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1. Introduction 

The hardware of mobile devices evolves all the time, in the means of processing power, 
memory amount, and different novel media capabilities, such as playback, processing, and 
capture for both audio and video. These improvements enable completely new types of 
applications for mobile devices.   

On the other hand, most of the new mobile phones sold today have support for Java 
applications. The user can download Java applications to his or her phone from the 
Internet and therefore, customize the services that are available in the mobile terminal. 
Java Mobile Media Application Programming Interface [MMAPI 2002] enables usage of 
new audio and video features of a mobile phone from a Java application. MMAPI mainly 
concentrates on the playback and the capture of media content, but does not have a strong 
support for media processing.  

This thesis presents one suggestion how to improve audio processing capabilities of 
MMAPI 1.0. A new interface, namely Advanced Audio Application Programming 
Interface (AAI), is presented. It complements MMAPI 1.0 and has ready-made support for 
various audio processing capabilities, such as 3D audio processing, artificial reverberation, 
equalizer, and audio processing effects. This new interface enables, for instance, for the 
Java application in the mobile phone a possibility to create an artificial three-dimensional 
acoustical world to the user via attached headphones. 

The thesis is divided so that chapters from two to five provide the necessary background 
information and chapters six and seven describe the own work of the author. At first, 
chapters two and three introduce the reader to the most important related psychoacoustical 
phenomena and their application in virtual acoustics. Then, chapter four introduces five 
essential 3D audio APIs on the personal computing market today. In chapter five, the 
modules of Java that are nowadays common in the mobile phones are gone through. The 
novel API of this thesis is handled in chapter six; it is first described, then compared to 
APIs presented in the previous chapter, and then a reference implementation of it is 
presented. Chapter seven presents one example application that is built on top of the AAI 
and chapter eight concludes the thesis. 
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2. Psychoacoustics 

To be able to create artificial acoustical environments that sound like real acoustical 
environments, one has to understand how human hearing works and what are the essential 
properties of the sounds what comes to perception. One can then concentrate on modeling 
just the essential parts of the acoustical world and not to waste resources on unessential 
acoustic phenomena. The field of science that studies how different physical sound stimuli 
are mapped to different sensations is called psychoacoustics. 

This chapter presents the most important psychoacoustical phenomena. First, the human 
ear is studied in the physiological point of view and then different properties of hearing 
are gone through. Books [Blauert 1997], [Moore 1997], and [Karjalainen 1999] act as 
references. 

2.1 Physiology of the ear 

2.1.1 The outer and the middle ear 

The human ear can be divided into three parts: the outer, middle, and inner ears, as shown 
in Figure 1. The outer ear is a passive part of the ear and consists of the pinna and the 
auditory canal. Pinna, together with the head and upper body, colors sounds based on the 
direction from which they arrive. This is one of the fundamental physical phenomena that 
directional hearing uses. 

 

Figure 1. The human ear with its three subdivisions, namely outer, middle, and inner ear, visible. [Goldstein 
1999] 
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The auditory canal leads the sound from the pinna to the eardrum, which separates the 
middle ear from the outer ear. The auditory canal is a 25 mm long and 7,5 mm wide tube 
on average. Based on physical dimensions of the auditory canal, it has a resonance that 
boosts the frequencies around 4 kHz. Because the canal is so narrow, sound in audible 
frequencies propagates there mainly in one dimension only, as planar waves. Therefore, 
sounds from different directions are not treated differently anymore after the pinna and 
thus the auditory canal does not have remarkable influence on spatial hearing. 

The middle ear is an air cavity, insulated by the eardrum, containing small bones called 
the ossicles. The cavity is connected to the back of the throat by the Eustachian tube that 
balances the static air pressure with the outer ear when, for instance, flying in an airplane. 
Otherwise, the static air pressure difference would tighten the eardrum making the 
sensitivity of the hearing poorer. 

The role of the ossicles, namely malleus, incus, and stapes, is to propagate the sound from 
the eardrum to the inner ear. The inner ear is filled with liquids and thus has remarkably 
different acoustical impedance than air in the auditory canal. Matching these acoustical 
impedances is an important task of the middle ear. Without it, most of the sound energy 
would reflect back from the oval window that is the entrance of the inner ear. This 
mechanical impedance matching is caused both by the large difference in surface areas of 
the eardrum and the oval window, and by the leverage effect of the ossicles. 

The middle ear is not completely passive. It has a small muscle, namely stapedius, 
attached to stirrup, that contracts when the ear is exposed to loud sound. When the 
stapedius muscle contracts and pulls the stirrup, the transmission of the sound to the inner 
ear reduces. The contraction happens after an exposure to sound over about 80 dB in level. 
Reaction time is some tens or hundreds of milliseconds. The reason for this so called 
acoustical reflex is probably to try to protect the inner ear from harmful loud sounds. 
Unfortunately, the acoustical reflex cannot protect the ear well against the harmful sounds 
of the modern society, because of two reasons. Firstly, the transmission reduction takes 
place in the lower frequencies only, and secondly, the time lag between the beginnings of 
the loud sound and the reflex is too long to protect against impulse sounds, such as 
gunshots. 

2.1.2 The inner ear 

The ear acts as a sense receptor and converts the acoustical energy it senses to electrical 
nerve impulses to be transferred via auditory nerve to the brain for further processing. This 
conversion takes place in the inner ear. Besides of the hearing related functionality, also 
the vestibular organ is located in the inner ear, but it is out of this study’s scope. 

The cochlea (Figure 2) is the part of the inner ear where the sensory cells lie. It is a tube 
around 35 mm in length, and is bent into a spiral form. The cochlea has rigid bony walls 
and is filled with fluids. The cochlea is split in longitudinal direction with two membranes, 
namely the basilar and the Reissner’s membranes. They divide the cochlea into two larger 
chambers, namely scala vestibuli and scala tympani, and into one smaller chamber located 
between them, scala media. The cochlea enlarges in diameter towards the outer end where 
it is connected with the middle ear. On that end, there are two openings sealed with 
membranes, the oval window and the round window. Scala vestibuli‘s fluid is connected 
via the oval window to the stapes, the small bone that transmits the sound vibration to the 
inner ear from the middle ear. Scala tympani ends to the round window that leads to the 
middle ear cavity without similar bone connection. In the inner end of the cochlea there is 
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an opening called helicotrema in the basilar membrane that connects the fluids of the large 
chambers, scala vestibuli and scala tympani.  

Oval
window

Round window

Bony shelf

Helicotrema

Basilar membrane
Stapes

 

Figure 2. A structural picture of an unfolded cochlea [Karjalainen 1999]. Printed with a permission of the 
original author. 

On the basilar membrane lies the organ of Corti where the receptors, the hair cells, are 
located. When the sound energy makes the fluids in the cochlea vibrate, also the basilar 
membrane vibrates and makes the hair cells bend. This causes them to generate electrical 
impulses to the auditory nerve and to transmit the information towards the brain. 

The physical properties of the basilar membrane change as the function of place: when 
going towards the inner narrower end of the cochlea, the basilar membrane gets wider, 
heavier, and more flexible. This makes the frequency-dependent sensitivity of the 
membrane change over the distance from the windows. In other words, the amplitude 
maximum of the basilar membrane’s vibration is located in a frequency dependent place. 
Hair cells closer to the windows get more excitation for high-frequency sounds and cells 
closer to the inner end for low-frequency sounds. This is one reason why humans can 
sense the pitch of sound. 

Not all the hair cells are receptors; the outer hair cells have also an effector nature and can 
cause the basilar membrane to vibrate. It is assumed that these active cells make the 
resonance peak of the membrane sharper and thus improve ear’s frequency selectivity as 
well as sensitivity. 

Another thing that probably improves the sensitivity of pitch analysis is that the nerve 
impulses transmitted from the hair cells are statistically synchronized to the waveform of 
the affecting sound. The cells mainly emit pulses during the positive half-wave of the 
sound (increased pressure) and not during the negative half-wave. 

2.2 Critical bands and masking 

Critical bands play a central role in hearing. The human auditory system can be divided to 
critical bands in the frequency domain. When two pure tones are so close in frequency that 
there is considerable overlap in their amplitude envelopes on the basilar membrane, they 
are said to lie within the same critical band. About 24 critical bands span the audible 
frequency range. Their bandwidth varies as a function of their center frequency so that at 
lower frequencies the bandwidth is around constant 100 Hz, but at around 500 Hz the 
bandwidth starts to rise logarithmically, being several kilohertz wide in the highest audible 
frequencies. Critical bands have to be understood so that their location in the frequency 
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scale is not fixed, but rather so that hearing treats different sounds laying within one 
critical bandwidth together in various ways. 

One scale of pitch, namely the Bark-scale, is formed by attaching critical bandwidths next 
to each other on the frequency scale. One Bark then corresponds one critical bandwidth. 
The other scale addressing the same needs as the Bark-scale is the ERB-rate scale. It 
mainly differs from the Bark-scale by the method how the analysis bandwidth of the 
hearing is measured. The actual subjective pitch scale, the mel-scale, is presented in a 
separate section later. 

Masking is one phenomenon where critical bands play an important role. When the ear is 
exposed to two or more different tones, one of these tones may mask the others. This 
happens in the frequency domain between tones inside the same critical band and partially 
for neighboring bands, and in the time domain between tones that are temporally near each 
other, so that even a loud sound after a weaker one can mask the other. This premasking 
happens only in a period starting 5-10 ms before the masking tone starts. After a masking 
tone ends, postmasking masks tones until 150-200 ms has passed. 

2.3 Loudness 

In the physical world, the sound pressure means how much air pressure maximally alters 
from static air pressure when sound wave propagates via one point. The sound pressure is 
measured in Pascal scale (Pa = N/m2) and the range of human hearing is of magnitude 
from 10-5 Pa to 102 Pa. The range being so large, it is convenient to use a different scale: 
sound pressure level Lp in decibels (dB). Lp = 20log10(p/p0), where p0 is the reference 
value 20µPa. This decibel scale also happens to be closer to how human perceives the 
loudness of sound than Pascal scale. 
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original author. 
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Loudness is strongly related to sound pressure level, but also the other magnitudes of 
sound, such as frequency, spectral distribution, and duration, affect the perceived 
loudness. Frequency dependency of loudness can be seen on Figure 3, where equal-
loudness curves are presented. On the curve, the perceived loudness stays the same. 
Loudness level is defined in phons, so that at 1kHz frequency, the level in phons is 
numerically equal to sound pressure level in decibels. Loudness level of one or more 
sounds in phons can furthermore be converted to loudness in sones to actually present the 
overall perception. 

Phons and sones are quite rarely used and sound pressure level in decibels is much more 
common. The sound pressure level is usually given using some frequency dependent 
weighting to represent human’s sensation a little better than a non-weighted value. A-
weighting curve is the most commonly used weighting. It approximates roughly equal-
loudness curve of 30 phons. 

2.4 Pitch 

Perceived pitch is strongly related to physical frequency, but like in the case of loudness, it 
is a combination of also other properties of the sound. The unit used for subjective pitch is 
the mel. Doubling the number of mels, pitch is perceived twice as high. From 0 to 2400 
mels span the frequency range from 0 to 16 kHz, and 100 mels corresponds roughly one 
critical bandwidth (one Bark). Mel scale is one example of the important role the critical 
bands play in hearing. 

Like in the case of phons and sones, mels are not widely used and logarithmic frequency 
scale is used instead in technical applications. Logarithmic frequency scale is anyway 
closer to pitch perception than the normal linear frequency scale. 

2.5 Timbre and coloration 

A piano sound and a violin sound can have equal loudness and pitch, but they still sound 
different. This is because their frequency components are differently spread on the 
spectrum and time: they have different timbre. 

Humans can hear quite easily changes in timbre. We say then that the sound is colored. 
Colorations on sound are actually changes in the frequency response of the system. A just 
noticeable difference in the spectrum of a signal is approximately 1 dB in each critical 
band (1 Bark), if the reference is on the short time memory of the listener. If time has 
passed (hours or days) since reference, the errors in the spectrum can be up to ±5-10 dB 
until they are perceived clearly. 

2.6 Localization 

2.6.1 Localization cues 

Listener's two main cues for localizing a sound source are the interaural time difference 
(ITD) and the interaural level difference (ILD). ITD is caused by the wave propagation 
time difference, and ILD by the shadowing effect of the head. ITD is significant primarily 
below 1.5 kHz and ILD primarily above 1.5 kHz. These cues tell in which cone of 
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confusion the source lies. The cones of confusion are roughly speaking cones that have a 
line between ears as their symmetry axis. In other words, on the cone the difference 
between distances from the sound source to the left ear and to the right ear is the same. 

Human can differentiate if the sound source is on the back or on the front, so still one cue 
is needed. The location on the cone is revealed by spectral cues of the sound that are 
caused by the physiology of upper part of the human body, mainly by pinnae, but also, for 
instance, by shoulders. Reflections from different body parts colorize the sound differently 
depending on the arrival direction. 

All these location cues can be presented as head-related transfer functions (HRTF) that 
present how the sound changes when arriving from a direction to the ear canal. HRTFs are 
of individual nature, because all humans have different anatomy of head and torso. 

