glottal flow, for instance, in the analy-
sis of the phonation type �Childers and Ahn, 1995�, prosodic
features of connected speech �Strik and Boves, 1992�, vocal
emotions �Cummings and Clements, 1995�, source-tract in-

teraction �Childers and Wong, 1994�, singing �Arroabarren
and Carlosena, 2004�, and speaker identification �Plumpe
et al., 1999�. In addition to these various applications, CP
analysis has been a target of methodological development.
The major focus of this methodological work has been the
method of accurately determining the location of the covari-
ance frame, the extraction of the CP of the glottal cycle. In
order to determine this important time span from a speech
waveform, an approach based on a series of sliding covari-
ance analyses is typically used. In other words, the analysis
frame is sequentially moved one sample at a time through
the speech signal and the results of each covariance analysis
are analyzed in order to determine the CP. Strube �1974�
used this approach and identified the glottal closure as an
instant when the frame was in a position which yielded the
maximum determinant of the covariance matrix. Wong et al.
�1979� instead defined the CP as the interval when the nor-
malized squared prediction error was minimum, and this
technique has been used by several authors since, although
sometimes with slight modifications �e.g., Cummings and
Clements, 1995�. Plumpe et al. �1999�, however, argued that
the use of the prediction error energy in defining the frame
position of the covariance analysis might be problematic for
sounds which involve gradual closing or opening of the vo-
cal folds. As a remedy, they proposed an idea in which slid-
ing covariance analyses are computed and formant frequency
modulations between the open and CP of the glottal cycle are
used as a means to define the optimal frame position. Akande
and Murphy �2005� suggested a new technique, adaptive es-
timation of the vocal tract transfer function. In their method,
the estimation of the vocal tract is improved by first remov-
ing the influence of the glottal source by filtering the speech
signal with a dynamic, multi-pole high-pass filter instead of
the traditional single-pole pre-emphasis. The covariance
analysis is then computed in an adaptive loop where the
optimal filter order and frame position are searched for by
using phase information of the filter candidates.

All the different CP methods referred to above are based
on the identification of the glottal CP from a single source of
information provided by the speech pressure waveform.
Therefore, they typically involve an epoch detection block in
which instants of glottal closure and opening are extracted
based on algorithms such as DYPSA �Naylor et al., 2007�.
Alternatively, if electroglottography �EGG� is available, it is
possible to use two information channels so that the position
and duration of the CP is estimated from EGG, and then the
speech waveform is inverse filtered. This so-called two-
channel analysis has been shown to yield reliable results in
IF due to improved positioning of the covariance frame
�Veeneman and BeMent, 1985; Krishnamurthy and Childers,
1986�. In this technique, the CP analysis is typically com-
puted by estimating the CP of the glottal cycle as the time
interval between the minimum and maximum peaks of the
first time-derivative of the EGG waveform �Childers and
Ahn, 1995�. It is important to notice that even though there
have been many modifications to CP analysis since the work
by Strube �1974�, all the methods developed are based on the
same principle in the mathematical modeling of the vocal
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tract, namely, the use of conventional LP with the covariance
criterion described in Rabiner and Schafer �1978�.

Even though different variants of CP covariance analysis
have been shown to yield successful estimates of the glottal
flow by using simple synthesized vowels, this IF methodol-
ogy has certain shortcomings. Several previous studies have
in particular indicated that glottal flow estimates computed
by the CP analysis vary greatly depending on the position of
the covariance frame �e.g., Larar et al., 1985; Veeneman and
BeMent, 1985; Yegnanarayana and Veldhuis, 1998; Riegels-
berger and Krishnamurthy, 1993�. Given the fundamental as-
sumption of the method, that is the computation of the vocal
tract model during an excitation-free time span, this undesir-
able feature of the CP analysis is understandable. The true
length of the glottal CP is typically short, which implies that
the amount of data used to define the parametric model of the
vocal tract with the covariance analysis is sparse. If the po-
sition of this kind of a short data frame is misaligned, the
resulting linear predictive filter typically fails to model the
vocal tract resonances, which might result in severe distor-
tion of the glottal flow estimates. This problem is particularly
severe in voices of high fundamental frequency �F0� because
they are produced by using very short lengths in the glottal
CP. In order to cope with this problem, previous CP methods
typically exploit techniques to improve the extraction of the
covariance frame position. In the present work, however, a
different approach is suggested based on setting a math-
ematical constraint in the computation of the inverse model
of the vocal tract with LP. The constraint imposes a pre-
defined value for the direct current �dc� gain of the inverse
filter as a part of the optimization of the filter coefficients.
This results in vocal tract filters whose transfer functions, in
comparison to those defined by the conventional covariance
analysis, are less prone to include poles in positions in the
z-domain that are difficult to interpret from the point of view
of the classical source-filter theory of vowel production �e.g.,
on the positive real axis�. This new dc-constrained vocal tract
model is combined in the present study with an additional
procedure, checking of the minimum phase property of the
inverse filter, to yield a new CP algorithm.

In the following, typical artifacts caused by the CP
analysis are first described using representative examples
computed from natural vowels. These examples are then
used to motivate the proposed new method to compute LP in
vocal tract modeling of the CP analysis. The new method is
then tested with both synthetic vowels produced by physical
modeling of the human voice production mechanism and
with natural speech of both female and male subjects.

II. METHODS

A. Sources of distortion in the conventional CP
analysis

In this section, two major sources of error in the conven-
tional CP analysis are described with the help of examples.
The word “conventional” refers here to the CP analysis in
which the vocal tract is modeled with a pth order all-pole
filter computed by the basic form of the covariance analysis

described by Rabiner and Schafer �1978�, and the lip radia-
tion effect is modeled with a fixed first order FIR filter. All
the analyses described were computed using the sampling
frequency of 8 kHz and the order of the vocal tract filter set
to p=12. The length of the covariance frame was 30 samples
�3.75 ms�. The instant of glottal closure was extracted, when
needed, as the instant of the negative peak of the EGG de-
rivative.

First, the sensitivity of the glottal flow estimate about
the position of the covariance frame is demonstrated. Figure
1 shows three glottal flow estimates, which were inverse-
filtered from the same token of a male subject uttering the
vowel �a� by using a minor change in the position of the
covariance frame position: the beginning of the covariance
frame in Figs. 1�b� and 1�c� was moved earlier in the signal
by two and four samples, respectively, in comparison to the
beginning of the covariance frame used in Fig. 1�a�. The
inverse filters obtained are shown in the z-domain in the left
panels of Fig. 2, and the amplitude spectra of the correspond-
ing vocal tract filters are depicted in the right panels of the
same figure. The example indicates how a minor change in
the position of the covariance frame has resulted in a sub-
stantial change in the estimated glottal flows. It is worth
noticing that the covariance analyses illustrated in Figs. 2�a�
and 2�b� have resulted in two inverse filters both of which
have one root on the positive real axis in the z-domain. In
Fig. 2�b�, the position of this root is slightly closer to the unit
circle than in Fig. 2�a�. The CP analysis shown in Fig. 2�c�
has, in turn, resulted in an inverse filter with a complex con-
jugate pair of roots at low frequencies. The effect of an in-
verse filter root which is located on the positive real axis
approaches that of a first order differentiator �i.e., H�z�=1
−z−1� when the root approaches the unit circle, and a similar
effect is also produced by a complex conjugate pair of roots
at low frequencies. Consequently, the resulting glottal flow
estimate, as shown in Figs. 1�b� and 1�c�, becomes similar to
a time-derivative of the flow candidate given by an inverse
filter with no such roots or when these roots are located in a
more neutral position close to the origin of the z-plane. This
severe distortion of the glottal flow estimate caused by the
occurrence of inverse filter roots, both real and complex con-
jugate pairs, at low frequencies is greatest at time instants
when the flow changes most rapidly, that is, near glottal clo-
sure. As shown in Figs. 1�b� and 1�c�, this distortion1 is typi-
cally seen as sharp negative peaks, called “jags” by Wong
et al. �1979�, of the glottal flow pulses at the instants of
closure.

The undesirable distortion of the glottal flow estimates
by the occurrence of jags implies that the corresponding all-
pole vocal tract model has roots on the positive real axis or at
low frequencies, and, consequently, its amplitude spectrum
shows boosting of low frequencies. This effect is clearly
shown in the example by comparing the right panel of Fig.
2�a� to the corresponding panels in Figs. 2�b� and 2�c�. It is
worth emphasizing that the source-filter theory of voice pro-
duction by Fant �1970� assumes that poles of the vocal tract
for non-nasalized voiced sounds occur as complex conjugate
pairs and the low-frequency emphasis of the vowel spectrum
results from the glottal source. Therefore, it can be argued
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that among the three vocal tract models computed by the CP
analysis, the one depicted in Fig. 2�a� is the most plausible to
represent an amplitude spectrum of an all-pole vocal tract of
a vowel sound.

Quality of glottal flows computed by the CP analysis can
be made less dependent on the position of the covariance
frame by removing the roots of the vocal tract model located
on the real axis �Wong et al., 1979; Childers and Ahn, 1995�.
This is typically done by first solving the roots of the vocal

tract model given by LP and then by removing those roots
that are located on the positive real axis while preserving the
roots on the negative real axis. This procedure was used for
the example described in Figs. 1 and 2, and the results are
shown in the time domain in Fig. 3 and in the frequency
domain in Fig. 4. It can be seen that this standard procedure
indeed decreased the distortion caused by the jags, as shown
in Fig. 3�b�. It is, however, worth noticing that this procedure
is blind to complex roots located at low frequencies, which
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FIG. 1. Glottal flows estimated by IF
the vowel �a� uttered by a male
speaker by varying the position of the
covariance frame in the CP analysis.
The covariance frame was placed in
the beginning of the CP using the dif-
ferentiated EGG in panel �a�, and its
position was moved earlier by two
samples in panel �b� and by four
samples in panel �c�.
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FIG. 2. Transfer functions of inverse
filters in the z-domain �left panels� and
the corresponding amplitude spectra of
the all-pole vocal tract models �right
panels� used in the CP analyses shown
in Fig. 1.
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cause distortion, described in Figs. 1�c� and 3�c�, that might
be even more severe than that resulting from the roots on the
positive real axis.

In addition to the distortion caused by the occurrence of
inverse filter real and complex roots at low frequencies as
described above, the estimation of the glottal flow with the
CP analysis might be affected by another issue. Namely, the
computation of the linear predictive analysis with the cova-
riance analysis might yield an inverse filter that is not mini-

mum phase; that is, the filter has roots outside the unit circle
in the z-domain. Although this property of the covariance
analysis is well-known in the theory of LP �Rabiner and
Schafer, 1978�, it is, unfortunately, typically ignored in most
glottal IF studies �exceptions are Akande and Murphy, 2005;
Bozkurt et al., 2005; Bäckström and Alku, 2006�. A possible
explanation of why the occurrence of non-minimum phase
filters gets so little attention in glottal wave analysis is the
fact that IF is always computed via FIR filtering. Hence,
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FIG. 3. Glottal flows estimated by IF
the same �a� vowel used in Fig. 1.
Roots located on the positive real axis
were removed before IF. The covari-
ance frame was placed in the begin-
ning of the CP with the help of the
differentiated EGG in panel �a�, and its
position was moved earlier by two
samples in panel �b� and by four
samples in panel �c�.
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FIG. 4. Transfer functions of inverse
filters in the z-domain �left panels� and
the corresponding amplitude spectra of
the all-pole vocal tract models �right
panels� used in the CP analyses shown
in Fig. 3.
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non-minimum phase filters do not cause stability problems,
which, of course, would be the case if non-minimum phase
filters were used in all-pole synthesis, such as in speech cod-
ing or synthesis. Even though stability problems are not met
in glottal in IF, the use of non-minimum phase inverse filters
does cause other kinds of artifacts, as demonstrated below.