2.6.2 Precedence effect 

What if the same sound comes from multiple directions? This is a quite common situation 
that happens, for example, when the sound comes directly from the source and also via a 
reflection. If the sounds come really close together in the time domain, so that the second 
sound follows within 1-1.5 ms, they are perceived as a single source, and the location is 
determined somewhere between two real sources, based on time and level differences 
between these real sources. If it takes a little bit longer time for the second source's sound 
to arrive to ears, the location is determined almost entirely based on the first source. So, 
the ear is practically deaf to the second source when it comes to location, and "considers" 
this second sound to be an early reflection. This is called the precedence effect, and it 
takes place until 30-40 ms. After that, the second sound is perceived as an echo or 
reverberation. Although the secondary sound does not affect the location if the delay is 
between circa 1.5 ms and 30 ms, it still has an effect on coloration. 
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3. Virtual Acoustics 

“Virtual acoustics is a general term for the modeling of acoustical phenomena and systems 
with the aid of a computer.” [Huopaniemi 1999] This chapter introduces first virtual 
acoustics modeling, and then reproduction techniques. Modeling can be divided into three 
tasks: source, transmission medium, and receiver modeling. Each of them is presented in 
separate subchapters and then ways to reproduce the modeled audio scene are introduced. 
The last subchapter handles implementation issues. 

[Huopaniemi 1999] and [Savioja 1999] act as references in this chapter. Parts of the text 
have been previously published in [Kujala, Paavola 2002]. 

3.1 Source modeling 

The most straightforward way to model an audio source in a virtual acoustical scene is to 
use pre-recorded monophonic digital audio and then treat it as an omni-directional point 
source. The recorded audio should be anechoic, that is, not containing any reflections or 
reverberation; the room modeling part is responsible for creating these effects in virtual 
acoustics. High quality anechoic recordings can be done in an anechoic chamber. Instead 
of using natural pre-recorded digital audio, also synthetic audio can be used, thus saving 
bandwidth. Furthermore, audio synthesis techniques usually produce anechoic data. 

The omni-directional point source model is usually used, but there are also more accurate 
models available. Natural sound sources are not omni-directional in general. They have a 
frequency-dependent directivity pattern. For instance, a human mouth radiates more 
energy to the front of the speaker. The radiation is attenuated and low-pass filtered when 
going to the backside of the speaker because of the shadowing effect of the head. 

Most musical instruments have complex radiation patterns. They are caused by different 
modes of vibration in the bodies of instruments (e.g. in the string instruments) or multiple 
audio output points of an instrument (e.g. in the wind instruments). Another kind of factor 
in instrument directivity is the shadowing effect of the instrument player himself or 
herself. 

Source directivity can be modeled in two ways: with directivity filtering or with a set of 
elementary sources. With directivity filtering, a point source is filtered with a filter whose 
parameters depend on the direction wherefrom the source is observed. Usually, with real-
time applications, low-order filters that are symmetric to the main-axis of the instrument 
suffice. In the case of a set of elementary sources, multiple point sources are used instead 
of one to create the required directivity pattern. 
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3.2 Room modeling 

3.2.1 Methods 

There are three different approaches to model room acoustics computationally: wave-
based, ray-based, and statistical modeling techniques. A classification of the methods is 
illustrated in the Figure 4 according to [Savioja 1999]. 

 

Figure 4. Principal computational models of room acoustics according [Savioja 1999]. Printed with a 
permission of the original author. 

Statistical modeling methods are mainly suitable for noise level estimations in cases when 
sound is transmitted via different structures. The temporal behavior of a sound field is 
typically not modeled making these methods inappropriate for auralization purposes of 
virtual acoustics. 

Because sound propagation follows the wave equation, the wave-based modeling 
approach that approximates the equation yields the best results. The downside is that this 
method is computationally rather complex and not well suitable for real-time applications. 
The computational complexity narrows the use of wave-based methods to small sized 
rooms and lower frequencies only. Wave-based methods include finite element method 
(FEM), boundary element method (BEM), and finite-difference time-domain (FDTD). 
FEM and BEM are methods, which fill the modeled space with small units, elements. 
Usually, these elements are used to calculate the frequency domain responses of a given 
field. The difference between FEM and BEM is that FEM discretizes the whole region and 
BEM discretizes the region boundaries only. In comparison to usual frequency domain 
approach of FEM and BEM, the main principle in the FDTD is that derivatives in the 
wave equation are replaced by corresponding finite differences. The FDTD approach 
produces a more suitable time-domain impulse response of the modeled space. 

The third approach is ray-based modeling. Ray-based methods derive from computer 
graphics and treat the sound acting as rays, like light. This approximation is valid when 
the wavelength is long compared to the roughness of the surface, and on the other hand, 
short compared to dimensions of the surfaces in the acoustical space under modeling. The 
most common ray-based methods are ray-tracing and image-source methods. The idea 
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behind both of them is to find reflection paths from the source to the listener; the 
distinction is the way paths are searched for. 

The basic ray-tracing algorithm works so that many rays are cast from the sound source to 
different, usually equally distributed over a sphere, directions, the rays then reflect from 
the surfaces according to specular reflection1, and finally some of the rays hit the listener. 
The rays hitting the listener mark the reflection paths. The listener is usually modeled as a 
sphere with a big-enough finite volume to make enough rays to hit it. 

In image-source method, no rays are cast, but instead the reflections from surfaces are 
modeled by generating mirrored image sources of the real source behind the reflecting 
surface. The direct paths from the image sources happen to come from the same direction 
the actual reflected path would come. Also the distance equals to the real reflection path. 
In other words, there is an image source for every reflection path from the source and the 
direct path from these image sources is used for calculations of the room response instead 
of reflected paths. Images of the images correspond reflection paths of multiple 
reflections. One advantage in image-source method is that the movement of the listener 
does not cause the need to recalculate the image sources, just the actual reflection path has 
to be formed and checked that it is obstacle free. 

time

amplitude
direct sound

early reflections

late reverberation

0 dB

reflections
delay reverb delay

-60 dB

reverberation time (T60)  

Figure 5. Room impulse response is typically divided into direct sound, early reflections, and late 
reverberation. 

Figure 5 illustrates a typical division of the room impulse response: direct sound, early 
reflections, and late reverberation. Ray-based methods are efficient for finding early 
reflections, but become computationally heavy when later reflections are searched for. 
Usually in room simulations, the early reflections are calculated with these methods, but 
late reverberation is simulated with an efficient approximative recursive algorithm instead. 
One important class of such algorithms is feedback delay networks (FDN) that was 
introduced by Stautner and Puckette in [Stautner, Puckette 1982]. 

                                                 
1 In specular reflection, the angle of incident of an incoming ray is the same as the angle of reflection of the 
outgoing ray. 
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A feedback delay network (Figure 6) consists of multiple delay lines that are 
interconnected with a feedback matrix to form a feedback loop. The delay lines have 
unequal lengths. For instance, mutually coprime numbers can be used as lengths to 
minimize the collision of echoes in the impulse response. Hn filters at the end of each 
delay line simulate the absorption caused by the reflection and the distance attenuation. 
[Zölzer 2002] 

feedback matrix

H1delay line 1

input output

X

L R

+X

b1

+

c1

H2delay line 2 X+X

b2

+

c2

H3delay line 3 X+X

b3 c3

H4delay line 4 X+X

b4 c4

 

Figure 6. A feedback delay network. 

3.2.2 Attenuation and absorptions 

The distance attenuation of the sound follows the 1/r-law. It means that the sound pressure 
level drops 6 dB when the distance doubles. This has to be taken into account for all the 
paths from the source to the listener gained from the image-source or ray-tracing methods. 

In addition to the 1/r-law distance attenuation, also another effect is distance dependent: 
air absorption. It also depends on the temperature and the humidity. The air absorption 
affects the sound by low-pass filtering. Air absorption and distance attenuation are usually 
implemented as a common filter, because they both are functions of distance. 

Furthermore, on the reflection paths there is one more important absorpting phenomenon: 
the absorption caused by reflections from the surfaces. It is the most complex of all, 
because it is a function of many parameters: incident angle, the scattering and diffraction 
phenomena etc. 

3.3 Listener modeling 

When the direction of the sound source (image or real) is known, the source's sound is 
filtered with the HRTF of that direction and as an output two signals are produced; one for 
each ear. When listening to this signal, the source sounds like being in that direction.  
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As mentioned earlier, HRTFs are of individual nature, so they have to be measured 
somehow. This usually happens in an anechoic chamber by placing small microphones in 
the ear canals of the person and then measuring transfer functions from loudspeakers 
placed around the person to the microphones. Usually, there is a row of speakers that is 
moved by a turntable around the person and then the responses are measured from each 
speaker in each position of the turntable. Another option is that the position of the 
speakers can be fixed and the person sits on a turntable and spins with it. Figure 7 
illustrates the former way of measuring HRTFs. 

 

Figure 7. An apparatus for HRTF measurements in the anechoic chamber of the Institute of Sound and 
Vibration Research (ISVR) at the University of Southampton, UK. <URL: 

http://www.isvr.soton.ac.uk/FDAG/VAP/>. Printed with a permission of ISVR. 

Naturally, it is possible to measure the responses only from a discrete amount of 
directions. When a sound is wanted to be reproduced coming between the measured 
directions, it is either just estimated by choosing the nearest measured direction or it can 
be interpolated between measured directions. 

A straightforward approach is to implement HRTFs as FIRs. They can, for instance, be 
FIRs with minimum-phase reconstruction, and the ITD is then modeled separately for 
each ear. Frequency warping can also be used to make the filters computationally more 
efficient. 

3.4 3-D sound reproduction 

After calculating the required sound field for virtual acoustics, it has to be somehow 
created to the listener's ear canal. There are different ways. 
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3.4.1 Headphone reproduction 

A natural approach is to use headphones. Playing the calculated sound data via good 
quality headphones works quite well. Even better results can be obtained by first 
equalizing the response by headphone specific compensation filter. One thing that can 
cause the virtual acoustical world to collapse is the movement of the head; the virtual 
world then spins with the head movement. This can be prevented with the use of head-
tracker and then compensating the head movements by altering the orientation of the 
virtual listener accordingly. 

3.4.2 Loudspeaker reproduction 

Another approach is to use loudspeakers. Here the biggest problem is the leaking of the 
sound from the left channel to the right ear and vice versa. This so-called crosstalk has to 
be cancelled with crosstalk cancellation filters. The filtering works correctly only in a 
certain position between the speakers; this so called "sweet spot" is not wide. This limits 
the movement of the listener dramatically compared to other reproduction methods. 

3.4.3 Multichannel reproduction 

Also, multiple speakers around the listener can be used, but then we are not talking 
anymore about binaural reproduction. The disadvantages of multichannel reproduction are 
the limitation of virtual source directions to the directions of the speakers installed and the 
big amount of hardware required. The advantages, on the other hand, are that no listener 
modeling is needed and the virtual world follows automatically the turnings of the listener. 

3.5 A typical DSP implementation 

One way to implement the virtual acoustics in a resource-limited mobile device is 
illustrated in Figure 8. The direct sound is first attenuated with 1/r-law and then filtered 
with some HRTF approximation. The reflected sound, on the other hand, is first filtered 
with a room filter that tries to approximate the distance attenuation, the air absorption, and 
the attenuation on the reflections. It is typically a low-pass filter. Then, a delay line is used 
to generate early reflections and a recursive algorithm generates late reverberation. 
Finally, the direct sound and the reflected sound are added together to form the output for 
headphones. In this model, only the direct sound is HRTF-filtered. 
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Figure 8. DSP blocks of a typical virtual acoustics implementation. 
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4. Existing 3D audio APIs 

In this chapter, the most important already existing 3D application programming interfaces 
(API) that contain advanced audio processing features are introduced. These include Java 
3D API and MPEG-4. Also VRML and X3D have possibilities for spatialized audio, but 
MPEG-4 extends their way of audio presentation and thus VRML and X3D are omitted 
here. Although, when describing MPEG-4, similarities to VRML are emphasized. 
Furthermore, 3D audio extensions to SMIL have also been studied [Siemens 2002], but 
they are not publicly available yet. 

Two soundcard manufacturer’s APIs are presented as well. They are Creative Lab’s EAX 
and Aureal’s A3D. DirectX audio, being the basis of EAX and also otherwise popular API 
in the Microsoft Windows world, deserves an own subchapter too. 

The presented APIs are compared in section 6.5. Also the comparison against the new API 
this thesis introduces is there. 

4.1 Java 3D API 

Java 3D API is an extension to J2SE that provides tools to construct three-dimensional 
graphics for Java applications and applets. This chapter gives on overview of the API in 
general and then 3D sound part of it is described in more detail. [Walsh, Gehringer 2002] 
acts as a reference together with the API documentation [JAVA3D 2002]. 

4.1.1 High-level 

Java 3D API is a high-level API that makes it possible for the programmer to concentrate 
on what to draw instead of how to draw. This distinguishes it from low-level rendering 
APIs like OpenGL and Direct3D. Usually, Java 3D API implementations are layered on 
top of these low-level APIs. Being high-level, Java 3D still offers also control over low-
level rendering details if necessary.  

4.1.2 Concept of scene graph 

Java 3D is based on treelike structure to describe the three-dimensional world. Similar 
structure is used in many other 3D APIs and is called as a scene graph. 

Scene graph stores the information of the scene in a tree that consists of nodes. Nodes can 
either represent objects or properties of the virtual world or they can be group nodes that 
contain other nodes. Group nodes organize the tree so that individual objects form together 
some bigger entity and those bigger entities can again be grouped together to form a 
higher level entity and so on. The result is a tree where leaf nodes represent the simplest 
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objects in the world and the world is represented by the whole tree together. Figure 9 
illustrates one simple scene graph. 

Bed

Bed room

House

Sofa

Living room

Table

 

Figure 9. An example of a scene graph. 

As Java is an object-oriented language, nodes in Java 3D are actually objects, instances of 
one of the class Node’s subclasses. Nodes of the scene graph can be divided to four 
categories: shape nodes, environment nodes, group nodes, and to the ViewPlatform that 
forms a separate category alone. The shape nodes represent some geometrical visible 3D 
objects in the world such as cubes, points, or even something more complex like a teapot. 
The environment nodes are not (at least directly) visible. They affect the environment in 
an area of the virtual world. Light, Sound, and Fog are examples of environment nodes. 
The ViewPlatform node is a special node. It controls the position, orientation and scale of 
the virtual observer in the world. The scene is being viewed from the place of 
ViewPlatform. 

Nodes can be divided further into smaller parts. NodeComponents are pieces of nodes 
and they hold properties or data of the node or nodes associated to them. For instance, the 
shape nodes have NodeComponents called Geometry and Appearance; former defining the 
geometry and topology of the shape and the latter defining among others the material the 
shape is made of. NodeComponents can be shared between multiple nodes. This makes it 
possible to, for instance, for the chair and the sofa to easily share the same Appearance, 
for example, black leather. There is no need to define Appearance separately for each 
shape. 

4.1.3 Sound sources in Java 3D 

The audio properties of the virtual world are defined in Java 3D with two different types 
of environmental nodes: Sound and SoundScape. 

Sound is the base class for different types of sounds and provides methods for controlling 
the overall gain, muting, and looping of the sound, and setting the MediaContainer that 
stores the actual sound data to be played. Typically, MediaContainer is set up to read the 
data from a sound file, such as “.wav”, located with an URL. 

Sound class has various subclasses. A BackgroundSound defines an unattenuated, non-
spatialized sound source that has no position or direction. It is useful for playing mono or 
stereo music track or an ambient sound. 
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Figure 10. UML class diagram of Sound with its subclasses. 

The other subclass of Sound is PointSound that defines a spatially located sound source. 
PointSound is an omnidirectional source that radiates equally to all directions. PointSound 
has methods for setting its location and distance attenuation curve. The attenuation curve 
is defined in an array of distance and gain scale factor pairs. Between defined distances the 
gain scale factor is linearly interpolated. 

PointSound has a subclass ConeSound that is like a PointSound, but has directivity. 
ConeSound has definable direction and directivity pattern that tells how the sound of the 
source attenuates when listening from off the front direction of the source. The directivity 
pattern can be defined using three arrays of equal length: angular distance from the front 
direction of the source, gain factor, and low-pass filter cutoff frequency. This makes it 
possible for not only the gain to attenuate when moving from the front of the source 
towards the side of it, but also the sound to be filtered so that sounds with higher pitch 
attenuate more than lower sounds. The directivity is symmetrical around the main axis of 
the source. 

4.1.4 Virtual acoustical environment in Java 3D 

Class Sound is used to define sound sources, but also the other attributes of the sound can 
be controlled in Java 3D. Node SoundScape defines the space where the sounds are 
listened. SoundScape has two important fields: AuralAttributes that has various 
parameters to define the environment where the Sounds are listened, and Bounds that 
defines the space in the virtual world where the AuralAttributes are applied. A scene graph 
can contain multiple SoundScapes and this makes it possible for the acoustical 
environment to change when moving around in the world. 

AuralAttributes is a sub-class of NodeComponent and defines the SoundScape. The 
settings in AuralAttributes include simple gain scale factor, sound velocity scale factor, 
and parameters controlling reverberation, distance frequency filtering, and velocity-based 
Doppler effect. 

Java 3D’s reverberation model is tunable with multiple parameters. It is divided into two 
components: to the early, distinct reflections and to the late reverberation. Both 
components have the separate settings for the gain and the delay time for the first reflected 
sound to reach the listener. The decay time, the echo dispersement (echo density), and the 
low-pass filter cutoff frequency of the late reverberation are definable, as well as the 
modal reverb density, which defines how smoothly the reverberation decays. An 
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alternative way to define late reverberation delay and decay is also offered: one can just 
define bounds of the virtual physical space (room); then delay and decay are calculated 
automatically internally. To complete the set of the reverberation parameters offered by 
Java 3D there is also one parameter that can be used to control the rendering: reverb order 
can be set to limit the number of reflections calculated and thus make the rendering less 
demanding. 

Distance filtering can be used to simulate the air absorption, which has characteristics to 
attenuate higher frequencies more than lower ones. Distance filtering in Java 3D is defined 
giving distance/frequency pairs, which define the cutoff frequency of the low-pass filter 
applied for specified distances from the source.  

The Doppler effect means the frequency shift sensed by the observer when the distance to 
the source changes. When the source moves towards the observer the observed frequency 
raises and the other way around when the distance gets longer. Using the Doppler effect, 
the sense of sound source movement gets stronger. The strength of the Doppler effect can 
be tuned with two scaling factors: one for the relative velocity of the sound source and one 
for the frequency shift caused by the velocity. If the Doppler effect is turned off, the 
frequency shift factor can be used to directly tune the pitch of the sound. 

4.1.5 Physical real acoustical environment in Java 3D 

In addition to the scene graph, Java 3D has also class PhysicalEnvironment that controls 
the physical environment where the view of the virtual world is generated. 
PhysicalEnvironment has accessors to AudioDevice that has ways to access physical 
parameters like distance and angle from the listener to the nearest speaker and the info if 
the headphones are used instead of speakers. 

4.2 MPEG-4 

Moving Picture Experts Group (MPEG) is one of the many Working Groups in the 
ISO/IEC. MPEG has been responsible of developing successful standards MPEG-1 and 
MPEG-2. After them, it continued its work by developing the MPEG-4 standard. The first 
version of MPEG-4 became International Standard in 1999. Since that, MPEG has worked 
to produce successive versions and addendums to MPEG-4, and furthermore, two 
successive standardization projects have followed, namely MPEG-7 and MPEG-21, 
initiated in 1996 and 2000, respectively. 

In this chapter, overview of MPEG-4 is given with emphasis in the audio properties 
MPEG-4 provides. [Pereira, Ebrahimi 2002] and [MPEG] act as references in this chapter. 

4.2.1 Coding of Audio-Visual objects 

The scope of both MPEG-1 and MPEG-2 has been effectively compressing and then 
transferring audio-visual streams that contain natural audio and video content from a place 
to another. The content is mixed together in production phase and the consumption is of 
passive nature, spectating precomposed media. The MPEG-4 takes a different approach: 
coding of audiovisual objects. 

The content in MPEG-4 consists of multiple audiovisual objects. These audiovisual 
objects can be of different nature: they can be such as arbitrarily shaped video objects, 
multichannel audio objects, or objects that contain only speech. The objects of MPEG-4 
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presentation are combined in the receiving end to form an audiovisual scene. The rules 
how to combine the objects are described using a scene description language that in the 
case of MPEG-4 is BInary Format for Scenes (BIFS). It is described in the later chapters. 
Forming scene in the receiving end makes it possible to make the composing procedure 
interactive and to enable for the user to interact with the scene. The scene can, for 
instance, be a 3D world that the user can observe from different viewpoints. 

MPEG-4 also utilizes the concept of synthetic-natural hybrid coding (SNHC). SNHC 
means that the audiovisual object can be either natural, like video produced with a video 
camera or audio produced with a microphone, or synthetic, such as animation produced 
using computer graphics, music produced using synthesizer, or speech produced using 
speech synthesis. Natural objects can be transmitted within MPEG-4 stream in a 
traditional way, but synthetic objects can be produced in the receiving end using just the 
parameters transferred with MPEG-4 stream, thus saving bandwidth. At the end, both 
types of objects are mixed together to form a composed scene. 

In addition to the bandwidth saved by transferring just parameters of synthetic objects, 
also the separate coding of natural objects saves bandwidth in general: the most optimal 
compression algorithm can be chosen for different kinds of natural objects. For example, 
speech can be coded with a speech codec and background music with a generic audio 
codec. This approach gives the most efficient kind of coding for both forms of audio and 
probably coding both combined with generic audio codec still maintaining the quality of 
speech would waste more bandwidth than two separate codecs together. Furthermore, 
different bit and sampling rates can be used for different sound components on the scene. 

4.2.2 Structured Audio 

In MPEG-4, the audio coding tools are divided into two major categories following the 
SNHC approach presented in the previous chapter. The division is illustrated in Figure 11. 
There are separate tools for the natural audio and for the synthetic audio. The natural audio 
tools are generic audio and speech, and synthetic audio tools are structured audio (SA) and 
text-to-speech interface (TTSI). SA is introduced in more detail in this chapter. 

MPEG-4 audio coding tools

Natural Synthetic

Generic
audio Speech Structured

audio

Text-to-
speech

interface  

Figure 11. The division of MPEG-4 audio coding tools. 

Structured audio (SA) is a concept of MPEG-4 that allows a very low bit-rate transmission 
of synthetic audio, such as synthetic music or sound effects. SA offers ways to describe 
the audio, not in a traditional form of sampled waveforms, but instead as the algorithms 
used to produce the audio signal with the necessary timing information. MPEG-4 defines 
two languages for these purposes: Structured Audio Orchestra Language (SAOL) for 
describing the algorithms and Structured Audio Score Language (SASL) for the timing 
and controlling of the algorithms. As a rough analogy with the real world could be that 
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SAOL describes how various instruments in the symphony orchestra sound and SASL 
describes the score the orchestra is playing. In addition to the instruments described as 
algorithms with SAOL, there is also a format to transfer sample data, Structured Audio 
Sample Bank Format (SASBF). SASBF data can be utilized in SAOL algorithms or used 
as-is to form wavetable based instruments. Figure 12 visualizes the structure of the SA 
decoder. 

Scheduler Sample Data StorageSynthesis Engine

SASL
or

MIDI
SAOL SASBF

decoded
sound output  

Figure 12. SA decoder. 

SAOL is a programming language with C-like syntax and basic operators. The instruments 
are described in SAOL as networks of various digital signal-processing (DSP) routines. 
SAOL has a library of around 100 core opcodes that represent various kinds of 
mathematical and DSP functions, such as, signal generators, DSP filters, pitch converters, 
and delay functions. All the SAOL functions are normatively defined in the standard. This 
guarantees that the same SAOL stream always produces the same sound output when 
played with a MPEG-4 compatible player. 

SASL controls the SAOL instruments. SASL contains the timing information to 
instantiate the instruments, to control their parameters, and to change the tempo. SASL 
events are sent to the scheduler part of the SA decoder. SASL events contain time stamps 
and the scheduler takes care of ordering the events to the correct order and then triggering 
them at specified times during the decoding process. Instead of SASL, SA decoder can 
also use MIDI stream as a score language. 

4.2.3 BIFS 

As stated earlier, MPEG-4 has a scene description language called BInary Format for 
Scenes (BIFS) for describing how to combine the various audio-visual objects. BIFS is 
strongly based on the Virtual Reality Modeling Language (VRML) [VRML97] and its 
successor Extensible 3D (X3D). Compared to the combination of Java and Java 3D 
presented earlier, BIFS is not a full scale powerful programming language, but as it still 
defines runtime semantics, it is not pure 3D file format either. It is something between. 
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Runtime dynamic behavior of BIFS can be defined using ECMA Script that is a language 
similar to commonly known Javascript. 

BIFS describes the scene using a scene graph concept similar to Java 3D. The concept of 
scene graph was described in the Java 3D chapter. The scene described with BIFS can be 
either flat or 3D, and contain many kinds of audiovisual objects. There can be visual 
objects such as rectangular video, video with shape, synthetic face and body, generic 3D 
objects, text, and graphics; and audio objects, such as speech, natural music, synthetic 
music and information about room effect. Next subchapters tell more about audio nodes in 
BIFS. 

4.2.4 AudioBIFS 

Audio nodes of BIFS are called as AudioBIFS. They were specified in two stages: first 10 
AudioBIFS nodes came out with the first version of MPEG-4 and were later followed by 
four additional nodes defined in the first amendment of MPEG-4 Systems standard. These 
latter nodes are called as Advanced AudioBIFS and address mainly to 3D sound 
propagation in room. In this subsection, the core AudioBIFS nodes are described. The 
following subsection covers Advanced AudioBIFS. All audio nodes have been grouped in 
this thesis to five categories, and this grouping can be seen in Figure 13. 

AudioClip (VRML)

AudioSource

(AudioBuffer)

AudioMix

AudioSwitch

AudioDelay

AudioFX

(AudioBuffer)

Sound (VRML)

Sound2D

DirectiveSound*

ListeningPoint

Leaf nodesIntermediate nodesRoot nodes

AcousticMaterial*

AcousticScene*

PerceptualParameters*

Room modelListener model

 

Figure 13. AudioBIFS and Advanced AudioBIFS nodes. Advanced AudioBIFS nodes are marked with 
asterisk (*). AudioBuffer is stated twice because of its dual nature. 

Only two of the AudioBIFS nodes are inherited from VRML: Sound and AudioClip. 
Sound is the node that attaches the sound source into the BIFS scene. It has a location and 
direction in the 3D space. A Sound has also four fields to define direction and location 
dependent sound attenuation. This directivity is specified with two distances both to the 
back and to the front of the source. They define two ellipsoids that are symmetric to the 
main axis of the source. Inside the inner ellipsoid the observed sound pressure level stays 
constant; between the surfaces of the two ellipsoids level decreases 20 dB when the 
distance grows; and outside of the outer ellipsoid the source is silent to the observer. A 
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Sound has also a Boolean field spatialize that can be used to toggle the spatialization of 
the field on or off. Spatialization means rendering the direction and the location of the 
source to the sound heard by the user. 