According to the source-filter theory of speech produc-
tion, the glottal flow is filtered by a physiological filter, the
vocal tract, which is regarded as a stable all-pole system for
vowels and liquids. In the z-domain, this kind of system must
have all its poles inside the unit circle �Oppenheim and Scha-
fer, 1989�. An optimal inverse filter cancels the effects of the
vocal tract by matching each pole inside the unit circle with
a zero of a FIR filter. However, it is well-known in the theory
of digital signal processing that zeros of a FIR filter can be
replaced by their mirror image partners; that is, a zero at z
=z1 is replaced by z=1 /z1

*, without changing the shape of
the amplitude spectrum of the filter �Oppenheim and Schafer,
1989�. In other words, an inverse filter that is minimum
phase can be replaced with a non-minimum phase FIR by
replacing any of its roots with a corresponding mirror image
outside the unit circle without changing the shape of inverse
filter’s amplitude response. Therefore, from the point of view
of canceling the amplitude response of the all-pole vocal
tract, there are several inverse filters, of which one is mini-
mum phase and others are non-minimum phase, that can be
considered equal. These candidates are, however, different in
terms of their phase characteristics, and canceling the effects
of an all-pole vocal tract with a non-minimum phase inverse
filter produces phase distortion, which might severely affect
the shape of the glottal flow estimate. This distortion is es-
pecially strong in cases where zeros in the inverse filter lo-
cated in the vicinity of the lowest two formants are moved
from inside the unit circle to the outside. Figure 5 shows an

example of this effect. In Fig. 5�a�, a glottal flow estimated
with a minimum phase inverse filter is shown in the left
panel, and the z-plane representation of the corresponding
inverse filter is shown on the right. This inverse filter was
deliberately modified by replacing one complex conjugate
root pair located inside the unit circle by its corresponding
mirror image pair located outside the circle. The root pair
selected corresponds to the inverse model of the first formant
and is represented in the z-plane graph of Fig. 5�a� by the
complex conjugate pair having the lowest angular frequency
�indicated by arrows�. Even though the modification caused
only a minor change in the root radius �original radius: 0.98,
modified radius: 1.02�, the change from the minimum phase
structure into the non-minimum phase form is manifested as
increased ripple during the CP of the glottal cycle, as shown
in the left panel of Fig. 5�b�.

B. The improved CP analysis

A new approach is proposed in the present study to com-
pute IF with the CP analysis. The proposed technique aims to
reduce the effects of the two major artifacts, occurrence of
low-frequency roots of the inverse filter and occurrence of
inverse filter roots outside the unit circle, described in the
previous section. The main part of the method, to be de-
scribed in Sec. II B 1, is represented by a new mathematical
algorithm to define a linear predictive inverse filter. The
novel way to compute vocal tract inverse filters is then com-
bined, as described in Sec. II B 2, with an additional process-
ing stage to yield the new glottal IF algorithm.

1. Computation of the vocal tract inverse filter with
constrained linear prediction

The conventional CP analysis involves modeling the vo-
cal tract with an all-pole filter defined according to the clas-
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FIG. 5. Glottal flows estimated by the
CP analysis �left panels� and inverse
filter transfer functions in the
z-domain �right panels� in the case of
�a� minimum phase and �b� non-
minimum phase IF. Radii of all roots
in minimum phase filtering are less
than unity. In non-minimum phase fil-
tering, the complex conjugate root pair
indicated by arrows in panel �a� is re-
placed by its mirror image pair outside
the unit circle. The root radius of the
indicated complex conjugate pair is
0.98 in panel �a� and 1.02 in panel �b�.

3294 J. Acoust. Soc. Am., Vol. 125, No. 5, May 2009 Alku et al.: Inverse filtering by closed phase analysis



sical LP based on the covariance criterion �Rabiner and
Schafer, 1978�. The filter coefficients of pth order inverse
filter are searched for by using a straightforward optimiza-
tion where the energy of the prediction error is minimized
over the covariance frame. In principle, this kind of optimi-
zation based on the mean square error �MSE� criterion treats
all the frequencies equally, and the filter coefficients are
mathematically adjusted so that the resulting all-pole spec-
trum accurately matches the high-energy formant regions of
the speech spectrum �Makhoul, 1975�. However, it is worth
emphasizing that the conventional covariance analysis does
not use any additional information in the optimization pro-
cess, for example, to bias the location of roots of the result-
ing all-pole filter. This inherent feature of the conventional
covariance analysis implies that roots of the resulting all-
pole model of the vocal tract might be located in such a
position in the z-domain �e.g., on the positive real axis� that
is correct from the point of view of MSE-based optimization
but unrealistic from the point of view of the source-filter
theory of vowel production and its underlying theory of tube
modeling of the vocal tract acoustics. In his fundamental
work, Fant �1970� related vocal tract shapes derived from
x-rays to the acoustic theory of different tube shapes and
developed the source-filter theory of speech production. Ac-
cording to this theory, the transfer function of voiced speech,
defined as the ratio of the Laplace transforms of the sound
pressure at the lips to the glottal volume velocity, includes
only complex poles in the s-domain. According to the dis-
crete time version of this theory �e.g., Markel and Gray,
1976�, the z-domain transfer function of the vocal tract is
expressed for vowel sounds as an all-pole filter of order 2K,
which models K formants as a cascade of K second order
blocks, each representing an individual resonance of a cer-
tain center frequency and bandwidth. In other words, there
might be a mismatch in root locations of vocal tract filters
between those optimized by the conventional covariance
analysis and those assumed both in the source-filter theory
and its underlying acoustical theory of tube shapes. It is
likely that this mismatch becomes prevalent especially in
cases when the covariance frame consists of a small number
of data samples. Hence, the phenomenon discussed is related
to the sensitivity of the CP analysis about the position of the
covariance frame, a drawback discussed in several previous
studies �e.g., Larar et al., 1985; Veeneman and BeMent,
1985; Yegnanarayana and Veldhuis, 1998; Riegelsberger and
Krishnamurthy, 1993�.

Based on the concept of constrained LP, the computa-
tion of the conventional covariance analysis, however, can be
modified in order to reduce the distortion that originates from
such vocal tract model roots that are located in unrealistic
positions in the z-domain. The key idea is to impose such
restrictions on the linear predictive polynomials prior to the
optimization that can be justified by the source-filter theory
of voice production. Intuitively, this means that instead of
allowing the linear predictive model to locate its roots freely
in the z-domain based solely on the MSE criterion, the opti-
mization is given certain restrictions in the predictor struc-
ture, which then result in more realistic root locations. In
order to implement restrictions that end up in equations

which can be solved in closed form, one has to first find a
method to express the constraint in a form of a concise math-
ematical equation and then use the selected equation in the
minimization problem. One such convenient constraint can
be expressed with the help of the dc gain of the linear pre-
dictive inverse filter. The rationales to apply this quantity are
as follows. First, the dc gain of a digital FIR filter can be
expressed in a very compressed and mathematically straight-
forward manner as a linear sum of the predictor coefficients
�see Eq. �4� below�. Consequently, the optimization of the
constrained linear predictive filter is mathematically straight-
forward, ending up with a matrix equation �see Eq. �9�� that
can be solved noniteratively in a similar manner as the cor-
responding normal equations of the conventional LP. Second,
it is known from the classical source-filter theory of voice
production that the vocal tract transfer function of non-
nasalized sounds approaches unity at zero frequency pro-
vided that the losses through vibration of the cavity walls are
small �Fant, 1970, pp. 42–44�. In conventional LP, the dc
gain of the inverse filter is not constrained, and, conse-
quently, it is possible that the amplitude response of the vo-
cal tract model computed by the covariance analysis shows
excessive boost at zero frequency. If the covariance frame is
short and placed incorrectly, it might even happen that the
amplitude response of the obtained vocal tract model shows
larger gain at zero frequency than at formants, which violates
the assumptions of the source-filter theory and its underlying
acoustical theory of tube shapes. Hence, by imposing a pre-
defined constraint on the dc gain of the linear predictive in-
verse filter, one might expect to get such linear predictive
vocal tract models whose amplitude response shows better
correspondence with Fant’s source-filter theory; that is, the
transfer function indicates peaks at formant frequencies,
while the gain at zero frequency is clearly smaller and ap-
proaches unity. It must be emphasized, however, that even
though the proposed idea to assign the dc gain of the inverse
filter into a pre-defined value is undoubtedly mathematically
straightforward, this technique does not involve imposing
explicit constraints on the root positions per se prior to the
optimization. In other words, the exact z-domain root loca-
tions of the vocal tract model are still determined by the
MSE-type optimization, yet the likelihood for these roots to
become located in such positions that they create an exces-
sive boost at low frequency is less than in the case of the
conventional LP. Mathematical derivations to optimize the
proposed idea of the dc-constrained LP will be described
below.

In the conventional LP, the error signal, known as the
residual, can be expressed in matrix form as follows:

en = xn + �
k=1

p

akxn−k = �
k=0

p

akxn−k = aTxn, �1�

where a= �a0 , . . . ,ap�T, with a0=1, and the signal vector is
xn= �xn . . .xn-p�T. The coefficient vector a is optimized ac-
cording to the MSE criterion by searching for such param-
eters that minimize the square of the residual. In the covari-
ance method, this minimization of the residual energy is
computed over a finite time span �Rabiner and Schafer,
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1978�. By denoting this time span with 0�n�N−1, the
prediction error energy E�a� can be written as

E�a� = �
n=0

N−1

en
2 = �

n=0

N−1

aTxnxn
Ta = aT��

n=0

N−1

xnxn
T�a = aT�a ,

�2�

where matrix � is the covariance matrix defined from speech
samples as

� = �
n=0

N−1

xnxn
T � R�p+1���p+1�. �3�

It is worth noticing that the computation of matrix � re-
quires speech samples located inside the energy minimiza-
tion frame, that is, xn, where 0�n�N−1, plus p samples
occurring before this frame, that is, xn, where −p�n�0.
The optimal filter coefficients can be computed easily by
minimizing the prediction error energy E�a� with respect to
the coefficient vector a. This yields a=�2�−1u, where �2

= �uT�−1u�−1 is the residual energy given by the optimized
predictor and u= �10¯0�T.

The conventional LP can be modified by imposing con-
straints on the minimization problem presented above. A
mathematically straightforward way to define one such con-
straint is to set a certain pre-defined value for the frequency
response of the linear predictive inverse filter at zero fre-
quency. By denoting the transfer function of a pth order con-
strained inverse filter C�z�, the following equation can be
written:

C�z� = �
k=0

p

ckz
−k ⇒ C�ej0� = C�1� = �

k=0

p

ck = ldc, �4�

where ck, 0�k� p, are the filter coefficients of the con-
strained inverse filter and ldc is a pre-defined real value for
the gain of the filter at dc. Using matrix notation, the dc-
constrained minimization problem can now be formulated as
follows: minimize cT�c subject to �Tc=b, where c
= �c0¯cp�T is the filter coefficient vector with c0=1, b
= �1ldc�T, and � is a �p+1��2 constraint matrix defined as

� = �
1 1

0 1

· ·

· ·

· ·

0 1

	 . �5�

The covariance matrix defined in Eq. �3� is positive definite.
Therefore, the quadratic function to be minimized in the dc-
constrained problem is convex. Thus, in order to solve the
minimization problem, the Lagrange multiplier method
�Bazaraa et al., 1993� can be used. This procedure begins
with the definition of a new objective function,

��c,g� = cT�c − 2gT��Tc − b� , �6�

where g= �g1g2�T�0 is the Lagrange multiplier vector. The
objective function of Eq. �6� can be minimized by setting its

derivative with respect to vector c to zero. By taking into
account that matrix � is symmetric �i.e., �=�T�, this results
in the following equation:

�c��c,g� = cT��T + �� − 2gT�T = 2cT� − 2gT�T

= 2��c − �g� = 0. �7�

By combining Eq. �7� with the equation of the constraint
�i.e., �Tc−b=0�, vector c can be solved from the group of
equations

�c − �g = 0,

�Tc − b = 0, �8�

which yields the optimal coefficients of the constrained in-
verse filter:

c = �−1���T�−1��−1b . �9�

In summary, the optimal dc-constrained inverse filter, a FIR
filter of order p given in Eq. �4� is obtained by solving for the
vector c according to Eq. �9�, in which the covariance matrix
� is defined by Eq. �3� from the speech signal xn, matrix �
is defined by Eq. �5�, and matrix b= �1ldc�T, where ldc is the
desired inverse filter gain at dc.

2. Checking the minimum phase property

In order to eliminate the occurrence of non-minimum
phase filters, the roots of the inverse filter are solved, and if
the filter is not minimum phase, those roots that are located
outside the unit circle are replaced by their mirror image
partners inside the circle. In principle, it is possible that the
constrained LP computed according to Eq. �9� yields an in-
verse filter that has roots on the positive real axis. Due to the
use of the dc constraint, the risk for this to happen is, how-
ever, clearly smaller than in the case of the conventional
covariance analysis. Because the roots of C�z� are solved for
in order to eliminate the occurrence of non-minimum phase
filters, it is trivial also to check simultaneously whether there
are any roots on the positive real axis inside the unit circle. If
so, these roots are simply removed, in a procedure similar to
that used in the conventional CP analysis �Wong et al.,
1979�.

3. Summary of the new algorithm

In summary, the new glottal IF algorithm can be pre-
sented by combining the procedures described in Secs. II B 1
and II B 2. The estimation of the glottal flow with this new
CP-based IF algorithm consists of the following stages.

�1� Prior to the analysis, the speech pressure waveform is
filtered through a linear-phase high-pass FIR with its cut-
off frequency adjusted to 70 Hz. The purpose of this
filter is to remove annoying low-frequency components
picked up by the microphone during the recordings of
the speech signals. The output of this stage, the high-
pass filtered speech sound, is denoted by Shp�n� below.

�2� The position of the covariance frame is computed using
any of the previously developed methods based on, for
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example, the maximum determinant of the covariance
matrix �Wong et al., 1979� or the EGG �Krishnamurthy
and Childers, 1986�.

�3� Vocal tract transfer function C�z� is computed according
to Eq. �9� by defining the elements of the covariance
matrix in Eq. �3� from Shp�n� by using the covariance
frame defined in stage �2�.

�4� Roots of C�z� defined in stage �3� are solved. Those roots
of C�z� that are located outside the unit circle are re-
placed by their corresponding mirror image partner in-
side the unit circle. Any real roots located on the positive
real axis are removed.

�5� Finally, the estimate of the glottal volume velocity wave-
form is obtained by filtering Shp�n� through C�z� defined
in stage �4� and by canceling the lip radiation effect with
a first order infinite impulse response filter, with its pole
close to the unit circle �e.g., at z=0.99�.

The algorithm runs in a frame-based manner, and the
adjustable parameters are recommended to be set to values
typically used in CP analysis: frame length: 50 ms; order of
the vocal tract model: 12 �with sampling frequency of
8 kHz�; the length of the covariance frame: 30 samples �a
value that equals the order of the vocal tract model multi-
plied by 2.5�. In the experiments conducted in the present
study, the parameter ldc used in the computation of the dc-
constrained vocal tract inverse filters was adjusted so that the
amplitude response of the vocal tract filter at dc was always
equal to unity.2

III. MATERIALS AND EXPERIMENTS

In order to evaluate the performance of the new CP
analysis technique, experiments were conducted using both
natural and synthetic speech. The purpose of these experi-
ments was to investigate whether the new modified covari-
ance analysis based on the concept of constrained LP, when
supplemented with the minimum phase requirement of the
inverse filter, would make IF with the CP analysis less vul-
nerable to the position of the covariance frame.

A. Speech and EGG recordings

Simultaneous speech pressure waveform and EGG sig-
nals were recorded from 13 subjects �six females�. The ages
of the subjects varied between 29 and 43 �mean of 32�, and
none of them had experienced voice disorders. The speaking
task was to produce the vowel �a� five times by using sus-
tained phonation. Vowel �a� was used because it has a high
first formant �F1�.3 Subjects were allowed to use the funda-
mental frequency of their own choice, but they were encour-
aged not to use a pitch that is noticeably higher than in their
normal speech. The duration of each phonation was at least
1 s. The production was done by two types of phonation:
normal and pressed. These two phonation types were se-
lected because they are more likely to involve a CP in the
vocal fold vibration, which would not be the case in, for
example, breathy phonation �Alku and Vilkman, 1996�. This,
in turn, implies that the basic assumption of the CP analysis,
that is, the existence of a distinct CP within the glottal cycle,

should be valid. Consequently, using these two modes, one
would expect to be able to demonstrate effectively the de-
pendency of the CP analysis on the position of the covari-
ance frame. The recordings were perceptually monitored by
an experienced phonetician who trained the subjects to create
the two registers properly. Phonations were repeated until the
phonation type was satisfactory.

Speech pressure waves were captured by a condenser
microphone �Brüel & Kjær 4188� that was attached to a
sound level meter �Brüel & Kjær Mediator 2238� serving
also as a microphone amplifier, and the EGG was recorded
simultaneously �Glottal Enterprise MC2-1�. The mouth-to-
microphone distance was 40 cm. In order to avoid inconsis-
tency in the synchronization of speech and EGG, the micro-
phone distance was carefully monitored in the recordings,
and its value was checked prior to each phonation. Speech
and EGG waveforms were digitized using a �DAT� digital
audio tape recorder �Sony DTC-690� by adopting the sam-
pling rate of 48 kHz and the resolution of 16 bits.

The speech and EGG signals were digitally transferred
from the DAT tape into a computer. Before conducting the IF
analysis, the sampling frequency of both signals was down-
sampled to 8 kHz. The propagation delay of the acoustic
signal from the glottis to the microphone was estimated by
using the vocal tract length of 15 and 17 cm for females and
males, respectively, the mouth-to-microphone distance of
40 cm, and the speed of sound value of 350 m /s. These val-
ues yielded the propagation delay of 1.57 and 1.63 ms for
female and male speakers, respectively. The fundamental fre-
quency of each vowel sound was computed by searching for
the peak of the autocorrelation function from the differenti-
ated EGG signal. For female speakers, the mean F0 was
195 Hz �min: 178 Hz, max: 211 Hz� and 199 Hz �min:
182 Hz, max: 216 Hz� in normal and pressed phonation, re-
spectively. For males, the mean F0 was 104 Hz �min: 90 Hz,
max: 119 Hz� and 114 Hz �min: 95 Hz, max: 148 Hz� in
normal and pressed phonation, respectively.

B. Synthetic vowels

A fundamental problem present both in developing new
IF algorithms and in comparing existing methods is the fact
that assessing the performance of an IF technique is compli-
cated. When IF is used to estimate the glottal flow of natural
speech, it is actually never possible to assess in detail how
closely the obtained waveform corresponds to the true glottal
flow generated by the vibrating vocal folds. It is, however,
possible to assess the accuracy of IF by using synthetic
speech that has been created using artificial glottal wave-
form. This kind of evaluation, however, is not truly objective
because speech synthesis and IF analysis are typically based
on similar models of the human voice production apparatus,
for example, the traditional linear source-filter model �Fant,
1970�.

In the current study, a different strategy was used in
order to evaluate the performance of different CP analysis
methods in the estimation of the glottal flow. The idea is to
use physical modeling of the vocal folds and the vocal tract
in order to simulate time-varying waveforms of the glottal
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flow and radiated acoustic pressure. By using the simulated
pressure waveform as an input to an IF method, it is possible
to determine how closely the obtained estimate of the voice
source matches the simulated glottal flow. This approach is
different from using synthetic speech excited by an artificial
form of the glottal excitation because the glottal flow wave-
form results from the interaction of the self-sustained oscil-
lation of the vocal folds with subglottal and supraglottal
pressures, as would occur during real speech production.
Hence, the glottal flow waveform generated by this model is
expected to provide a more stringent and realistic test of the
IF method than would be permitted by a parametric flow
waveform model where no source-tract interaction is
incorporated.4

The sound pressure and glottal flow waveforms used to
test the new IF technique were generated with a computa-
tional model of the vocal folds and acoustic wave propaga-
tion. Specifically, self-sustained vocal fold vibration was
simulated with three masses coupled to one another through
stiffness and damping elements �Story and Titze, 1995�. A
schematic diagram of the model is shown in Fig. 6, where
the arrangement of the masses was designed to emulate the
body-cover structure of the vocal folds �Hirano, 1974�. The
input parameters consisted of lung pressure, prephonatory
glottal half-width �adduction�, resting vocal fold length and
thickness, and normalized activation levels of the cricothy-
roid �CT� and thyroarytenoid �TA� muscles. These values

were transformed to mechanical parameters of the model,
such as mass, stiffness, and damping, according to the
“rules” proposed by Titze and Story �2002�. The vocal fold
model was coupled to the pressures and air flows in the tra-
chea and vocal tract through aerodynamic and acoustic con-
siderations as specified by Titze �2002�, thus allowing for
self-sustained oscillation. Bilateral symmetry was assumed
for all simulations such that identical vibrations occur within
both the left and right folds. Nine different fundamental fre-
quency values �105, 115, 130, 145, 205, 210, 230, 255, and
310 Hz�, which roughly approximate the ranges typical of
adult male and female speech �e.g., Hollien et al., 1971;
Hollien and Shipp, 1972; Stoicheff, 1981�, were generated
by modifying the resting vocal fold length and activation
levels of the CT and TA muscles; all other input parameters
were held constant. The input parameters for all nine cases
are shown in Table I. Those cases with the resting length �Lo�
equal to 1.6 cm were intended to be representative of the
male F0 range, whereas those with Lo=0.9 cm were intended
to be in the female F0 range.