Sound node has also a field for a source. This source can, for instance, be an AudioClip. 
An AudioClip associates Sound to the actual source of sound specified with Universal 
Resource Locator (URL). An AudioClip has fields to control the starting and stopping of 
the playback in specified times. Also looping is possible. With an AudioClip node it is 
possible to include only sound that is an interactively downloaded audio clip; streaming is 
not possible. MPEG-4 adds a new parallel node to this VRML originated AudioClip; an 
AudioSource is capable to play also audio streams made with MPEG-4 audio coding tools 
described earlier. 

Like AudioClip, also Sound has MPEG-4 specific dual nodes: Sound2D and 
DirectiveSound. These three are called here as root nodes, because they are the nodes that 
are associated to the scene graph and other audio nodes associated to them can be 
considered to form an audio sub-tree of that specific sound source in the scene. Basically 
an audio sub-tree in the scene graph can be understood so that leaf nodes produce sound to 
the audio sub-tree, intermediate nodes form the signal processing network that connects 
the leafs to the root node that acts as a virtual source in the scene. The concept of the audio 
sub-tree is described in more detail later. 

As being Advanced AudioBIFS node, DirectiveSound of root nodes is described in the 
next subsection, but Sound2D is described here. Sound defines the location in 3D space, 
which is sometimes unnecessary for 2D applications. Sound2D addresses to this need and 
defines the place of the sound source on a plane with two coordinates instead of three. The 
vertical plane has a width of 2 meters and is 1.5 meters high.  The viewpoint is 1 meter 
away right in front of the plane facing its center point. Sound2D does not have fields for 
defining the sources directivity pattern, but the spatialization can be toggled. 

The intermediate nodes of the audio sub-tree form the signal paths from the leaf nodes to 
the root node. They mix the sound of their children (that are leaf nodes or other 
intermediate nodes) and process it in some way and output sound to their parent node in 
the tree. The tree-like network makes it possible for one virtual sound source in the scene 
to consist of multiple sound streams (leaf nodes) that are processed and mixed in a certain 
manner. The intermediate nodes are AudioMix, AudioSwitch, AudioDelay, AudioFX, and 
to some extent AudioBuffer that has also leaf node behavior. 

AudioMix and AudioSwitch serve the same need: to mix multiple sources (children) to 
the output (parent), but they have different kind of ways to control the mixing. AudioMix 
has a matrix that defines the proportions of the input channels that are mixed to the output 
channels. AudioSwitch is simpler: no gains can be specified; the inputs connected to the 
outputs are defined with boolean values. 

AudioDelay delays its children’s outputs with the same, specified amount of time. It can 
be used to fine-tune the synchronization between various streams on the scene. 

AudioFX performs arbitrary audio filtering to its children and passes the filtered audio to 
its parent. AudioFX has a field that specifies the filtering algorithm in SAOL of structure 
audio tool described earlier. Also SASL can be used additionally in a separate field to 
control the parameters of the filtering algorithms if necessary. AudioFX is a handy tool to 
add for instance reverberation to anechoic speech generated by text-to-speech synthesis. 
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AudioBuffer has a dual nature: it acts like AudioClip, producing sound like a leaf node, 
but on the other hand, it can be used to capture sound from its children as well. This 
captured sound is the sound AudioBuffer outputs. AudioBuffer has also functionality to 
enable transferring MPEG-4 encoded sounds to be used as wavetables of the SA decoder.  

In BIFS, the viewpoint to the scene is specified with Viewpoint node. The point where the 
sounds are heard is usually the same point. However, the observation point of the sounds 
can also be specified separately with a ListeningPoint node. This makes the listening 
point independent of the viewpoint, if necessary. 

4.2.5 Advanced AudioBIFS 

Advanced AudioBIFS add 3D sound propagation properties to original AudioBIFS. 
Advanced AudioBIFS consists of four new nodes: DirectiveSound to replace Sound when 
spatial properties of the sound source are essential; AcousticMaterial and AcousticScene 
to define acoustical properties of the space (room effect) using physical parameters; and 
PerceptualParameters to define the same properties in alternative way, using perceptual 
parameters. 

DirectiveSound has the same kind of semantics than Sound, but adds some features. The 
setting of the source directivity is more fine-grained. Arbitrary numbers of angles can be 
specified; and for all of those angles, parameters directivity and frequency can be given to 
define frequency-dependent directional filtering. Furthermore, the speed of sound can be 
changed to affect the propagation delay, distance-dependent attenuation can be defined by 
setting the distance where attenuation is 60 dB, and specific air absorption filter can be 
switched on. Air absorption is simulated according to distance-dependent air absorption 
curves defined in ISO9613 standard. DirectiveSound has also a Boolean field to turn the 
room processing specified by the nodes presented next, completely off. 

AcousticScene can be used to define a smaller region of the entire scene to limit the 
acoustical processing in that area only. Only the surfaces on that area will by modeled 
when the ListeningPoint is inside. With AudioScene, also the late reverberation 
parameters are defined: frequency dependent reverberation time (T60), delay after the late 
reverberation starts, and the level of the reverberation can be defined. 

Material node gives the visual properties of a geometrical shape object on the scene. Like 
Material node, AcousticMaterial can be used to define visual properties of object, but it 
has also additional fields that define the acoustical properties of that same geometrical 
object; an object can have frequency dependent transfer functions for both reflections from 
its surfaces and for transmission of sound through the object. 

As told earlier, PerceptualParameters can be used as an alternative way to 
AcousticScene and AcousticMaterial to specify how rooms and objects in those affect the 
observed sound. With AcousticScene and AcousticMaterial, the space was specified using 
physical measures. With PerceptualParameters, perceptual measures are used instead. 
PerceptualParameters is given as a field of a DirectiveSound node, thus it can be specific 
to each virtual source. The given perceptual measures control the energy division on 
various parts of the room impulse response (RIR) in both time and frequency domains. 
RIR is divided into four parts in the time domain: direct sound, directional early 
reflections, diffuse early reflections, and late reverberation; and into three parts in the 
frequency domain: low, mid, and high frequencies. These parts are specified by the user 
giving appropriate time limits and frequency borders. The effects that various perceptional 
measures given have to the different parts of RIR are described in Table 1. In the table, the 
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perceptual parameter is on the z-axis and the different frequency/time bands are on the x-
axis. There is a field refDistance that defines the distance where parameters apply; when 
the distance changes the parameters are scaled accordingly automatically.  

Table 1. The effect of various perceptual parameters on energy (E) and on decay time (T). 

 DIRECT 
SOUND 

DIRECTIONAL 
EARLY 
REFLECTIONS 

DIFFUSE 
EARLY 
REFLECTIONS 

LATE 
REVERBE-
RATION 

frequency 
band L M H L M H L M H L M H 

source-
Presence E          

source-Warmth E            

source-
Brilliance   E          

room-Presence          E 

late-
Reverberance           T  

heavyness          T   

liveness            T 

envelopment E E       

directFilter-
Gains E E E          

inputFilter-
Gains E E E E E E E E E E E E 

omniDirectivity    E E E E E E E E E 

 

Fields sourcePresence, sourceWarmth, and sourceBrilliance affect the direct sound. The 
late reverberation is affected by roomPresence, giving the overall gain of it, and 
lateReverberance, heaviness, and liveness, specifying different decay times. Envelopment 
specifies the relative energies of the direct sound and the directional early reflections. 

Furthermore, three additional filters are specified with the fields directFilterGains, 
inputFilterGains, and omniDirectivity. They all are specified in a similar way, using three 
figures: gains for low, mid, and high frequencies. DirectFilterGains sets a filter for the 
direct sound only, making an occlusion2 effect possible. OmniDirectivity sets filters for 
the room part of the RIR only affecting thus directional early reflections, diffuse early 
reflections, and late reverberation. inputFilterGains affects all parts equally. 

                                                 
2 The occlusion effect means the shadowing of the sound by an object between the source and the listener. 
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Additionally, out of the table, modal density of the RIR can be specified. It controls the 
density of the resonances in the frequency-domain response. Early decay time can be 
specified with field runningReverberance by giving time when the level decreases 10 dB. 

4.3 A3D 

A3D is a positional sound C++ API and engine made by Aureal Inc. The latest version of 
A3D API is 3.0 [A3D] and it is presented in this chapter. A3D 3.0 never came popular; 
Aureal had economical problems and Creative Labs became the owner of the A3D 
technology. The predecessors, A3D 1.0 and A3D 2.0 are popular APIs, though. The main 
differences between versions are that A3D 2.0 adds rendering of early reflections to the 
basic positional audio that A3D 1.0 offers, and A3D 3.0 adds support for late 
reverberation, sources with finite volume instead of point sources, and the possibility to 
use MPEG audio layer 3 compressed audio sources. [Hagen, Muschett 2002] 

A3D API 3.0 follows Component Object Model (COM) [COM] software architecture 
developed by Microsoft and is implemented as a COM server. The A3D 3.0 server is 
accessible for application developers via various interfaces that follow COM model. The 
following sections describe these interfaces with their most important functionality. 

4.3.1 IA3d5 

IA3d5 is the top-level interface of A3D and all the other interfaces are created or queried 
from it. The initialization and finalization of the audio engine is done via methods IA3d5 
offers. 

IA3d5 hosts the frame buffer based architecture of A3D. When the audio scene is 
described using the various methods of A3D, the scene information is not passed to the 
audio rendering hardware or software immediately. Instead, the scene description data is 
accumulated first to a frame buffer and after application has completed the scene, it calls 
IA3d5’s Flush method to take the accumulated audio frame into use to the rendering 
engine. This is similar to the concept of double buffering in computer graphics. Instead of 
graphical information, an audio frame is a collection of acoustical parameters describing 
how the scene should be rendered. These parameters include, for instance, updates to 
listener and source positions, and dynamically changing obstacles in the scene with their 
geometry and material. In other words, the frame buffer is first cleared with Clear method, 
then the updates to the virtual audio world are described, and finally these updates are sent 
to the renderer with Flush method. 

IA3d5 has the global functionality of the virtual audio world. The distance attenuation 
model and Doppler effect can both be scaled with scaling factors from their natural 
settings. Setting both factors to 1.0 equals natural 1/distance attenuation and 340 m/s 
speed of sound for use in Doppler calculations. Global equalization is also possible, but it 
is limited into one fixed band treble attenuation only, of which mentioned use case is 
underwater acoustics simulation. Global gain is controllable, too. 

Methods for tuning in various ways the computational capacity used for rendering are 
offered. The maximum delay for reflections can be set to limit the memory buffer needed 
for storing the waveform data to be heard as an echo later. A3D has also a concept called 
Resource Manager. Usually the underlying hardware has some maximum number of 3D 
audio sources and reflections that can be rendered simultaneously. The virtual world might 
have more audio sources active in a same time. To overcome this problem, A3D 
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introduces a real-time software rendering engine, namely A2D. If the audio hardware does 
not have enough capacity to render all the necessary audio sources, Resource Manager 
gives the less important source to A2D for rendering them using efficient software 
algorithms. If also software channels of A2D run out, the least important sources are 
converted as virtual sources. A virtual source is playing in means that the pointers to the 
audio data are updated as time passes, but it is not rendered at all and is therefore inaudible 
using only very limited amount of computing resources. IA3d5 offers methods to control 
the amount of software rendered A2D sources and as well it is possible to limit the amount 
of hardware sources used. To classify sources according to their importance, Resource 
Manager uses two values for each source, audibility and priority. Audibility is calculated 
from distance attenuation, gain, equalization, and occlusion of the specific source. The 
priority of each source can be set by the application. The weight how much priority counts 
compared to audibility for Resource Manager can be set. 

The used coordinate system can be chosen between left-handed and right-handed versions. 
Also geometrical scaling is available making possible to specify how many units 
correspond to one meter in the real world. This enables use of arbitrary unit for length and 
makes audio scene geometry calculations easy to cooperate with visual calculations – what 
ever their scale is. 

The reproduction method can be accessed. There are supported modes for headphone 
listening and for two different loudspeaker settings: speakers set into narrow angle and to 
wide angle. In the case of four output channels, they can be grouped as two stereo 
channels or as one quad channel with rear speakers. 

4.3.2 IA3dListener 

Interface IA3dListener provides controls for listener model. IA3dListener has methods for 
setting the position, orientation, and velocity of the listener. Velocity is used for Doppler 
calculations. 

Reference to IA3dListener is gained by querying from IA3d5. 

4.3.3 IA3dSource2 

IA3dSource2 controls the source model of A3D. It has the same methods as IA3dListener 
to set the position, orientation, and velocity, but otherwise it has richer functionality. 

IA3dSource2 is created with NewSource method of IA3d5. NewSource is given a 
parameter that tells if the source is of 3D or native type. 3D sources are rendered using 
spatialization and environmental effects like reflections, occlusion and reverb; the first 
order reflections and occlusion calculations can be switched off later if necessary. The 
native sources, in the other hand, are played as are, using just gain and pan control.   

There are two ways to associate audio data into a source. With straightforward method 
LoadFile you can load an audio file or you can use a sequence of the following methods: 
SetAudioFormat, to describe the audio format used; AllocateAudioData, to allocate 
memory and resources; Lock, to get a pointer to the part of audio data buffer where it is 
safe to write without affecting current playback; and after copying the audio data UnLock, 
to release the pointer of the audio buffer for playback. 

For playback control there are methods Play and Stop, for starting and stopping the 
playback, respectively. Play command is accumulated into frame buffer and takes place 
after Flush, but unlike Play, Stop is signaled immediately. Play method takes as an 
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argument about if the playback will continue in a loop or is the data played just once. 
Playback position can be controlled with sample accurate accessors Set- and 
GetPlayPosition, to control it as bytes, or with accessors Set- and GetPlayTime, to control 
is as seconds. 

As was mentioned before, IA3d5 has the global scaling factors for some parameters. 
These same parameters can be scaled source specifically as well. These scaling factors 
settable from IA3dSource2 include the distance attenuation model, Doppler effect, 
equalization (that is limited into one fixed band treble attenuation only), and gain. The 
distance attenuation model can furthermore be fine-tuned with methods Set- and 
GetMinMaxDistance. SetMinMaxDistance takes three arguments: min distance, max 
distance, and behavior after max distance. When the source is closer than min distance, the 
distance dependent attenuation is not in effect. With this feature, the sources can be made 
audible in a larger area than just applying strictly natural distance attenuation model. Max 
distance specifies the distance where to the attenuation increases. Further than max 
distance, the behavior argument specifies if the attenuation either stays in a constant level 
it has reached in max distance or becomes muted after max distance. 

The directivity of the source is accessible via methods Set- and GetCone. SetCone takes 
three arguments: two angles (inner and outer) and a gain factor for source radiation 
towards back of the source. The radiation pattern is calculated so that it is one when the 
angle from the source’s main axis to the listener is below inner angle; when the angle is 
between inner and outer angle, gain is interpolated between one and backward gain; and 
when the angle is bigger than outer angle, the applied gain is constantly the backward 
gain. The source directivity is applied only for direct sound; for the reflections, it is 
ignored. 

A3D 3.0 enables volumetric sources. That means that sources can have finite space instead 
of being point sources. With methods Set- and GetVolumetricBounds the dimensions of 
the source can be accessed and the rendering characteristics for volumetric sources are 
specified using method SetVolumetricDamping. It takes as a parameter a structure with 
various values. The occlusion of a volumetric source is calculated based on two values: 
size-relative damping fraction and visibility-relative damping fraction. The former is the 
relative size of the occluding polygon compared to the combined size of sound source and 
occluding polygon together. Visibility-relative fraction corresponds how many source 
polygon corner points are occluded; there is no straight-line form source polygon point to 
the listener. The weighting between the two damping factors can be set. The behavior 
outside the volumetric source is specified using parameter AzimuthPan that disables 
volumetric effect when set as 0 and on the other end, when set as 1.0 makes all the points 
on the surface of the source generate sound at full level maximizing the volumetric effect. 
Behavior inside the volumetric source can be switched either to mono, to make all the 
speakers give the same signal at full level, or to normal point source. 

The pitch of the source can be scaled and if the sources are of native type, the stereo 
panning can also be accessed. The calculated audibility and the amount of occlusion can 
be queried if necessary for instance to make decision in the application program about 
possibly manually dropping hardly audible source. Priority of the source needed by the 
aforementioned Resource Manager can also be set to fine tune the automatic dropping 
mechanism. 

The reflections of the sound can be scaled with two factors: the gain and delay scaling 
factors. Setting them to 1.0 correspond natural gain and delay for the reflections, 
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respectively. The interface IA3dGeom2 also offers methods for these two factors, but 
unlike case is here, they affect globally to all sources.  

4.3.4 IA3dReverb 

The reverberation settings in A3D are stored as IA3dReverb objects. New IA3dReverb 
objects can be created with NewReverb method of IA3d5 and it also has a method to 
chose which reverb object is in use. There can be multiple instances of IA3dReverb, but 
only one reverberation setting can be active in a time. 

The reverb can be set either by using one of the 26 predefined named settings and fine-
tuning it with three parameters or by setting 12 reverb parameters to create a fully custom 
reverb. 

The presets can be fine-tuned with three parameters: decay time, damping factor, and 
volume. Decay time defines the T60 value, that is the time it takes for the reverberation to 
attenuate 60 dB. Damping factor controls how high frequencies damp compared to middle 
and low ones. The volume tells the level of the reverb effect compared to the direct sound. 

To make a custom reverb, the following 12 parameters are needed. The level of the room 
effect is controlled with two parameters: one general and other relative for high 
frequencies.  This room effect level is a general level for all room related effects and 
additionally separate relative levels can be set for reflections and reverb only. The decay 
time of the reverberation is also specified with two figures: decay time at low frequencies 
and then relative to it, at high frequencies. Delay that it takes for the first reflection to 
arrive after direct sound and delay from it to the late reverberation can be set. Also modal 
diffusion and echo density of the late reverberation can be set. Furthermore, for the values 
specific to high frequencies, the reference frequency can be set. 

The amount of reverb (how wet or dry it is) can be set also individually for each source 
with a method of source: SetReverbMix; also the treble attenuation for the reverb can be 
set here if, for instance, wanted it to match similar settings of direct path. 

4.3.5 IA3dGeom2 and IA3dList 

To be able to calculate reflections and occlusions, the A3D engine needs information 
about the geometry of the scene. Usually, the geometry does not have to be so accurate as 
with visual applications, but simplified geometry is still needed. The geometry is defined 
with a IA3dGeom2 object. IA3dGeom2 is queried from IA3d5 like IA3dListener. 

Like usually in 3D graphics, the geometry in A3D consists of polygons. All geometrical 
objects are defined using either polygons of three corner points, namely triangles, or with 
polygons having four corner points, namely quads. Those polygons define the surfaces of 
the object. They are the most primitive objects and therefore called as primitives. 

In A3D, the primitives are described using a code block that starts with method Begin and 
ends with method End. The Begin takes as an argument which kind of polygons are used, 
triangles or quads. Between End and Begin, the corner points, also known as vertices are 
set calling method Vertex. When correct number of vertices has been set, the polygon is 
ended and the next primitive is started automatically even that Begin/End block has not 
ended yet. Multiple polygons of the same type can be defined inside one Begin/End block. 

For the reflection calculations, knowing the normal of the surface is necessary. The 
incident and the reflected angles are calculated based on normal. The normals for each 
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polygon can be set manually before calling Vertex by calling Normal or if Normal is not 
called, the normals are calculated automatically. In A3D the surfaces are flat shaded, so 
each polygon can have just one normal direction.  

Just like normal, each polygon can also have own material properties that are tied to 
polygon using BindMaterial. The materials are described in the next chapter. 

In addition to basic primitives, triangles and quads, there are also primitives called 
subfaces. They take also the form of triangle or quad, but instead of being independent, 
they are placed onto surfaces. Their special property compared to basic primitives is that 
they make the surface they are lying in transparent. Subface triangles and quads are an 
efficient way to make openings to otherwise solid surfaces. The transparency of the 
subfaces can be tuned. 

Various rendering features can be controlled from IA3dGeom2. Both occlusions and early 
reflections can be switched on or off separately for group of polygons. Also global control 
of them is possible. The occlusion and reflections calculations take remarkably processing 
power. The power consumption can be reduced by setting the intervals of the occlusion 
and reflection calculations longer. They can be set separately in A3D. Default value of the 
interval is one meaning that calculations are performed separately for each frame. 

IA3dGeom2 also has various methods for using transformation matrices to transform 
objects and add hierarchy to the virtual world by grouping objects under the same matrix. 
Even listener or sources can be bound with a matrix if they are, for instance, wanted to 
move with an object. Transformation matrices are widely used in computer graphics. The 
details are omitted here. 

A3D has also another way - other than transformation matrices - to group objects: lists. An 
object of IA3dList interface is first created with NewList of IA3dGeom2. IA3dList has 
Begin and End methods to define vertices in a similar manner as was the case with 
AS3dGeom2, but in addition, IA3dList has also Call method that actually sends the 
geometry to the engine. With lists, the geometry can be defined just once, but used 
multiple times, and thus computing power is saved.  

4.3.6 IA3dMaterial 

Different kinds of materials reflect and transmit sound in different ways. In A3D, each 
object can be rendered using different material. The materials are controlled with 
IA3dMatrial interface. The IA3dMaterials are created using NewMaterial of IA3dGeom2 
and then after the material properties have been set, the material can be taken into use with 
method BindMaterial of IA3dGeom2. All the polygons sent to engine after that will have 
the specified material properties until next material is bound. 

An IA3dMaterial has four parameters to be defined. It has reflectance to specify how 
much sound is reflected and transmittance to tell how much sound is transmitted when the 
sound has to travel via an obstacle. Both reflectance and transmittance have figures both to 
overall and high frequency specific attenuation. 

4.4 DirectX audio 

This subchapter describes the audio part of Microsoft DirectX family. Microsoft DirectX 
is a set of APIs for creating efficient multimedia applications for Microsoft Windows 
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platforms. There are versions for C/C++, C#, and Visual Basic languages. DirectX 
provides hardware abstraction layer (HAL) that hides device-specific dependencies of the 
hardware. The level of abstraction is chosen so that it is as close to hardware as possible 
still being so general that no code has to be rewritten when using different hardware. If 
DirectX based application is run on a hardware that does not support some feature used, 
DirectX might still support this specific feature in software, through so called hardware 
emulation layer (HEL). [Kovach 2000] 

DirectX is divided into several APIs that support different fields needed in multimedia 
applications: input devices, graphics devices, and network connections among others. 
Here we concentrate on the audio features of DirectX version 9.0. They are divided into 
two APIs: DirectMusic and DirectSound. These two interfaces became more unified in the 
8.0 version of DirectX: one major change from version 7.0 being that as DirectMusic was 
previously targeted for message-based musical data only, it now supports wave-based data 
as well. Manually parsing and streaming of the wave data directly to DirectSound is not 
necessary anymore, and wave files can instead be loaded and played by DirectMusic. 
DirectMusic can be thought to have a higher abstraction level than DirectSound. 
DirectMusic includes synthesizer to play, for instance, MIDI and then feed the generated 
wave data to DirectSound that is, on the other hand, specialized just into wave audio. 

Like A3D, DirectX audio follows Microsoft’s Component Object Model (COM). The 
most important interfaces of the DirectX audio 9.0 [DirectX 9.0 2002] are described in the 
subsequent sections. The features important to 3-D sound and virtual acoustics are 
emphasized. The most important interfaces are illustrated in Figure 14. 
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Figure 14. The most important classes of DirectX audio and their relations. Prefixes IDirectSound and 
IDirectMusic are omitted. effect can be any effect DirectX offers. 

4.4.1 IDirectMusicLoader8 

IDirectMusicLoader8 is an interface that is capable of loading different kinds of audio 
content from disc or from other resource, such as a memory location. Audio files can be 
among others MIDI files, WAV files, or DirectMusic Producer segment files. 

Once a piece of audio data is loaded, it is typically represented in DirectMusic as an object 
that implements the IDirectMusicSegment8 interface described in the next section. 
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4.4.2 IDirectMusicSegment8 

A segment in DirectMusic is the basic unit of playable data. Segment gives a common 
abstraction level, for example, to MIDI sequences and waveforms. 

4.4.3 IDirectMusicPerformance8 

The Performance is the object that manages the flow of data from the source to the 
synthesizer. The audio system is initialized with Performance’s methods. Performance has 
also methods for starting and stopping the playback of an associated segment.  

Performance uses AudioPath to playback segments. Performance has a default AudioPath 
associated to it, but other AudioPaths can be used as well. AudioPath is described in the 
next section.  

4.4.4 IDirectMusicAudioPath8 

AudioPath manages the flow of audio data from the performance to the final mixer. 
AudioPath can direct data via various DirectSound buffers before it enters to the primary 
DirectSound buffer where the final output is mixed. Buffers on the AudioPath can contain, 
for example, different musical effects or 3-D sound processing. There can be multiple 
AudioPaths so that different sound sources can have individual settings, such as 3-D 
location coordinates. 

4.4.5 IDirectSoundBuffer8 

DirectSound has two kinds of buffers: secondary and primary. Each sound source has one 
secondary buffer and each application has one primary buffer. Secondary buffers feed the 
primary buffer. Secondary buffers can have one or more effects associated into them. 

Buffers have methods for controlling, for instance, playback level and rate. Effects 
described later are associated with buffers. 

4.4.6 IDirectSound3DBuffer8 

3DBuffer is an interface that can be asked from a secondary buffer when 3-D audio is 
used. Alternative way to get 3DBuffer is to query from the AudioPath. 3DBuffer has 
methods for setting various 3-D parameters for the sound source represented by that 
secondary buffer. 

The location and the velocity of the sound source can be defined with methods of 
3DBuffer. They are set using Cartesian vectors x, y, and z. The velocity definition affects 
only the Doppler effect and does not actually move the sound source. The movement has 
to be done by manually altering the location. 

The sound source has also orientation that is used with its directivity calculations. The 
directivity of the source can be set using two angles: InsideConeAngle and 
OutsideConeAngle. Within InsideConeAngle the sound level is in its normal setting and 
outside of OutsideConeAngle the sound level is at specific level set with method 
SetConeOutsideVolume. Between the defined angles the sound level is interpolated 
between the normal level and the outside level. The directivity is symmetric with respect 
to the source’s orientation axis. 
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The distance attenuation behavior of each 3-D sound source can be altered by setting two 
values: the minimum and the maximum distances. They specify the limits for the sound 
attenuation to take place. Closer than the minimum distance the sound does not get louder 
anymore when coming closer to the listener and when going farther than the maximum 
distance the attenuation does not increase anymore. 