Acoustic wave propagation in both the trachea and vocal
tract was computed in time synchrony with the vocal fold
model. This was performed with a wave-reflection approach
�e.g., Strube, 1982; Liljencrants, 1985� where the area func-
tions of the vocal tract and trachea were discretized into short
cylindrical sections or tubelets. Reflection and transmission
coefficients were calculated at the junctions of consecutive
tubelets, at each time sample. From these, pressure and vol-
ume velocity were then computed to propagate the acoustic
waves through the system. The glottal flow was determined
by the interaction of the glottal area with the time-varying
pressures present just inferior and superior to the glottis as
specified by Titze �2002�. At the lip termination, the forward
and backward traveling pressure wave components were sub-
jected to a radiation load modeled as a resistance in parallel
with an inductance �Flanagan, 1972�, intended to approxi-
mate a piston in an infinite plane baffle. The output pressure
is assumed to be representative of the pressure radiated at the
lips. To the extent that the piston-in-a-baffle reasonably ap-
proximates the radiation load, the calculated output pressure
can also be assumed to be representative of the pressure that
would be transduced by a microphone in a non-reflective
environment. The specific implementation of the vocal tract
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m1

mb
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= mass

= spring &
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cartilaginous
boundary glottis

damper

FIG. 6. Schematic diagram of the lumped-element vocal fold model. The
cover-body structure of each vocal fold is represented by three masses that
are coupled to each other by spring and damping elements. Bilateral sym-
metry was assumed for all simulations.

TABLE I. Input parameters for the vocal fold model used to generate the nine different fundamental frequencies. Notation is identical to that used in Titze and
Story �2002�. The aCT and aTA are normalized activation levels �can range from 0 to 1� of the CT and TA muscles, respectively. Lo and To are the resting length
and thickness of the vocal folds, respectively. �01 and �02 are the prephonatory glottal half-widths at the inferior and superior edges of vocal folds, respectively,
and PL is the respiratory pressure applied at the entrance of the trachea �see Fig. 7�. The value of PL shown in the table is equivalent to a pressure of 8 cm H2O.

Parameter value

Fundamental frequency �Hz�

105 115 130 145 205 210 230 255 310

aCT 0.1 0.4 0.1 0.4 0.2 0.3 0.3 0.4 0.7
aTA 0.1 0.1 0.4 0.4 0.2 0.2 0.3 0.4 0.5
Lo �cm� 1.6 1.6 1.6 1.6 0.9 0.9 0.9 0.9 0.9
To �cm� 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
�01 �cm� 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
�02 �cm� 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PL �dyn /cm2� 7840 7840 7840 7840 7840 7840 7840 7840 7840
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model used for this study was presented in Story �1995� and
included energy losses due to viscosity, yielding walls, heat
conduction, as well as radiation at the lips.

In the model, a specific vocal tract shape is represented
as an area function. For this study, glottal flow and output
pressure waveforms were generated based on the area func-
tion for the �a� vowel reported by Story et al. �1996�. For
simulations of this vowel with the four lowest fundamental
frequencies �105, 115, 130, and 145 Hz�, the vocal tract
length was set to 17.46 cm. For the five higher F0 speech
simulations, exactly the same �a� vowel area function was
used, but the length was non-uniformly scaled to 14.28 cm
with scaling factors based on those reported by Fitch and
Giedd �1999�. The purpose of the shortened tract length was
to provide an approximation of a possible female-like vocal
tract to coincide with the higher F0 simulations. Although a

measured female area function could have been used �e.g.,
Story, 2005�, scaling the length of the male �a� vowel was
done so that all cases resulted from fairly simple modifica-
tions of the same basic model.

A conceptualization of the complete model is given in
Fig. 7, where the vocal fold model is shown to be located
between the trachea and the vocal tract. The vocal tract is
shown configured with the shape and length of the adult
male �a� vowel, and the trachea is a uniform tube with a
cross-sectional area of 1.5 cm2 but tapered to 0.3 cm2 near
the glottis. An example glottal flow waveform is indicated
near the middle of the figure. Note that the ripples in the
waveform are largely due to interaction of the flow with the
formant oscillations in the vocal tract. The coupling of the
trachea to the vocal tract �via glottal area�, however, will
slightly alter the overall resonant structure of the system and,
hence, will also contribute to glottal waveform shape. The
sound pressure waveform radiated at the lips is also shown at
the lip end of the area function and, as mentioned previously,
can be considered analogous to a microphone signal re-
corded for a speaker.

In summary, the model is a simplified but physically-
motivated representation of a speaker in which glottal air-
flow and output pressure waveforms result from self-
sustained oscillation of the vocal folds and their interaction
with propagating pressure waves within the trachea and vo-
cal tract. The model generates both the signal on which IF is
typically performed �microphone signal� and the signal that
it seeks to determine �glottal flow�, thus providing a reason-
ably realistic test case for IF algorithms.

C. Experiments

Four representative examples of glottal flow pulse forms
computed by the proposed CP algorithm are shown in Fig. 8.
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simulate the male �a� vowel. The vocal fold model of Fig. 6 would be
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FIG. 8. Examples of glottal flows es-
timated by the proposed CPcon method.
IF was computed from �a� vowels pro-
duced by a male �panels a� and a fe-
male �panels b� speaker using normal
�left panels� and pressed �right panels�
phonation.
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The examples shown in Figs. 8�a� and 8�b� were computed
from a male and female speaker, respectively, by using both
normal and pressed phonations of the vowel �a�. All these
estimates of the glottal excitation were computed by using
parameter values given at the end of Sec. II B 3. The begin-
ning of the covariance frame was adjusted to a time instant
three samples after the negative peak of the EGG derivative.
It can be seen in Fig. 8 that none of the estimated glottal
pulse forms show abrupt high amplitude peaks at the end of
the closing phase, indicating that inverse filter roots are most
likely located correctly in the formant region rather than in
unrealistic positions at low frequency. CP can be identified
rather easily from all the examples shown. However, the
waveforms estimated from utterances spoken by the male
speaker show a small ripple component. This ripple might be
due to incomplete canceling of some of the higher formants
by the inverse filter. Alternatively, this component might be
explained by the existence of nonlinear coupling between the
source and the tract, which cannot be taken into account in
CP analysis because it is based on linear modeling of the
voice production system.

The performance of the proposed CP analysis algorithm
was tested by conducting two major experiments, one of
which used synthetic vowels and the other natural speech.
Both experiments involved estimating the glottal flow with
three CP analysis types. The first one, denoted by CPbas in
the rest of the paper, is represented by the basic CP analysis
in which the vocal tract model computed by the covariance
analysis is used as such in IF. The second one, denoted by
CPrem, is the most widely used form of the CP analysis in
which the roots of the inverse filter polynomial computed by
the covariance analysis are solved, and those located on the
positive real axis are removed before IF. The third type, de-
noted by CPcon, is the proposed method based on the con-
strained LP described in Sec. II B.

In both experiments, the robustness of each CP analysis
to the position of the covariance frame was evaluated by
varying the beginning of the frame position near its optimal
value, nopt, the instant of glottal closure. For synthetic vow-
els, nopt was first adjusted by using the derivative of the flow
pulse generated by the physical vocal fold model. In this
procedure, the optimal beginning of the covariance frame
was set to the time instant after the negative peak of the flow
derivative when the waveform returns to the zero level. For
each synthetic vowel, the beginning of the covariance frame
was then varied in 11 steps by defining the start index as n
=nopt+ i, where i=−5 to +5. �In other words, the optimal
frame position corresponds to index value i=0.� For natural
vowels, the position of the covariance frame was varied by
first extracting the glottal closure as the time instant when
the EGG derivative reached a negative peak within a glottal
cycle. Again, 11 frame positions were analyzed around this
instant of glottal closure.

For synthetic sounds, there is no variation between pe-
riods, and, therefore, only a single cycle was analyzed. The
total number of CP analyses conducted for synthetic speech
was 297 �3 CP methods�9 F0 values�11 frame positions
per cycle�. For natural vowels, the analysis was repeated for
six consecutive glottal cycles. Hence, the total number of CP

analyses conducted for natural speech was 5148 �3 CP
methods�2 phonation types�13 speakers�11 frame posi-
tions per cycle�6 cycles�. The estimated glottal flows were
parametrized using two frequency-domain measures. The
first of these, H1H2, is defined as the difference in decibel
between the amplitudes of the fundamental and the second
harmonic of the source spectrum �Titze and Sundberg, 1992�.
The second parameter, the harmonic richness factor �HRF�,
is defined from the spectrum of the glottal flow as the differ-
ence in decibel between the sum of the harmonic amplitudes
above the fundamental and the amplitude of the fundamental
�Childers and Lee, 1991�. �Notice the difference in the com-
putation of the spectral ratio between the two parameters: if
only the second harmonic is included in HRF, then its value
becomes equal to H1H2 multiplied by −1.� These parameters
were selected for two reasons. First, both of them can be
computed automatically without any user adjustments. In CP
analysis with a varying frame position, this is highly justified
because the glottal flow waveforms, especially those com-
puted with CPbas, are sometimes so severely distorted that
their reliable parametrization with, for example, time-based
glottal flow quotients is not possible. Second, both H1H2 and
HRF are known to reflect the spectral decay of the glottal
excitation: a slowly decaying source spectrum is reflected by
a small H1H2 and a large HRF value. Hence, if the glottal
flow estimate is severely distorted by artifacts seen as jags in
the closing phase, as shown in Figs. 1�b�, 1�c�, and 3�c�, one
is expected to get a decreased H1H2 value and an increased
HRF value because the spectrum of the distorted glottal flow
approaches that of the impulse train, that is, a flat spectral
envelope. Since HRF takes into account a larger number of
spectral harmonics, one can argue that its value reflects more
reliable changes in the glottal flow than H1H2. Therefore,
HRF alone might represent a sufficient spectral parameter to
be used from the point of view of the present study. H1H2 is,
however, a more widely used parameter in voice production
studies, which justifies its selection as an additional voice
source parameter in the present investigation.

IV. RESULTS

A. Experiment 1: Synthetic vowels

Robustness of the different CP analyses to the covari-
ance frame position is demonstrated for the synthetic vowels
by the data given in Table II. H1H2 and HRF values were
first computed in each covariance frame position with each
of the three CP techniques. For both H1H2 and HRF, the
difference between the parameters extracted from the origi-
nal flow and the estimated flow was computed. The data in
Table II show the absolute value of this difference computed
as an average pooled over 11 frame positions. The obtained
results indicate that the error in both H1H2 and HRF due to
the variation of the CP frame position is smallest for all
vowels with F0 less than 310 Hz when IF is computed with
the proposed new method. The average value of H1H2, when
pooled over all vowels with F0 less than 310 Hz, equaled to
2.6, 0.9, and 0.5 dB for CPbas, CPrem, and CPcon, respectively.
For HRF, the average value equaled to 7.8, 3.8, and 2.4 dB
for CPbas, CPrem, and CPcon, respectively. For the synthetic
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vowel with the largest F0 value, the best result was also
given by CPcon when the parametrization was performed
with HRF. However, H1H2 indicated a surprisingly small
error for this high-pitch vowel when IF was conducted with
CPbas and CPrem. The waveforms, however, were greatly dis-
torted, but the levels of the fundamental and the second har-
monic, that is, those sole spectral components used in the
computation of H1H2, were only marginally affected. It is,
though, worth emphasizing that the length of the glottal CP
for this high-pitch vowel with F0=310 Hz is only ten
samples �1.25 ms�. This implies that the underlying assump-
tion underlying all the three assessed IF techniques, that is,
the existence of sufficiently long CP, is greatly violated.
Hence, the surprisingly small value of H1H2 difference for
this signal is explained mainly by the shortcomings of the
simple spectral parameter rather than by the successful voice
source estimation. In summary, the experiments conducted
with synthetic vowels indicate that the proposed CP algo-
rithm was the least vulnerable to the covariance frame posi-
tion among the three techniques when voices of different F0
were compared.