When the secondary buffer for 3-D audio processing is created, a 3-D algorithm can be 
specified. The choice affects only when processing is done on software using HEL. The 
alternatives are “no virtualization”, “hrtf light”, and “hrtf full”. The first one uses simply 
stereo panning and therefore the vertical axis is ignored for location. The second and the 
last one use 3-D audio processing with different qualities. The exact difference between 
the latter ones is not documented. 

4.4.7 IDirectSound3DListener8 

Like secondary buffers represented sound sources in the virtual acoustical world, the 
primary buffer represents the listener. Interface 3DListener can be queried from the 
primary buffer or alternatively from the AudioPath. 3DListener can be used to control 
spatial parameters of the listener and also general parameters of the acoustical 
environment. 

The location and the velocity of the listener can be set with similar methods using 
Cartesian vectors like was the case with sound sources. There is only one exception: the 
orientation of the listener is defined using two vectors: front vector and top vector. With 
sound sources, only front vectors were needed, because sources are axis symmetrical. 

The global parameters that can be controlled from the 3DListener are scaling factors for 
distance, rolloff, and Doppler. Distance factor scales the unit of distance used and makes it 
possible for using, for instance, feet instead of standard unit meters to express all the 
distances in the application. Rolloff factor can be used to scale the natural 1/r-attenuation 
of sound and Doppler factor to scale the amount of Doppler effect from its natural amount. 

Every change to the settings of 3DBuffer or 3DListener causes recalculations to 3-D 
processing. DirectSound offers a way to group various changes together and commit them 
simultaneously. This is called as deferred settings. All the setting methods of 3DBuffer 
and 3DListener have a possibility to use flag DS3D_DEFERRED. Using this flag causes 
the settings not to affect immediately, but instead to accumulate. The accumulated settings 
can be then committed simultaneously by calling method CommitDeferredSettings of the 
3DListener. Thus, the 3-D calculations have to be performed just once even if multiple 
parameters have to be changed. 

4.4.8 Reverberations and other effects 

Effects in DirectSound are set on secondary buffers. One secondary buffer can have 
multiple effects associated. DirectX has nine standard effects available, but also other 
effects can be registered into the system. The standard effects are chorus, compression, 
distortion, echo, environmental reverberation, flange, gargle, parametric equalizer, and 
Waves reverberation. All the effects have multiple parameters to control settings like 
dry/wet-ratio, modulation depth and frequency etc. The two reverberations are described 
now in more detail. 

Waves reverb is based on the Waves MaxxVerb technology [MaxxVerb 2000]. Waves 
reverb has settings for input gain and reverb mix in decibels, for reverb time in 
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milliseconds, and for high-frequency ratio of the reverb time. Waves reverb is intended to 
be used with music. 

The other reverberation, the environmental reverb of DirectX provides partial support for 
environmental reverberation defined in Interactive 3-D Audio Level 2 [I3DL2 1999] 
specification. The easiest way to use environmental reverb is to set parameters by using 
presets. Altogether 30 preset settings similar to I3DL2 are offered. Other way to use 
environmental reverb is to set all the reverberation parameters by hand. The parameters 
are the same described in I3DL2 listener property set and can be found from Table 2. 
Furthermore, there is also a parameter for setting the quality of the reverb meaning the 
compromise between the perceived quality of the reverb and the computing costs. 

Table 2. The reverberation parameters of I3DL2 listener property set. 

Parameter Description 

Room Intensity of the room effect. 

Room HF Attenuation at high frequencies in the room effect. 

Room rolloff 
factor 

Scaling factor for the 1/r-attenuation of the room 
effect. 

Decay time Reverberation decay time at low frequencies. 

Decay HF ratio High frequency decay time relative to low frequency 
decay time. 

Reflections Intensity level of early reflections relative to Room 
value. 

Reflections delay Delay time of the first reflection relative to the direct 
path. 

Reverb Intensity of late reverberation relative to Room value 

Reverb delay The time limit between the first reflection and the late 
reverberation. 

Diffusion Echo density in the late reverberation decay. 

Density Modal density in the late reverberation decay. 

HF reference Reference high frequency. 

 

4.5 EAX 

EAX stands for Environmental Audio eXtensions and is an extension either to Microsoft’s 
DirectSound 3D that is a part of DirectX, or to OpenAL [OPENAL]. EAX 1.0 was 
released by Creative Labs in 1998 and it has been followed by EAX 2.0 in 1999 and EAX 
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Advanced HD in 2001 [Hagen, Muschett 2002] [Creative]. The properties of EAX 2.0 are 
described in this subchapter from the DirectX point of view. EAX is divided into the 
listener property set and the sound-source property set.  

4.5.1 The listener property set 

The listener property set gives extra controls for the primary buffer of DirectSound. 
However, in the newest versions of DirectX (versions 8 and 9), almost all the listener 
settings EAX 2.0 provides are already covered by I3DL2 reverb (Table 2). Moreover, the 
presets are the same with just a couple of exceptions. 

One thing that EAX adds to DirectSound 9 is the possibility to set one higher-level 
property, namely apparent size of the surrounding “room”. This environment size setting 
affects five lower-level listener properties: reflections, reflections delay, reverb, reverb 
delay, and decay time. 

4.5.2 The sound-source property set 

The sound-source property set gives additional settable properties for a secondary buffer. 
These properties are all new compared to existing settings in the DirectSound 9. The 
properties are listed in Table 3. They are the same as in I3DL2 except that Occlusion room 
ratio, air absorption factor, and outside volume HF are new. 

Table 3. The sound-source properties of EAX 2.0. Properties marked with asterisk (*) do not 
exist in I3DL2. 

Parameter Description 

Direct Relative correction to the source’s direct-path 
intensity. 

Direct HF Relative correction to the source’s direct-path 
intensity at higher frequencies. 

Room Additive source-specific setting to the global listener 
room property. 

Room HF Additive source-specific setting to the global listener 
room HF property. 

Obstruction The amount of obstruction muffling affecting the 
source’s direct-path sound at high frequencies. 

Obstruction LF 
ratio 

Obstruction attenuation at low frequencies relative to 
the attenuation at high frequencies. 

Occlusion The amount of obstruction muffling affecting both the 
source’s direct-path and reflected sound at high 
frequencies. 

Occlusion LF 
ratio 

Occlusion attenuation at low frequencies relative to 
the attenuation at high frequencies. 
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Occlusion room 
ratio* 

Additional amount of occlusion attenuation for 
reflected sound. 

Room rolloff 
factor 

Additive source-specific setting to the global listener 
room rolloff factor property. 

Air absorption 
factor* 

Multiplicative source-specific setting to the global 
listener Air absorption HF property. 

Outside volume 
HF* 

This property makes the source directivity pattern 
frequency-dependent setting separate high frequency 
attenuation to the rearwards radiation. 
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5. Java 2 Micro Edition 

This chapter describes Java 2 Micro Edition that is the underlying platform of the novel 
API. 

5.1 Different Java Platforms 

In early 1996, Sun Microsystems Inc. released the first version of Java Development Kit 
(JDK), and since that many subsequent releases have followed. Initially, the Java language 
was targeted towards consumer devices such as interactive TV, but as time passed, the 
Java platform grew and it started to be targeted more towards desktop and enterprise 
computing. The consequence was that the large collection of libraries could not fit 
anymore to limited consumer devices. Sun realized the problem and grouped the new Java 
2 Platform into three editions to better meet the requirements of different environments: 
Enterprise Edition, Standard Edition, and Micro Edition. Java 2 Platform, Enterprise 
Edition is targeted for enterprises in need of scalable server solutions, Standard Edition is 
for desktop computer market, and Micro Edition is for consumer and embedded devices. 
This thesis concentrates on Micro Edition (J2ME). 

Highly optimized Java runtime environments of J2ME technology specifically address the 
large consumer space, which covers the range of extremely tiny products such as smart 
cards or pagers all the way up to the TV set-top boxes, devices almost as powerful as 
desktop computers. J2ME aims to maintain the qualities that Java technology has become 
known for: built-in consistency across products, portability of code, safe network delivery 
and upward scalability. J2ME allows device manufacturers to open up their devices for 
widespread third-party application development and dynamically downloaded content, 
without losing the security or the control of the underlying manufacturer-specific platform. 
Probably in the future, the majority of applications will be developed, instead of device 
manufacturers, by third-party developers.  

While consumer devices have many things in common, they are also extremely diverse in 
form, function, and features. The devices can be operated in various ways: for instance, 
with keyboard, stylus, or voice. The range of existing device types and hardware 
configurations is large, and the technology is constantly improving rapidly. Also a diverse 
range of applications changes and grows in unforeseen ways all the time. To address this 
multidimensional diversity, an essential requirement for the J2ME architecture is not only 
small size but also modularity and customizability. This is supported by two essential 
concepts of J2ME environment: configurations and profiles. They are described in the 
following chapters. [Riggs et al 2001] 
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5.2 Configurations 

A J2ME configuration defines a minimum platform for a “horizontal” category or 
grouping of devices, each with similar requirements on total memory budget and 
processing power. A configuration defines the Java language and virtual machine features 
and minimum class libraries that a device manufacturer or a content provider can expect to 
be available on all devices of the same category. 

Java 2
Enterprise

Edition (J2EE) Java 2 Standard
Edition (J2SE)

Java Virtual Machine

Low-end
consumer
devices

KVM

Java 2 Micro Edition

CDC CLDC

MIDPFoundation
profile

Personal Profile

Optional
Packages

Optional
Packages

High-end
consumer
devices

Desktop and
personal

computers

Servers and
enterprise
computers

 

Figure 15. Java 2Platform editions. 

To avoid fragmentation, there is a very limited number of J2ME configurations. Currently, 
only two standard J2ME configurations are available: Connected, Limited Device 
Configuration (CLDC) and Connected Device Configuration (CDC). They are visible on 
Figure 15 that illustrates Java 2 Platform editions. CLDC focuses on low-end consumer 
devices, that are typically personal, mobile, battery-operated, connected information 
devices such as cellular phones, pagers, and personal digital assistants (PDA). CDC’s 
focus area is high-end consumer devices, such as TV set-top boxes, Internet TVs, and 
high-end communicators. CDC includes a much more comprehensive set of Java libraries 
and virtual machine features than CLDC. 

The majority of functionality in CLDC and CDC has been directly inherited from Java 2 
Platform, Standard Edition. Each class inherited from the J2SE environment must be 
precisely the same or a subset of the corresponding class in the J2SE environment. In 
addition, CLDC and CDC can introduce features that are not drawn from the J2SE, but 
instead designed to specifically fulfill the needs of small-footprint devices. [Riggs et al 
2001] 
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5.2.1 Connected, Limited Device Configuration 

CLDC is the target configuration for the API defined in this thesis, so it will be described 
in more detail in this chapter. 

Target devices of CLDC 1.1 are characterized in the specification [CLDC 2003] as 
follows:  

• At least 192 kB of total memory budget available for the Java platform, 

• a 16-bit or 32-bit processor, 

• low power consumption, often operating with battery power, 

• and connectivity to some kind of network, often with a wireless, 
intermittent connection and with limited bandwidth. 

Typically, these target devices are manufactured in very large quantities, meaning that 
manufacturers are usually extremely cost-conscious and interested in keeping the per-unit 
costs as low as possible.  

CLDC Specification addresses the following areas: 

• Java language and virtual machine features 

• Core Java libraries (java.lang.*, java.util.*) 

• Input/output 

• Security 

• Networking 

• Internationalization 

Areas such as application life-cycle management, user interface, and event handling are 
not part of CLDC. They can be addressed by profiles implemented on top of the CLDC. 
Profiles are described in detail in a separate chapter later. 

The virtual machine itself is a part of CLDC specification CLDC libraries being the other 
part. The virtual machine of CLDC is called as KVM3 instead of the Java Virtual Machine 
(JVM) of J2SE. The goal for KVM was to be as compliant with the Java Virtual Machine 
Specification [Lindholm, Yellin 1999] as possible. However, with strict memory 
constraints of CLDC target devices, some features of J2SE JVM had to be left out from 
KVM. The most important of the dropped features that KVM doesn’t have is Java Native 
Interface (JNI); the way in which the k virtual machine invokes native functionality is 
implementation-dependent. Other missing features include user-defined class loaders, 
reflections (and dependent features such as remote method invocation and object 
serialization), thread groups, daemon threads, and finalization. Also the set of Error 
classes included in CLDC is limited. CLDC 1.0 was lacking even floating point support 
[CLDC 2000], but it was added later in CLDC 1.1. 

                                                 
3 The letter K comes from “kilo” to describe the unit of size that KVM is measured in: kilobytes.  
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Like the JVM of J2SE, the KVM has a capability to detect and reject invalid class files. 
However, since the standard class file verification process of J2SE requires quite a lot of 
memory and processing power, J2ME uses more compact and efficient verification 
solution. Instead of one heavy verification process done by the device, the task is now 
divided into two parts. There is a special pre-verification tool, which is typically used by 
the application programmer in the development environment. Then when running the 
application, the in-device verifier utilizes the information generated by the pre-verification 
tool to speed up the runtime verification process. 