B. Experiment 2: Natural vowels

The standard deviations �std� and means of the H1H2
and HRF values extracted from the glottal flows computed
from natural vowels of varying covariance frame positions
were compared with repeated measures analyses of variance
�ANOVAs�. The data were analyzed with sex�method
�phonation ANOVAs where “sex” included male and fe-
male sexes, factor “method” included three different CP al-
gorithms, CPbas, CPrem, and CPcon, and factor “phonation”
included phonation types normal and pressed. H1H2 and
HRF data were analyzed with separate ANOVAs, and
Newman–Keuls tests were used as a means of post hoc
analysis for pairwise differences in the data. The standard
deviations and mean values of H1H2 and HRF obtained from
the 66 window positions �11 frame positions of 6 cycles� are
shown in Fig. 9. The main and interaction effects of the
corresponding ANOVA results are given in Table III.

The standard deviation of both H1H2 and HRF differed
significantly between the IF methods. Post hoc analyses
showed that the standard deviations of H1H2 and HRF were,
on the average, smaller when the new CP method

TABLE II. Effect of the covariance frame position on H1H2 and HRF using vowels synthesized by physical
modeling. Absolute value of the difference �in dB� was computed between parameter values extracted from the
original flows and from the glottal flows estimated by IF. Inverse filtering was computed by three CP algo-
rithms: CPbas, CPrem, and CPcon. Data were averaged over 11 different frame positions starting around the instant
of glottal closure.

F0
�Hz�

Diff in H1H2 �dB� Diff in HRF �dB�

CPbas CPrem CPcon CPbas CPrem CPcon

105 1.36 0.06 0.03 5.08 2.30 1.87
115 2.93 0.14 0.08 9.15 2.37 1.75
130 1.81 0.13 0.06 6.14 2.23 1.63
145 3.42 0.10 0.07 10.36 1.74 1.59
205 2.98 1.66 0.83 8.80 6.13 2.72
210 2.67 1.40 0.82 8.06 5.91 2.91
230 3.17 1.28 0.90 8.31 4.00 3.21
255 2.40 2.13 1.24 6.35 5.44 3.40
310 0.69 0.69 3.38 6.24 6.24 5.02
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FIG. 9. Standard deviations �top panels� and means �bottom panels� of
H1H2 and HRF according to the speaker sex and the type of phonation for
CP analyses computed by CPbas, CPrem, and CPcon. Error bars represent
standard error of the mean.
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�H1H2-std=0.5, HRF-std=1.0� was used than when either
CPbas �H1H2-std=1.6, HRF-std=3.0� or CPrem �H1H2-std
=0.9, HRF-std=2.8� was used.

For H1H2, the difference between CPbas and CPrem was
also significant. Additional effects on H1H2 and HRF vari-
ability were observed for sex and phonation type. The H1H2
and HRF standard deviations were larger for female
�H1H2-std=1.6, HRF-std=3.0� than for male �H1H2-std
=0.4, HRF-std=1.6� speakers. Further, the variability of
H1H2 and HRF was larger for the normal �H1H2-std=1.2,
HRF-std=2.7� than for the pressed �H1H2-std=0.8,
HRF-std=1.8� type of phonation. Finally, significant
method�sex, method�phonation, and method�phonation
�sex interactions were found for both H1H2 and HRF, and
a phonation�sex interaction was additionally significant for
the H1H2.

The results indicated a statistically significant effect of
CP method on the mean H1H2 and HRF values. The mean
H1H2 and HRF values increased and decreased, respectively,
when the IF algorithm CPbas �H1H2=6.6 and HRF=5.7� was
changed to CPrem �H1H2=8.2 and HRF=0.9� and, then, fur-
ther to the new CPcon algorithm �H1H2=9.5 and HRF=
−3.0�. While HRF mean values were similar for both sexes,
the average H1H2 values were larger for female �9.3� than
for male �7.1� speakers. Additionally, a smaller mean H1H2
and a larger mean HRF value was observed for the pressed
phonation �H1H2=7.0 and HRF=2.3� than for the normal
phonation �H1H2=9.2 and HRF=0.1�. Finally, significant
method�sex, method�phonation, and method�phonation
�sex interactions were found for both H1H2 and HRF data.

V. CONCLUSIONS

CP covariance analysis, a widely used glottal IF method,
computes a parametric model of the vocal tract by conduct-
ing linear predictive analysis over a frame that is located in
the CP of the glottal cycle. Since the length of the CP is
typically short, the resulting all-pole model is highly vulner-
able with respect to the extraction of the frame position.
Even a minor change in the frame position might greatly
affect the z-domain locations of the roots of the all-pole
model given by LP. This undesirable feature of the conven-
tional CP analysis typically results in vocal tract models,
which have roots, both real and complex, at low frequencies
or roots that are located outside of the unit circle. These
kinds of false root locations, in turn, result in distortion of
the glottal flow estimates, which is typically seen as unnatu-
ral peaks at the instant of glottal closure, the so-called jags,
or as increased formant ripple during the CP.

The present study proposed an improved version of the
CP analysis based on a combination of two algorithmic is-
sues. First, and most importantly, a constraint is imposed on
the dc gain of the inverse filter prior to the optimization of
the coefficients. With this constraint, linear predictive analy-
sis is more prone to give vocal tract models that can be
justified from the point of view of the source-filter theory of
vowel production; that is, they show complex conjugate
roots in the vicinity of formant regions rather than unrealistic
resonances at low frequencies. Second, the new CP method
utilizes an inverse filter that is minimum phase, a property
that is not typically used in glottal IF.

TABLE III. ANOVA results for standard deviations and means of H1H2 �upper table� and HRF �lower table�.
The degrees of freedom �DF�, Greenhouse–Geisser epsilons �	�, F-values, and the associated probability �p�
values are shown for each ANOVA effect. Analyses were conducted for utterances produced by 13 speakers
using 11 covariance frame positions per glottal cycle and 6 successive periods.

H1H2
Effects and degrees of freedom �Df1, Df2�

Standard deviations Means

	 F p 	 F p

Sex 1, 11 83.86 �0.001 9.38 �0.05
Method 2, 22 0.73 47.22 �0.001 0.69 88.85 �0.001
Method�sex 2, 22 0.73 4.12 �0.05 0.69 37.70 �0.001
Phonation 1, 11 1.00 10.42 �0.01 1.00 20.43 �0.001
Phonation�sex 1, 11 1.00 6.80 �0.05 1.00 3.58 ns
Method�phonation 2, 22 0.95 16.26 �0.001 0.68 23.22 �0.001
Method�phonation�sex 2, 22 0.95 15.57 �0.001 0.68 16.81 �0.001

HRF
Effects and degrees of freedom �Df1, Df2�

Standard deviations Means

	 F p 	 F p

Sex 1, 11 49.33 �0.001 0.83 ns
Method 2, 22 0.61 26.43 �0.001 0.87 262.27 �0.001
Method�sex 2, 22 0.61 6.26 �0.05 0.87 30.99 �0.001
Phonation 1, 11 1.00 18.12 �0.01 1.00 15.22 �0.01
Phonation�sex 1, 11 1.00 2.86 ns 1.00 2.06 ns
Method�phonation 2, 22 0.77 12.83 �0.001 0.67 9.29 �0.01
Method�phonation�sex 2, 22 0.77 3.10 ns 0.67 4.58 �0.05

ns=not significant
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The new glottal IF method, CPcon, was compared to two
CP analysis techniques by using both synthetic vowels pro-
duced by physical modeling of the voice production appara-
tus and natural vowels produced by male and female speak-
ers. In summary, the experiments conducted with synthetic
vowels having F0 from 105 to 310 Hz indicate that the pro-
posed CP method gave glottal flow estimates with better ro-
bustness to the covariance frame position than the conven-
tional CP methods. The result suggests that the parametric
model of the vocal tract computed with the dc-constrained
linear predictive analysis is less prone to distortion by the
problem typically met in the CP analysis, namely, the in-
volvement of samples outside the CP in the computation of
the vocal tract. This problem violates the basic assumption of
the CP analysis that the estimation of the vocal tract transfer
function is made during the excitation-free time span. It can
be argued that this violation is larger for voices of high pitch
because they typically show short CPs in the glottal excita-
tion. Violation results in the occurrence of unjustified inverse
filter roots at low frequencies, which, in turn, distorts the
resulting glottal flow estimates. Based on the results
achieved with synthetic speech, the involvement of the dc
constraint in the optimization process of the vocal tract
model, however, seems to reduce this distortion and hence
improve the estimation robustness with respect to the CP
frame position. It must be emphasized, though, that if the
amount of data samples during the glottal CP becomes ex-
tremely small, which was the case in analyzing the vowel
with F0=310 Hz in the present investigation, distortion of
the glottal flow estimates becomes large with all CP tech-
niques.

The experiments conducted with natural speech indicate
that the deviation of H1H2 and HRF due to the varying of
the covariance frame position inside the glottal cycle was
larger for female speech than for male vowels and the devia-
tion was also larger in normal than in pressed phonation.
These results are in line with findings reported in previous
studies �e.g., Veeneman and BeMent, 1985� as well as with
experiments conducted in the present investigation with syn-
thetic speech, indicating that the robustness of the CP analy-
sis with respect to the frame position tends to decrease for
shorter CP intervals, as in higher F0 speech or in normal as
opposed to pressed phonation. The proposed new CP
method, importantly, gave the smallest deviation of H1H2
and HRF, suggesting that the involvement of the dc con-
straint reduces the sensitivity of the CP analysis to the cova-
riance frame position and that this holds true also for natural
vowels. This finding is also supported by the fact that the
mean levels of H1H2 and HRF were found to be largest and
smallest, respectively, when IF was computed with CPcon. In
other words, the average spectral decay of the glottal flow
pulse forms computed by varying the frame position was
steeper with CPcon than with the other two CP methods. This
is explained by the frequency-domain effect produced by dis-
tortion represented by impulse-like jags: the larger their con-
tribution, the flatter the spectrum.

In summary, the proposed IF method constitutes a po-
tential means to compute the CP covariance analysis to esti-
mate the glottal flow from speech pressure signals. It reduces

distortion caused by one of the major drawbacks of the con-
ventional CP analysis, the sensitivity of the analysis to the
position of the covariance frame. The computational load of
the new method is only slightly larger than that of the con-
ventional CP method. In addition, the method can be imple-
mented in a manner similar to the conventional one, that is,
either based solely on the speech pressure signal or in a
two-channel mode where an EGG signal is used to help ex-
tract the covariance frame position. Therefore, there are no
obstacles in principle for the implementation of the proposed
method in environments where the conventional analysis is
used. One has to keep in mind, though, that the new method
does not change the basic assumptions of the CP analysis,
namely, that the voice source and vocal tract are linearly
separable, and there is a CP of finite duration during which
there is no excitation by the source of the tract.
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1It is worth emphasizing that glottal pulses estimated from natural speech
sometimes show fluctuation, typically referred to as “ripple,” after the
instant of glottal closure. This component might correspond to actual phe-
nomena or it may result from incorrect inverse filter settings. If the pulse
waveform is fluctuating after the instant of the glottal closure, it is, though,
difficult, if not impossible, to define accurately which part of the fluctua-
tion corresponds to real phenomena and which part results from incorrect
IF. If, however, the flow waveform shows an abrupt peak at the end of the
closing phase, such as in Fig. 1�c�, and if this component is removed by,
for example, a minor change in the position of the analysis frame, it is
more likely that the component represents an artifact than a real
phenomenon.

2By using Eq. �4�, the gain of the vocal tract filter at dc, denoted by Gdc, is
defined as the absolute value of the inverse of the frequency response of
the constrained predictor at 
=0: Gdc= 
1 /C�ej0�
= 
1 / ldc
. In principle, the
requirement Gdc=1 can be satisfied by assigning either ldc=1 or ldc=−1.
Although both of these values result in vocal tract filters of equal gain at
dc, they end up as different constrained transfer functions. In order to test
the difference between the two values of ldc, the glottal flows were esti-
mated from the synthetic vowels described in Sec. III B by using H1H2
and HRF parameters described in Sec. III C and by conducting the con-
strained IF analysis by assigning both ldc=1 and ldc=−1. The results indi-
cated clearly that the choice ldc=−1 yielded glottal flow estimates that
were closer to the original flows generated by the physical modeling
approach.

3In the area of glottal IF, most studies analyze vowels with high first for-
mant such as �a� or �ae�. The reason for this is the fact that the separation
of the source and the tract becomes increasingly difficult from a math-
ematical point of view if the first formant is low. This is due to the fact that
the strong harmonics at low frequencies bias the estimation of the first
formant in all-pole modeling �El-Jaroudi and Makhoul, 1991�. This, in
turn, results in severe distortion of the glottal flow estimates.

4It should be noted that while synthetic vowels produced by the physical
modeling approach mimic real speech production by involving source-
tract interaction, this effect is not taken into account in CP analysis, which
simply assumes that the source and tract are linearly separable �Strube,
1974; Wong et al., 1979�. The proposed dc-constrained LP is a new math-
ematical method to compute the vocal tract model of CP analysis, but it
does not in any way change the underlying assumption of the linear cou-
pling between the source and the tract. Therefore, the use of physically-
motivated synthetic speech was justified by a need to have more realistic
artificial vowels as test material, not by a goal to analyze how source-tract
interaction affects different versions of the CP technique, all of which are
based on the linear source-filter theory and are therefore unable to take
into account the coupling between the source and the tract.
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ORIGINAL ARTICLE

Glottal inverse filtering with the closed-phase covariance analysis
utilizing mathematical constraints in modelling of the vocal tract

PAAVO ALKU, CARLO MAGI$ & TOM BÄCKSTRÖM

Helsinki University of Technology, Department of Signal Processing and Acoustics, Otakaari 5A, PO Box 3000, FI-02015

TKK, Finland

Abstract
Closed-phase (CP) covariance analysis is a glottal inverse filtering method based on the estimation of the vocal tract with
linear prediction (LP) during the closed phase of the vocal fold vibration cycle. Since the closed phase is typically short, the
analysis is vulnerable with respect to the extraction of the covariance frame position. The present study proposes a modified
CP algorithm based on imposing certain predefined values on the gains of the vocal tract inverse filter at angular frequencies
of 0 and p in optimizing filter coefficients. With these constraints, vocal tract models are less prone to show false low-
frequency roots. Experiments show that the algorithm improves the robustness of the CP analysis on the covariance frame
position.

Key words: Closed-phase analysis, glottal inverse filtering, linear prediction

Introduction

Many different inverse filtering (IF) methods

have been developed since the 1950s in order to

estimate the source of voiced sounds in speech or

singing, the glottal volume velocity waveform (e.g.

(1�4)). Among the various proposed IF techniques,

one of the most widely used is closed-phase (CP)

covariance analysis pioneered by the works of Strube

(5) and Wong et al. (6). The basis of the CP method

is in the source tract theory of voice production,

which assumes that human voice production can be

modelled as a linear cascade of three processes: the

glottal source, the vocal tract, and the lip radiation

effect (7). In order to separate the first two parts, the

CP analysis assumes that there is no contribution

from the glottal source to the vocal tract during the

closed phase of the vocal fold vibration cycle. By

identifying this time-span of zero input, a parametric

model of the vocal tract is computed using linear

prediction (LP) with the covariance criterion. LP

analysis yields an inverse model of the vocal tract in

the form of a digital finite impulse response (FIR)

filter which is then used to cancel the effects of the

vocal tract resonances. Inverse filtering is typically

conducted over several fundamental periods, that is

the inverse model of the vocal tract estimated during

the glottal closed phase is used pitch-asynchronously

to cancel the effects of the vocal tract during both the

open and closed phases of consecutive glottal

periods.

The CP method has been used as a means to

estimate the voice source in various studies since the

mid-1970s. These investigations have addressed, for

example, the characterization of different phonation

types (e.g. (8,9)). In addition, Strik and Boves (10)

used the CP analysis in elucidating how voice source

features behave in conversational speech and how

these effects can be modelled with synthetic models

represented by the Liljencrants-Fant (LF) waveform

(11). Cummings and Clements (12), in turn, took

advantage of the CP technique in studying changes

of the glottal flow waveform in emotionally styled

and stressed speech. In addition to normal speech,

the CP analysis has also been used in efforts to

analyse and classify abnormal voice production
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(13�15). Furthermore, several studies have applied

the CP method in the area of speech technology such

as in speech synthesis (e.g. (16,17)) and in speaker

identification (e.g. (18,19)). Finally, CP analysis of

the glottal flow has been conducted in the area of

singing research in analysing, for example, the

production of vibrato (20).

The CP technique has also been a target of

methodological development, and the major focus

of this research activity has been devoted to the

question how to insert accurately the covariance

frame into the closed phase. In order to determine

this important time-span from a speech waveform, a

series of sliding covariance analyses is typically

computed by moving the analysis frame sequentially

one sample at a time through the speech signal, and

the results of each covariance analysis are analysed in

order to determine the closed phase. This approach

was used by Strube (5), who identified the glottal

closure as an instant when the frame was in a

position which yielded the maximum determinant

of the covariance matrix. Wong et al. (6) instead

defined the closed phase as the interval when the

normalized squared prediction error was minimum.

Plumpe et al. (18) proposed an idea in which the

formant frequency modulations between the open

and closed phase are used as a means to define the

optimal frame position. Akande and Murphy (21)

suggested a technique which computes the covar-

iance analysis in an adaptive loop where the optimal

filter order and frame position are searched for by

using phase information. Furthermore, there are

several such studies that do not directly represent

glottal inverse filtering but are closely related to the

CP analysis, because they focus on the extraction of

glottal closure and opening instants. These epoch

extraction studies take advantage of, for example,

the Hilbert envelope (22) and the group delay

function (23,24) in estimating time instants of glottal

closure and opening, and they can be applied, if

desired, in the CP analysis.

In all CP methods referred to above, the optimal

position of the covariance frame is computed from a

single source of information represented by the

speech signal. Alternatively, electroglottography

(EGG) can be used to extract the position and

duration of the closed phase. This so-called two-

channel analysis has been shown to yield consistent

glottal flow estimates due to improved positioning of

the covariance frame (15,25). In the two-channel

analysis, the CP analysis is typically computed by

estimating the closed phase of the glottal cycle as the

time interval between the minimum and maximum

peaks of the first time derivative of the EGG wave-

form (9).

In spite of its prevalence, the CP covariance

analysis has certain shortcomings. Several previous

studies have in particular indicated that glottal flow

estimates computed by the CP analysis vary greatly

depending on the position of the covariance frame

(e.g. (15,26�28)). Examples of this phenomenon are

depicted in Figure 1, which shows how glottal flow

estimates computed by the CP analysis vary exten-

sively even though there is only a minor change in

the position of the covariance frame. Given the

fundamental assumption of the method, that is the

computation of the vocal tract model during an

excitation-free time-span, this undesirable feature of

the CP analysis is understandable. The expected

length of the closed phase is typically short, which

implies that the amount of data used to define the

parametric model of the vocal tract with the covar-

iance analysis is sparse. This problem is particularly

severe in voices of high fundamental frequency (F0)

because they are produced by using very short

lengths in the glottal closed phase. If the position

of this kind of a short data frame is misaligned, the

linear predictive filter model of the vocal tract,

optimized in the mean square error (MSE) sense,

might locate some of its roots at low frequencies

rather than in the formant region. Consequently, the

resulting glottal flow estimate, as demonstrated in

Figure 1b, shows sharp peaks, called ‘jags’ by Wong

et al. (6), and becomes similar to a time derivative of

the flow candidate given by an inverse filter with no

such false roots. This severe distortion of the glottal

flow estimate caused by the occurrence of inverse

filter roots, both real and complex conjugate pairs, at

low frequencies, is greatest at time instants when

the flow changes most rapidly, that is near glottal

closure.

0

1

0 0.01 0.02 0.03
0

1

Time/s

(a)

(b)

Figure 1. Examples of glottal flows estimated by the conventional

CP analysis from a vowel produced by a male speaker. The

beginning of the covariance frame in panel (a) is located three

samples later than in panel (b).
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In order to reduce artefacts caused by false inverse

filtering roots, previous CP methods typically exploit

techniques to improve the extraction of the closed

phase. In addition, a standard procedure to reduce

the effect caused by ‘jags’ is to check whether the

vocal tract model computed by LP has any roots on

the positive real axis in the z domain, and, if there are

such roots, they are simply removed before conduct-

ing the inverse filtering (e.g. (6)). In the present

work, however, a different approach is studied based

on setting mathematical constraints in the computa-

tion of the inverse model of the vocal tract with LP.

These constraints impose predefined values for the

gain of the inverse filter either at zero frequency, that

is at DC (direct current), or at the half of the

sampling frequency, that is at angular frequency p.

This idea results in vocal tract filters whose transfer

functions, in comparison to those defined by the

conventional covariance analysis, are less prone to

comprise disturbing poles in the z domain. From

the two possible constraints, the current study

reports on experiments where the DC-constrained

LP was used to compute the vocal tract filter

in the estimation of the glottal source with the CP

analysis.