5.3 Profiles 

A J2ME device profile is layered on top of a configuration. A profile addresses the 
specific demands of a certain “vertical” market segment or device family. The main goal 
of a profile is to guarantee interoperability within a certain vertical device family or 
domain by defining a standard Java platform for that market. Profiles typically include 
class libraries that are far more domain-specific than the class libraries provided in a 
configuration. [Sun 2000] 

Profiles can be thought to be of two different categories: device-specific or application-
specific. A device-specific profile serves as a common denominator for certain kind of 
Java enabled devices such as cell phones, washing machines, or electronic toys. An 
application developer can then write an application on top of a device-specific profile and 
that application will then work in all devices, say cell phones, which support that profile. 

Another point of view is to create a profile for a specific application group. Then all the 
device manufacturers that want to support the group of that kind of applications are able to 
do that by implementing that application-specific profile in their devices. This is possible, 
because in J2ME, it is possible for a single device to support multiple profiles.  

Profiles target specifically against the problem of portability in the J2ME domain that 
hosts such a wide range of devices. Grouping of devices is possible by categorizing 
devices by profiles they implement and application programmer can choose from limited 
amount of profiles which one to use without need to write device dependent code. New 
devices can take advantage of a large and familiar application base by just implementing 
an appropriate profile. Most importantly new applications can be dynamically downloaded 
to existing devices. 

At the implementation level, a profile is defined simply as a collection of Java APIs and 
class libraries that reside on top of a specified configuration giving some domain-specific 
additional functionality. 

5.3.1 Mobile Information Device Profile 

Mobile Information Device Profile (MIDP) [MIDP 2002] is targeted for a well-defined 
group of devices, Mobile Information Devices (MID). A MID should have a display 
capable to display at least 96*54 resolution with black and white pixels. The aspect ratio 
of the pixels should be approximately 1:1. A MID should have one or more of the 
following user-input mechanisms: “one-handed keyboard” such as ITU-T phone pad,  
“two-handed keyboard” such as QWERTY, or a touch screen. The memory requirements 
for a MID are the following in the MIDP 2.0 specification: 

• 256 kilobytes of non-volatile memory for the MIDP implementation 
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• 8 kilobytes of non-volatile memory for application-created persistent 
data 

• 128 kilobytes of volatile memory for the Java runtime 

Furthermore, a MID should have two-way wireless, possibly intermittent, limited 
bandwidth network. Additionally, a MID should be able to play tones. These requirements 
for a MID are typically fulfilled by modern cell phones and personal digital assistants 
(PDA) with network connections.  

MIDs span a potentially wide set of capabilities, but MIDP addresses only those APIs that 
are considered absolute requirements to achieve broad portability. These APIs are: 

• Application (i.e., defining the semantics of a MIDP application and how 
it is controlled) 

• User interface (includes display and input) 

• Persistent storage 

• Networking 

• Sounds 

• Timers 

The MIDP is designed to operate on top of CLDC and being so, the features of CLDC 
complement MIDP. 

MIDP abandons the Applet model familiar from J2SE, because of strict memory 
limitations and requirement to support data sharing between applications. In MIDP, the 
basic unit of execution is a MIDlet. The MIDlet model is quite similar to the Applet 
model. MIDlet has one class that extends javax.microedition.midlet.MIDlet and possibly 
other classes that are needed by MIDlet. These classes are packed in a JAR file with 
standard JAR Manifest and optional other files such as pictures or sound files. Each JAR 
file may be accompanied by an application descriptor. The application descriptor allows 
the application management software on the device to verify that the MIDlet is suited to 
the device before loading the full JAR file of the MIDlet suite. It also allows 
configuration-specific attributes (parameters) to be supplied to the MIDlets without 
modifying the JAR file. 

Like application model (MIDlet), MIDP also introduces a new user interface (UI) model. 
Abstract Windowing Toolkit (AWT) of J2SE is optimized for desktop computers and is 
not suitable for MIDs. AWT was abandoned mainly because of the following reasons: it is 
based on windows and MIDs are not in general capable of displaying overlapping 
windows; AWT was designed to work with a pointer device unlike most of MIDs; and 
furthermore, AWT uses dynamically generated event objects that might be overwhelming 
to MIDs limited CPU and memory capacity. 

LCDUI, the new UI model of MIDP is logically composed of two APIs: the high-level 
and the low-level. High-level API employs a high level of abstraction and offers a 
complete user interface components such as alerts, lists, text boxes, and forms. The actual 
drawing to the MID’s display is performed by the implementation and the visual 
appearance is not definable by the application programmer. Furthermore, navigation, 
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scrolling, and individual user input keys are not accessible directly by the application. This 
makes the applications to maintain uniform look and feel of the hosting device. 

The other UI API, the low-level API offers very little abstraction. This API is designed for 
applications that need precise placement and control of graphic elements, as well as access 
to low-level input events. Some applications also need to access special, device-specific 
features. Applications that use the low-level API are not guaranteed to be portable, since 
the low-level API provides the means to access details that are specific to a particular 
device. Being so, programmers using the low-level UI API should take care of portability 
when designing applications by among other things inquiring on the size of the display 
and then adjusting their drawing routines accordingly.  

5.4 Mobile Media API 

There was no generic sound or multimedia support directly in CLDC 1.0 or even in MIDP 
1.0 [MIDP 2000]. This generated a need to produce an extension to provide multimedia 
support for J2ME environments. Mobile Media API 1.0 [MMAPI 2002] was the resulting 
specification. It can be implemented, for instance, together with MIDP 1.0 (Figure 16) and 
actually, the new MIDP 2.0 already contains a limited audio-only subset of MMAPI. The 
standardization was done in Java Community Process (JCP) during years 2001 and 2002. 
JCP is described later. So far at least mobile phone models Nokia 3650, Nokia N-Gage, 
and Sony Ericsson T610 support MMAPI. 

J2ME virtual machine

MMAPI

MIDlet

MIDP

CLDC

Operating system

 

Figure 16. MMAPI can be implemented, for instance, to coexist with MIDP 1.0 to support multimedia needs 
of a MIDlet. 
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5.4.1 Features 

The main feature of the Mobile Media API (MMAPI) is to offer tools for playback of any 
time-based media content, such as audio, video, or animation. The API has a high level of 
abstraction: it is generic what comes to protocol used to transfer the media or content type 
used to store the media. This addresses to the needs of the modern world where media 
types and formats keep evolving all the time just like their storage devices and 
transmission paths and protocols. 

In addition for supporting any external media types, MMAPI also has a media type of its 
own. In the lowest end of mobile devices, simple buzzer tones might be the only 
multimedia capability supported. Keeping this in mind, MMAPI offers internal format for 
simple tone sequences. MMAPI’s tone sequence consists of byte array with tone-duration 
pairs to form melodies and additionally support for defining blocks of tones to enable easy 
repetition of song parts. 

MMAPI offers multiple ways to control how the media content is played back and 
handled. Not all the target devices that use MMAPI have capabilities to support such wide 
variety of different ways to control media. The design of MMAPI allows some of the 
features been left unimplemented and thus MMAPI support is possible also for devices 
with not so rich set of features. On the other hand, some devices might be capable of 
processing media in some ways that MMAPI does not have support. This problem is 
solved with MMAPI’s extensible structure; it is possible to add new features without 
breaking old functionality and being compatible to original MMAPI. 

CLDC is the main target of MMAPI and this sets strict memory consumption limitations. 
MMAPI is designed to have as small footprint as possible and this means that the API 
does not offer any unnecessary parallel, overloaded methods for the same functionality. 

5.4.2 Structure 

MMAPI divides multimedia processing into two separate conceptual parts: into protocol 
handling and content handling. Protocol handling takes care of the reading of the data 
from the source and transmitting it to media processing system. The source can be 
anything from the network server to some capturing device like microphone or camera. 
After protocol handling, content handling processes the data and renders it to output 
devices. Processing can mean, for instance, parsing and decoding the multimedia format. 

MMAPI has two high-level objects to represent the dual nature of multimedia processing: 
DataSource and Player. The former takes care of the protocol handling and the latter of the 
content handling. A DataSource reads data from a source and then offers methods for a 
Player to read data from the DataSource itself, hiding the details how data is actually 
obtained from the source. 

A Player reads data from the DataSource, processes data, and renders finally it to the 
output device. Player has methods for starting and stopping the media playback. Player 
has also a multistage life-cycle model. The purpose of different life-cycle stages is to give 
a possibility to limit the usage of scarce multimedia resources to as small as possible. 
Stages are in the order of usual occurrence in straightforward onetime playback the 
following: UNREALIZED, REALIZED, PREFETCHED, STARTED and CLOSED. The 
state transitions are illustrated in Figure 17. 
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Figure 17. State transition diagram of the Player. 

A Player is unrealized when it has just been instantiated. Realized Player has typically 
opened the media stream and prefetched Player has furthermore opened the scarce media 
resources of the device. Started Player is playing the media and closed Player has been 
closed and cannot been used again. Player offers methods for controlling transitions 
between the stages; also falling back in the stage hierarchy and thus freeing a resource 
when necessary is possible by these methods. 

Players are instantiated with static factory methods of a class called Manager. Manager 
acts as a common access point for obtaining these system dependent resources. Manager 
ties DataSource and Player together and the factory methods return specific Players for 
wanted media type. 

Furthermore, a Player acts as a factory for media type specific controls. These controls 
implement the interface Control and offer possibilities to control media properties such as 
volume, pitch, tempo, and metadata. Closer look into various Controls is taken in the next 
sub-chapter. 

5.4.3 Controls 

MMAPI offers the following pre-defined Controls: FramePositioningControl, 
GUIControl, and VideoControl for controlling media that is in visual form; 
VolumeControl, PitchControl, MIDIControl, TempoControl, and ToneControl for audio 
data; MetaDataControl for metadata; and finally StopTimeControl and RateControl to 
control playback flow in general level. Furthermore, there is RecordControl for recording 
purposes. 

VolumeControl offers methods for setting and getting the sound level in linear point scale 
with values from 0 to 100. Also muting is supported. 

With PitchControl it is possible to shift the pitch of the played back audio. No absolute 
pitch can be set; only relative values are supported. Pitch shift is expressed in 
millisemitones compared to original pitch of the media. 

RateControl can be used to change the speed of the media playback. Rate is expressed in 
millipercents of the original rate. By setting negative value, it is possible to play the media 
in reverse. Also TempoControl affects the playback speed, but it is independent of 
RateControl and uses absolute values expressed in thousandths of beats-per-minute (milli-
BPM). Furthermore, tempo set by TempoControl is volatile and changes e.g. when played 
MIDI sequence contains META tempo events unlike RateControl’s rate. 
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MIDIControl gives advanced, low level functionality to control MIDI playback, but 
VolumeControl, TempoControl, and PitchControl are sufficient for most needs what 
comes to basic MIDI playback. 

ToneControl acts as an interface for MMAPI’s internal tone sequence format. 
ToneControl has fields defining the semantics of the format and then a method for taking 
the sequence into use for that Player. 

RecordControl offers methods for setting the output locator for the recorded media and 
various controls for the recording itself. The media currently played by the Player will be 
recorded. 

If media is wanted to be played just until some point in its internal media time, with 
StopTimeControl that time of stopping can be defined. 

If there is a need for the Player to supply components for the graphical user interface 
(GUI), they can be provided by GUIControl. It has a functionality to create appropriate 
GUI primitive of the platform. For example, for MIDP platform that will be an object 
extending javax.microedition.lcdui.Item. VideoControl is a special case of GUIControl for 
displaying video on the GUI. VideoControl has methods for accessing displayed video’s 
size and location. It also provides snapshots of the displayed video if required. With 
FramePositioningControl, it is possible to seek displayed video by frame-by-frame basis. 
In some implementations so accurate seeking might not be possible, but the best effort will 
anyway be given. 

Metadata means data about data. This data can be accessed by MetaDataControl in 
MMAPI. Metadata of the media is identified with keys. Four pre-defined keys are 
available as fields of MetaDataControl: keys for copyright information, author, title, and 
date. 

5.5 Java Community Process 

Like CLDC and MIDP, Mobile Media API was also specified using Java Community 
Process (JCP) [JCP 2001]. JCP is an open organization that develops Java technology 
specifications, reference implementations, and technology compatibility kits. JCP is a 
formal process that makes the Java platform evolve. The JCP has over 300 company and 
individual participants. 

The new technology specifications for Java that JCP produces are called as Java 
Specification Requests (JSR). JSRs are the actual descriptions of proposed and final 
specifications for the Java platform. JSR development work is carried out in so called 
Expert Groups. They usually consist of many companies of the field from all over the 
world. An Expert Group should be large enough to guarantee reasonable industry 
representation to later support the new specification. For every JSR a new Expert Group is 
formed and multiple JSRs are on the process simultaneously. The development of a new 
JSR is done on multiple steps where improved versions of the specification are produced 
and then reviewed and accepted by voting. 

JSR-30, JSR-139, JSR-37, JSR-118, and JSR-135 specify CLDC 1.0, CLDC 1.1, MIDP 
1.0, MIDP 2.0, and Mobile Media API, respectively. 
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6. Advanced audio API4 

This chapter describes the novel API designed in this thesis. First the major requirements 
of the API are gone through, then the API itself is described, and finally the reference 
implementation done is presented. 

6.1 Goals 

6.1.1 Targeted users 

The targeted user group of this API was set to be application programmers that want to 
add some advanced audio effects to their applications running in mobile devices. It had to 
be taken into consideration that the programmers do not necessarily have special 
knowledge of audio processing or psychoacoustics. The API had to offer enough presets 
to make it usable for non-audio experts. 