Methods

The conventional CP analysis involves modelling the

vocal tract with an all-pole filter defined according to

the classical LP based on the covariance criterion

(29). The filter coefficients of the pth order inverse

filter are searched for by using a straightforward

optimization, where the energy of the prediction

error is minimized over the covariance frame. In

principle, this kind of optimization based on the

MSE criterion treats all the frequencies equally, and

the filter coefficients are mathematically adjusted so

that the resulting all-pole spectrum matches accu-

rately the high-energy formant regions of the speech

spectrum. However, it is worth emphasizing that the

conventional covariance analysis does not pose any

additional information to be used in the optimization

process, for example, to bias the location of roots of

the resulting all-pole filter. This inherent feature of

the conventional covariance analysis implies that

roots of the resulting all-pole model of the vocal

tract might be located in such a position in the z

domain (e.g. on the positive real axis) that is correct

from the point of view of the MSE-based error

criterion but not optimal from the point of view of

glottal inverse filtering.

The computation of the conventional covariance

analysis, however, can be modified by using the

concept of constrained LP. Intuitively, this means that

instead of allowing the linear predictive model to

locate its roots freely in the z domain based solely on

the MSE criterion, the optimization is given certain

restrictions in the predictor structure which, then,

results in more realistic root locations. In order to

implement restrictions, one has to first find a method

to express the constraint in a form of a mathematical

equation and then to use the selected equation in

the minimization problem. Two straightforward

constraints can be postulated by assigning a pre-

defined value for the gain of the linear predictive

inverse filter either at zero frequency (6�0, where

6 denotes angular frequency), at half the sampling

frequency (6�p), or at both. With these predefined

gains, the optimal constrained linear predictive

inverse filter can be optimized based on the

mathematical derivations described below.

Let us start by presenting the known optimization

of the conventional LP. In the conventional LP, the

error signal, or the residual, can be expressed in

matrix form as follows:

en�xn�
Xp

k�1

akxn�k�
Xp

k�0

akxn�k�aTxn; (1)

where a�[a0 . . . ap]
T with a0�1, and the signal

vector is xn�[xn
. . .xn-p]

T. The coefficient vector a is

optimized according to the MSE criterion by

searching for such parameters that minimize the

square of the residual. In the covariance method, this

minimization of the residual energy is computed over

a finite time-span (29). By denoting this time-span

with 05n5N-1, the prediction error energy E(a)

can be written as

E(a)�
XN�1

n�0

e2
n�

XN�1

n�0

aTxnxT
n a�aT

�XN�1

n�0

xnxT
n

�
a

�aTFa; (2)

where matrix F is the covariance matrix defined

from speech samples as

F�
XN�1

n�0

xnxT
n � R(p�1)�(p�1): (3)

The optimal filter coefficients can be computed

easily by minimizing the prediction error energy

E(a) with respect to the coefficient vector a. This

yields a�s2F�1u, where s2�(uTF�1u)�1 is the

residual energy given by the optimized predictor and

u�[1 0. . .0]T.

The conventional LP can be modified by imposing

constraints on the minimization problem presented

above. A mathematically straightforward way to

define one such constraint is to set a certain

Glottal inverse filtering with mathematical constraints 3
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predefined value for the frequency response of the

linear predictive inverse filter at zero frequency. By

denoting the transfer function of a pth order

DC-constrained inverse filter C(z) the following

equation can be written:

C(z)�
Xp

k�0

ckz�k��C(ej0)�C(1)�
Xp

k�0

ck� lDC; (4)

where ck, 05k5p, are the filter coefficients of the

constrained inverse filter and lDC is a predefined real

value for the gain of the filter at DC. Using matrix

notation, the DC-constrained minimization problem

can now be formulated as follows: minimize cTFc

subject to GTc�b, where c�[c0
. . .cp]

T is the filter

coefficient vector with c0�1, b�[1 lDC]T, and G is a

(p�1)�2 constraint matrix defined as

G�
1 0 : : : 0

1 1 : : : 1

� �T

(5)

Similarly, a constraint can be assigned to

the frequency response of the linear predictive inverse

filter at angular frequency 6�p. By denoting the

transfer function of a pth order p-constrained inverse

filter D(z) the following equation can be written:

D(z)�
Xp

k�0

dkz�k��D(ejp)�D(�1)�
Xp

k�0

dk(�1)k

� lp: (6)

The p-constrained minimization problem can now

be formulated: minimize dTFd subject to VTd�e,

where d�[d0
. . .dp]

T is the filter coefficient vector with

d0�1, e�[1 lp]
T, and V is a (p�1)�2 constraint

matrix defined as

V�
1 0 0 0 : : : 0

1 �1 1 �1 : : : 1

� �T

: (7)

It is also possible to assign a third constraint by

imposing simultaneously that the first inverse filter

coefficient is equal to unity and that the filter gain

at both 6�0 and 6�p are equal to lDC and lp,

respectively. For the sake of brevity, the optimization

is expressed in the following only for the DC-

constrained LP. The remaining two constraints,

however, can be derived using a similar approach.

The covariance matrix defined in Equation 3 is

positive definite. Therefore, the quadratic function

to be minimized in the DC-constrained problem is

convex. Thus, in order to solve the minimization

problem, the Lagrange multiplier method (30) can

be used. This procedure begins with the definition of

a new objective function

h(c; g)�cTFc�2gT(GTc�b); (8)

where g�[g1 g2]T�0 is the Lagrange multiplier

vector. The objective function of Equation 8 can be

minimized by setting its derivative with respect to

vector c to zero. By taking into account that matrix

F is symmetric (i.e. F�FT) this results in the

following equation:

9ch(c; g)�cT(FT�F)�2gTGT�2cTF�2gTGT

�2(Fc�Gg)T�0 (9)

By combining Equation 9 with the equation of the

constraint (i.e. GTc�b�0); vector c can be solved

from the group of equations

Fc�Gg�0

GTc�b�0:

�
(10)

From above, the first equation yields c�F�1Gg:
Inserting this into the second equation in Equation

10 gives GTc�GTF�1Gg�b: By solving vector g

from this equation and by inserting it into the first

equation in Equation 10, one obtains the con-

strained inverse filter:

c�F�1G(GTF�1G)�1
b; (11)

In summary, the optimal DC-constrained inverse

filter, the FIR filter of order p given in Equation 4, is

obtained by solving for the vector c according to

Equation 11, in which the covariance matrix F is

defined by Equation 3 from the speech signal xn,

matrix G is defined by Equation 5, and matrix

b�[1 lDC]T, where lDC is the desired inverse filter

gain at DC.

An example describing spectral models obtained

by the proposed technique is depicted in Figure 2.

The figure shows three all-pole models of order

p�10 obtained for a vowel /a/ produced a male

speaker. The analyses were conducted pitch-asyn-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−20

−10

0

10

20
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40

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
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dB
)

Figure 2. Examples of all-pole spectra of order p�10 computed

by linear predictive analyses with the covariance criterion: con-

ventional LP (thin line), DC-constrained LP with lDC�1.0 (line

with medium thickness), and constrained LP in which filter gains

at 6�0 and 6�p are assigned simultaneously to lDC�lp�1.0.

4 P. Alku et al.
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chronously using the covariance criterion with a

frame length of 20 ms. The speech signal was

pre-emphasized with a first-order FIR filter (zero at

z�0.95) prior to the linear predictive analyses.

The spectra shown correspond to the conventional

LP (thin line), the DC-constrained analysis with

lDC�1.0 (line with medium thickness), and the

analysis in which the inverse filter gain at 6�0 was

assigned to lDC�1.0 and the gain at 6�p was

assigned to lp�1.0 (thick line). It can be observed

from the figure how filter gains at 6�0 in both of

the constrained cases are equal to 0 dB (that is,

log(1.0)), and this level is shown by the thick line

also at 6�p.

A recent study has demonstrated that the estima-

tion of the glottal flow is distorted if the inverse

model of the vocal tract has roots outside the unit

circle, that is the FIR filter is non-minimum phase

(31). In order to eliminate the occurrence of non-

minimum phase filters, the roots of the inverse filter

need to be solved, and if the filter is not minimum

phase, those roots that are located outside the unit

circle are replaced by their mirror image partners

inside the circle. In principle, it is possible that the

constrained LP computed according to Equation 11

yields an inverse filter that has roots on the positive

real axis. Due to the use of the DC constraint, the

risk for this to happen is, however, smaller than in

the case of the conventional covariance analysis.

Because the roots of C(z) are solved for in order to

eliminate the occurrence of non-minimum phase

filters, it is trivial also to check simultaneously

whether there are any roots on the positive real

axis inside the unit circle. If so, these roots are simply

removed in a procedure similar to that used in the

conventional CP analysis (6).

In summary, the estimation of the glottal flow

utilizing the concept of constrained LP comprises

the following stages:

1. The position of the covariance frame is com-

puted using any of the previously developed

methods based on, for example, the maximum

determinant of the covariance matrix (6) or the

EGG (25).

2. The vocal tract transfer function C(z) is com-

puted according to Equation 11 by defining the

elements of the covariance matrix in Equation 3

from the speech signal to be inverse-filtered.

3. The roots of C(z) defined in stage 2 are solved.

Those roots of C(z) that are located outside the

unit circle are replaced by their corresponding

mirror image partner inside the unit circle. Any

real roots located on the positive real axis are

removed.

4. Finally, the estimate of the glottal volume

velocity waveform is obtained by filtering the

speech signal through C(z) defined in stage 3

and by cancelling the lip radiation effect with a

first order Infinite Impulse Response (IIR) filter

with its pole close to the unit circle (e.g. at

z�0.99).

Materials and experiments

The performance of the proposed CP method was

studied in experiments by using both synthetic and

natural vowels. In both cases, the speech material

comprised different representations of the vowel /a/.

This vowel was selected due to its high first formant,

which makes the linear predictive estimation of the

vocal tract resonances more accurate in comparison

to vowels whose first formant locates lower in

frequency. In the following, the characteristics of

the materials are explained separately for synthetic

and natural utterances used in the experiments.

Synthetic speech

Synthetic glottal sources were created by utilizing

the LF model (11). Glottal flow derivatives corre-

sponding to three different phonation types (breathy,

modal, and creaky) were synthesized by using the

LF parameters published by Gobl (32). The funda-

mental frequency of the source waveforms was

varied in order to create synthetic male and female

vowels. F0 values of male voices (89, 100, and 92 Hz

for breathy, modal, and creaky sources, respectively)

were taken directly from the data provided by Gobl’s

study. In female vowels, the same LF parameters

were used as in male sounds, but the F0 was two

times larger. The vocal tract was modelled with

12th order all-pole filters. The coefficients of these

filters were adjusted so as to create the four lowest

formants of the vowel /a/. The centre frequencies

and bandwidths of the formants were adjusted

separately for male and female sounds by utilizing

data from the study by Peterson and Barney (33).

Natural speech and EGG recordings

In the analysis of natural speech, glottal inverse

filtering studies mostly use isolated vowels produced

with sustained phonation. In the current study,

however, a more realistic yet a more challenging

approach was utilized by estimating glottal flows from

continuous speech. The material was obtained by

asking speakers to read a Finnish text consisting of

three passages describing weather conditions.

The text was repeated three times by each speaker.

Each recitation took approximately one minute. The
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middle recitation was chosen for further analyses.

The weather forecast text was specifically tailored

to comprise several words with a long vowel /a/

surrounded either by fricatives /s/ or unvoiced

plosives /k/, /p/, and /t/ in order to obtain non-

nasalized vowels of high first formant for inverse

filtering analysis. From these words, the one starting

the second passage, the word Kaatosade (Finnish for

‘torrential rain’), was selected, and the long /a/ in the

first syllable of this word was used in the inverse

filtering analyses.

All subjects (six males, six females, age range from

18 to 48 years) were native speakers of Finnish with

no history of any known speech or hearing deficit.

Recordings took place in an anechoic chamber using

a headset microphone (unidirectional Sennheiser

electret capsule) and electroglottography (Glottal

Enterprises two-channel EGG, model EG-4). Data

were saved into a digital audio recorder (iRiver iHP-

140). The distance between the speaker’s lips and

microphone was 12 cm.

Speech and EGG waveforms were transferred from

the audio player onto a computer to be analysed.

The signal was down-sampled to 8 kHz sampling

rate, and both the voice sounds and the EGG

waveforms were high-pass filtered with a linear phase

FIR with a cut-off frequency of 70 Hz in order to

remove any low-frequency noise picked up during the

recordings. The propagation delay of the speech

signals was compensated by using the lip-to-

microphone distance of 12 cm, vocal tract length of

17 and 15 cm for males and females, respectively, and

350 m/s as the speed of sound. This resulted in a

delay of 7 and 6 samples for males and females,

respectively.

Experiments and parameter settings

The main goal of the experimental part of this

study was to evaluate how the proposed new DC-

constrained CP method behaves in comparison to

the conventional CP technique when the covariance

frame position is varied. In the conventional CP

technique, the vocal tract roots on the positive real

axis in the z-domain were removed prior to inverse

filtering as suggested by Wong et al. (6). In order to

compare the two methods, two experiments were

conducted as follows.

Experiment 1

In the first experiment, synthetic vowels were

inverse-filtered by both CP techniques, and the

obtained glottal flow estimates were compared with

the corresponding LF waveforms used in the sound

synthesis. The instant of glottal closure was detected

as the time when the amplitude of the LF waveform

reduced below 2% of its peak value, denoted by EE

in the LF terminology (11). Altogether nine covar-

iance frame positions were tested for each synthetic

vowel around this instant of glottal closure: the

position that started at the detected glottal closure

instant; four frame positions that started 1, 2, 3, and

4 samples before the instant of closure; and another

four positions that started 1, 2, 3, and 4 samples

after the closure instant. All in all, this first experi-

ment resulted in 108 estimated glottal flows (2 CP

methods, 2 speakers, 3 phonation types, 9 covar-

iance frame positions per cycle).

All the obtained glottal flow estimates were

quantified numerically by using a frequency domain

glottal flow parameter, harmonic richness factor

(HRF), which is defined from the spectrum of the

glottal flow as the ratio, in dB, between the sum of

the harmonic amplitudes above the fundamental and

the amplitude of the fundamental (17). HRF was

selected because it can be computed automatically

without any subjective user adjustments.

Experiment 2

In the second experiment, natural speech and EGG

were used to evaluate the effects of the varying

covariance frame position on the estimation of the

glottal flow with the two CP methods. The glottal

closure was detected at the time instant when the

differentiated EGG waveform reached its maximum

negative peak (9). Again, nine different covariance

frame positions were selected around this instant: the

frame position that started at the instant of the

negative peak; four positions that started 1, 2, 3, and

4 instants before the peak; and another four that

started 1, 2, 3, and 4 time instants after the peak of

the differentiated EGG wave. The analysis was

repeated for four consecutive glottal cycles. All in

all, this second experiment resulted in 864 estimated

glottal flows (2 CP methods, 12 speakers, 4 glottal

cycles, 9 covariance frame positions per cycle).

All the estimated glottal flows were parameterized

with HRF.

Parameter settings

All the inverse filtering analyses were conducted by

using the order of the vocal tract filter, that is the

prediction order of the covariance analysis P�12.

Analyses with synthetic speech used a fixed length of

30 samples (3.75 ms) for the duration of the

covariance frame. For natural utterances, the length

of the covariance frame was set to the value that

equalled the time distance between the negative

and positive peak of the differentiated EGG (9).

6 P. Alku et al.
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However, if this distance was smaller than twice the

order of LP (i.e. smaller than 24 samples), a fixed

duration of 24 samples was used. The length of the

inverse filtering analysis window was eight cycles.

The value of the DC constraint parameter was

adjusted by computing the DC gain of the synthetic

vocal tract models of males and females and by

rounding this value to the nearest integer. This

yielded lDC values equal to 2.0 and 4.0, which

were used in the analysis of male and female speak-

ers, respectively.

Results

Examples of estimated glottal flow waveforms of

one male speaker are shown in Figures 3 and 4 when

inverse filtering was conducted with the conven-

tional and the proposed method, respectively.

Similarly, Figures 5 and 6 show results obtained

for one female speaker. The waveforms indicate how

varying the beginning of the covariance frame

around the negative peak of the differentiated EGG

affects the time-domain waveforms of the glottal

flow. When the frame is misaligned, the waveforms

given by the conventional CP analysis clearly

indicate sharp edges especially in the vicinity of the

glottal closure (e.g. Figures 3b, 5a, 5c, 5d). One

might argue that this kind of fluctuation can hardly

be created by the vocal folds and therefore rapid

changes in the waveform are most likely a conse-

quence of the incorrect estimation of the antireso-

nances of the vocal tract by the conventional LP

analysis. The use of the proposed DC constraint,

however, results in glottal flow estimates for the

same two speakers that are clearly less dependent on

the position of the covariance frame.

Differences in the all-pole models of the vocal

tract computed by the conventional CP analysis and

by the DC-constrained analysis are demonstrated in

Figure 7, which presents the spectra of the vocal

tract models given by the conventional (thin line)

and DC-constrained method (thick line) in the

analyses whose resulting time-domain glottal flow

estimates are shown in panels (b) in Figure 3 and 4.

It is worth noting in Figure 7 how the vocal tract

spectrum obtained by the conventional LP shows

excessive boost at low frequencies whereas the level

of the DC-constrained spectrum is clearly lower.

The strong low-frequency components in the all-

pole spectrum of the conventional LP analysis are

explained by false roots, and they, in turn, have

caused the severe distortion which is visible in the

corresponding time-domain waveform of the glottal

flow shown in Figure 3b. While the two all-pole

spectra are relatively similar at higher frequencies,

one can easily see how the amplified low-frequency

components of the conventional LP spectrum

have also ‘pushed’ the first formant peak higher in

frequency in comparison to that in the DC-

constrained spectrum.

The results of experiment 1 are given in Table I.

These data were computed as follows: The HRF
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Figure 3. Examples of glottal flows estimated by the conventional

CP analysis by varying the covariance frame position (male

speaker). The beginning of the covariance frame was located at

the instant of the negative peak of the differentiated EGG

(electroglottography) in panel (c). The position of the frame was

decremented by one and two time instants in panels (b) and (a),

respectively. The position of the frame was incremented by one

and two time instants in panels (d) and (e), respectively.
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Figure 4. Examples of glottal flows estimated by the proposed

new CP analysis by varying the covariance frame position (male

speaker). The beginning of the covariance frame was located at the

instant of the negative peak of the differentiated EGG (electro-

glottography) in panel (c). The position of the frame was

decremented by one and two time instants in panels (b) and (a),

respectively. The position of the frame was incremented by one

and two time instants in panels (d) and (e), respectively.
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value of each glottal flow estimated by inverse

filtering was subtracted from the HRF value com-

puted from the corresponding original LF waveform.

The absolute value of this difference was computed

for each of the nine covariance frame positions and,

finally, averaged over all nine positions. These data,

as given in Table I, show that the glottal flow

estimates computed from the synthetic speech by

the proposed method were closer to the original LF

waveforms than those obtained by the conventional

CP analysis in all cases. For both inverse filtering

methods, the error was larger in vowels synthesized

with LF waveforms modelling female voice produc-

tion than in those mimicking male voice production.

This difference is explained by the shorter length of

the closed phase in LF pulses of female speech; for

glottal pulses of a short closed phase the underlying

assumption of the closed-phase analysis (that is,

the existence of a sufficiently long phase with zero

flow) is violated more than for pulses of a longer

closed phase, and, consequently, the absolute error

becomes larger for high-pitch vowels when the frame

position is varied.

The results of experiment 2 are given in Table II.

These data were obtained by simply computing the

standard deviation of the HRF values over all the

different covariance frame positions (four cycles and

nine positions per cycle). Again, the data show that

the use of the constrained linear prediction has

resulted in a clearly smaller fluctuation of the glottal

flow parameters when the covariance frame position

is varied: the standard deviation is smaller for the

proposed CP technique in all the speakers analysed

except for one male subject.

Conclusions

Closed-phase (CP) covariance analysis is a widely

used glottal inverse filtering method. It is based on

the extraction of the vocal tract model with the
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Figure 5. Examples of glottal flows estimated by the conventional

CP analysis by varying the covariance frame position (female

speaker). The beginning of the covariance frame was located at the

instant of the negative peak of the differentiated EGG (electro-

glottography) in panel (c). The position of the frame was

decremented by one and two time instants in panels (b) and (a),

respectively. The position of the frame was incremented by one

and two time instants in panels (d) and (e), respectively.
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Figure 6. Examples of glottal flows estimated by the proposed

new CP analysis by varying the covariance frame position (female

speaker). The beginning of the covariance frame was located at the

instant of the negative peak of the differentiated EGG (electro-

glottography) in panel (c). The position of the frame was

decremented by one and two time instants in panels (b) and (a),

respectively. The position of the frame was incremented by one

and two time instants in panels (d) and (e), respectively.
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Figure 7. Examples of all-pole spectra computed in the closed-

phase covariance analysis by the conventional LP (thin line) and

by the DC-constrained LP (thick line). Spectra shown were taken

from the analyses that resulted in the glottal flow estimates that are

shown in Figure 3(b) and Figure 4(b).
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conventional linear prediction using the covariance

criterion during the time of the closed phase of

the vocal fold cycle. Since the length of the closed

phase is typically short, the resulting vocal tract

model is highly vulnerable with respect to the

extraction of the frame position. This undesirable

feature of the conventional CP analysis typically

results in vocal tract models which have roots, both

real and complex, at low frequencies. These kinds of

false root locations, in turn, result in distortion of the

glottal flow estimates, which is typically seen as

unnatural peaks at the instant of glottal closure, the

so-called ‘jags’, or as increased formant ripple during

the closed phase.

The present investigation studied an improved

version of the CP analysis based on the concept of

the constrained linear prediction. In this idea,

predefined constraints can be imposed on the gain

of the linear predictive inverse filter at DC or at

angular frequency p. With these constraints, linear

predictive analysis is more prone to give vocal tract

models whose roots are located in the formant region

rather than in unrealistic positions at low frequency.

By using both synthetic vowels as well as natural

utterances recorded from continuous speech, the

present study showed that the use of the DC-

constrained linear prediction resulted in closed-

phase inverse filtering analysis that was less sensitive

to the location of the covariance frame position than

the conventional CP technique. In the present study,

the value of the DC gain was adjusted separately for

vowels produced by male and female subjects using

data provided by synthetic vocal tract models. In our

previous study, we used a fixed DC gain value for

both genders (31). A possible topic of further studies

would be to study how varying the value of the

constraint inside a given range changes the results of

the closed-phase analysis.
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