A typical user was thought to be a game programmer that wants to enhance sensation of an 
acoustical environment with some characters moving around in space. He or she might 
also want to dynamically filter sounds with equalizer or some effect to simulate some 
change in a sound source.  

6.1.2 Targeted platforms 

The target environment for the API was chosen to be CLDC devices and this requires the 
API to be compatible with J2ME CLDC. API was also supposed to be compatible with 
Mobile Media API 1.0 so that it is a natural extension to it. However, a couple of small 
additions had to be done to original MMAPI 1.0. The size of API code should be as small 
as possible to keep the footprint of the virtual machine (KVM) small. 

In the following chapters, the features that aim to fulfill the needs of the target users and 
platform are described. These features form the set of requirements. 

6.2 Features 

6.2.1 General 

The API had to be easy and intuitive to use also for programmers that do not have any 
special audio knowledge. Most of the audio features have preset modes to make it possible 
for the user to easily adjust the parameters without having any special audio knowledge of 
                                                 
4 The Advanced audio API and the associated documentation presented herein are copyright © 2003 Nokia 
Corporation. All rights reserved. No part of the Advanced audio API or its documentation may be 
reproduced in any form by any means without prior written authorization of Nokia. 
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what would be the appropriate values of the parameters. Special care was taken when 
designing the names of these preset modes. The names of the preset modes had to be 
descriptive, but compact. The Javadoc documentation was intended to be the self-
contained, complete programming documentation for the API. 

6.2.2 Source localization 

One of the main features of this API is the possibility to locate sound sources in a virtual 
space. Human can perceive direction of a sound source quite accurately using certain 
physical properties of the sound arriving to ears. These so called location cues can be 
simulated by a computer and thus, a virtual direction for arriving sound can be created.  

The distance has an effect of attenuating the far positioned source and also lowering the 
relative level of the source compared to the reverberation level. This being the case, giving 
just the direction of the source is not enough, because the distance of the source can also 
be simulated. 

This API uses an approach where the sound sources have a location primarily defined in 
3D-coordiantes so that both the distance and the direction are specified by just giving the 
XYZ-coordinates. 3D-coordination and its representation are compatible with Mobile 3D 
Graphics API for J2ME [M3D 2003]. 

API supports changing the location of a sound source smoothly. It is possible to give two 
locations for the source and force the source to move from one location to the other. The 
speed of sound sources moving in space relatively to the listener is definable. This could 
be done, for example, by defining the period of time when the movement is going to be 
completed. 

6.2.3 Reverb 

Reverberation is essential in perceiving the properties of the room. Mainly it tells the size 
of the room and gives some hints about the wall materials. 

The API was chosen to offer several preset modes available for reverberation. A subset of 
the modes from “IA-SIG Interactive 3D Audio Rendering Guidelines (Level 2)” [I3DL2 
1999] were used, but the goal was not to entirely fulfill the details of the reverberation 
model presented in it. Mobile devices with limited processing capacity might not always 
be capable of fulfilling I3DL2 completely.  

The preset modes were to be tunable with a single simple parameter, reverberation time. It 
makes the preset modes more flexible. The presets were chosen so that they span through 
wide range of different reverbs and with the capability of adjusting the reverberation time, 
many different kinds of reverberations came available. 

Because reverberation algorithms are computationally really laborious, it was decided that 
one common reverb is enough for all the sound sources; no individual reverberation 
parameters can be set to sources. Although the reverb is common, bypassing single 
sources is possible; this makes it possible to use sources that are non-anechoic recordings 
and already reverberant.  

6.2.4 Equalizer 

Equalizers are usually used for two reasons: to compensate unideal frequency response of 
a system to make it sound more natural or to create intentionally some unnatural coloring 
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to the sound to create an effect. The equalizer in this API has to be able to serve both of 
these purposes. 

Like the reverb, the equalizer has also several preset settings available. Modes like 
telephone band, bass boost, loudness, karaoke, subsonic cutoff, ultrasonic cutoff, and 
muffling could be available for easy using. Also some programmers might want to use the 
traditional EQ presets named after musical genres (Classical, Jazz, Rock, Pop). 

There are also convenient methods for altering bass or treble only without need to specify 
any frequencies. Most of the people are familiar with these traditional settings of 
consumer audio devices. 

There are methods for getting and setting individual EQ-band gains and a method for 
asking the amount of the EQ-bands available. People that are more familiar with EQ are 
able to create effects or to compensate the response of the system with these methods. 

6.2.5 Effects 

The API was chosen to support arbitrary audio effects via a general interface. A user can 
ask for the available effects in the device and then choose which ones to use. Here we 
mean by effects the common ways to process sound of some musical instrument. Most of 
the musical effects originate from electrical guitar footswitches, but the effects are not 
limited to be used just with guitars.  

The most important parameters of the effects had to be made controllable. For instance, 
chorus, flanger, and phaser effects have at least the following common parameters: blend, 
frequency of low frequency oscillator (LFO), and amplitude of LFO. Different effects 
might also have different non-common parameters that must be supported, too. 

The effects can be inserted in two places on the signal path. They can be inserted as source 
specific effects or as global effects. The computationally easiest effects should be channel 
specific so that they can be tuned for each sound source independently. The 
computationally most demanding effects can be tuned only globally for all the sources 
together. 

6.3 Process 

The interface was defined using an iterative process. The initial version was written by the 
author and then reviewed by the colleagues. Altogether three reviews were organized and 
the interface was always tuned based on the feedback got in the previous review session. 

The API was first written using empty Java methods with thorough Javadoc commenting 
and then Javadoc tool was used to generate the documentation in the HTML form. 

6.4 Interface 

Advanced audio API (AAI) consists of Java interfaces that supplement the classes and 
interfaces of MMAPI. AAI provides a new interface called as Spectator that is used to 
control directly or via other classes the listener model and the room model of the virtual 
acoustical space. New Controls are introduced as well: EQControl, LocationControl, 
OrientationControl, PanControl, and EffectControl. EffectControl utilizes new interface 
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Effect and its sub-interfaces Reverb and Chorus. All these interfaces are described in 
detail in the following subchapters. 

6.4.1 Spectator 

Spectator is a representation of a human spectator of Players in virtual acoustical space. 
Spectator is used to control directly or via other classes the listener model and the room 
model of virtual acoustical space. 

Spectator implements Controllable interface, and can thus create at least five different 
Controls for itself if they are supported by underlying audio engine: VolumeControl, 
EQControl, EffectControl, LocationControl, and OrientationControl. They are used to 
configure global volume, global equalizer, global effects, and Spectator’s location and 
orientation respectively. Some global properties such as volume and equalizer might also 
be controllable directly from the device’s native user interface. Spectator’s relations to the 
other interfaces are illustrated in Figure 18. 

<<Interface>>
Spectator

<<Interface>>
Controllable

<<Interface>>
Orientation-

Control

<<Interface>>
LocationControl

<<Interface>>
Effect

<<Interface>>
EQControl

<<Interface>>
EffectControl

<<Interface>>
VolumeControl

 

Figure 18. UML class diagram about Spectator’s relations to the other interfaces. 

A Spectator can be instantiated with Manager.createSpectator() in a similar way as Players 
are instantiated with Manager.createPlayer(). There is typically just one instance of a 
Spectator in an application. Anyway, multiple instances can be created for multiple 
simultaneous human users of the application if the underlying audio engine supports that 
and there are multiple output devices available. Manager.createSpectator() returns a 
Spectator that is located in the origin and points directly towards the negative z-axis 
direction. 

A Spectator has two life-cycle states: ACTIVE and CLOSED. The purpose of these life-
cycle states is to provide programmatic control over potentially time-consuming 
operations. When all the Players are gone, the Spectator is not automatically closed. This 
makes it possible to maintain settings of Spectator, such as the global Effects, through 
multiple Player life cycles. On the other hand, sometimes it is necessary to release all the 
resources of a Spectator and not use them again. This is possible with close() method. 
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When a Spectator is first constructed, it is in the ACTIVE state. An ACTIVE Spectator 
means that the Spectator is running and processing data. Calling close on the Spectator 
puts it in the CLOSED state. In the CLOSED state, the Spectator has released most of its 
resources and cannot be used again. All the settings made with Spectator’s Controls are 
then lost. 

The location and the orientation of a Spectator can be specified with the Controls 
LocationControl and OrientationControl Spectator offers. 

6.4.2 LocationControl and OrientationControl 

LocationControl is an interface for manipulating the virtual location of an object (usually 
a Player or a Spectator) in virtual acoustical space.  

Y

X

Z

 

Figure 19. Location is defined in right-handed coordinates.  

Location is a representation of a place in a virtual acoustical space. This interface allows 
the location to be specified in three-dimensional space with method setLocation(). The 
method has possibility to set the new location immediately (by giving zero as parameter) 
or to set it slowly so that the movement is exactly completed after given time. 

The initial location of the Player has to be set before prefetching the Player, because it also 
takes care of the initialization of the spatialization. If the location is set first time when the 
Player has been already prefetched, the spatialization is not necessarily active. 

OrientationControl is an interface for manipulating the virtual orientation of an object 
(usually Spectator) in virtual acoustical space.  
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Z

Heading

Pitch

Roll

 

Figure 20. Orientation is defined in right-handed coordinate system. 
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Orientation is a representation of a direction in a virtual acoustical space. Orientation is 
defined in rotation angles around coordinate axes. Positive rotation directions around the 
coordinate axes are counterclockwise when looking towards the origin from a positive 
coordinate position on each axis. The initial orientation is towards negative Z-axis. 
Orientation is defined in three angles: heading that represents rotation around Y-axis, pitch 
that represents rotation around X-axis, and Orientation that represents rotation around Z-
axis. Orientation is applied in the following order: heading, pitch, and roll. 

6.4.3 PanControl 

PanControl is an interface for manipulating the panning of a Player in the stereo output 
mix. 

This interface allows the panning between the left and right channels to be specified using 
an integer value that varies between –100 and 100. The pan scale specifies panning in a 
linear scale. It ranges from –100 to 100, where 0 represents panning for both channels, -
100 full panning to the left, and 100 full panning to the right. The mapping for producing 
linear multiplicative values is implementation dependent. With stereo sources, the effect 
of the panning set is undefined. 

API supports changing the panning of a sound source smoothly. The setPan method has 
possibility to set the new panning immediately (by giving zero as duration parameter) or 
to set it slowly so that the change is exactly completed after given time. The panning 
setting is not in effect if the location of the source has been specified with LocationControl 
and the spatialization is in use. 

6.4.4 EQControl 

EQControl is an interface for manipulating the equalization settings of a Player or a 
Spectator. 

This interface allows the sound source to be filtered with an equalizer. The equalizer can 
be set up with three different ways: using presets, using bass and treble controls, or by 
setting individual frequency bands by hand. 

The preset settings can directly be taken into use with method setPreset(). The current 
preset can be found out with method getPreset(). 

There are convenient methods setBass() and setTreble() for altering bass or treble only 
without need to specify any frequencies. SetBass() and setTreble() reset the current set up 
on the band on question (bass or treble frequencies respectively). There are also methods 
for asking current bass and treble setting (getBass() and getTreble()), but if the equalizer 
settings have been altered after bass and treble set-up by setting presets or altering 
individual EQ-bands, bass and treble settings are not anymore unambiguously defined and 
EQControl.UNDEFINED will be returned. 

There are also methods for getting and setting individual EQ-band gains (setLevel() and 
getLevel()) and methods for asking the amount of the EQ-bands available 
(getNroOfBands()) or their center frequencies (getCenterFreq()). People that are more 
familiar with EQ are able to create effects or to compensate the response of the system 
with these methods. 
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The gains in this class are defined in decibels, but it has to be understood that many MIDs 
contain a dynamic range control (DRC) system that will affect the actual effect and 
therefore, the value in decibels will affect as a guideline rather than as a strict rule. 

6.4.5 Effect, EffectControl, and PlayerEffectControl 

Effect is an abstract audio filter with various preset settings. Individual Effects might have 
various parameters. All Effects have accessors for effect level. The effect level affects 
how much of the sound is passed via the effect in percents. 100 means that all the sound is 
processed in the effect and 0 means that no processing is done at all and all the sound is 
bypassed. Values between 0 and 100 affect the wet/dry ratio of the processing in the 
accuracy that the system supports. The effect is considered to be “wetter” when the effect 
level rises. Effects are presettable like EQ and can be instantiated with createEffect() of 
the EffectControl. 

EffectControl controls the effect box behavior of a Spectator or a Player. An effect box is 
a combination of various Effects. It is like a multieffect whose individual effects can be 
added or removed. Spectator and Player can have EffectControls. Being so, they can use 
zero or more Effects. 

With certain kind of effects (non-linear effects), the processing order affects the result. It 
is possible with this interface to specify the wanted processing order by inserting effects 
with an index number (method insertEffect()) to the signal path, but the proposed order is 
not necessarily obeyed; this depends on underlying audio engine’s capabilities. When 
inserting effects in the middle of the effect chain the previous effect on the insertion place 
and all the subsequent effects will be shifted one step to make space for the new effect. 
Usually, in the case of global Effects (the Effects of Spectator), the order of the Effects 
doesn’t count, because the Effects are parallel on the signal path, unlike typical serial 
processing order of the Player-specific Effects. 

<<interface>>
Spectator

<<interface>>
Player

<<interface>>
PlayerEffect-

Control

<<interface>>
Effect

<<interface>>
Effect

<<interface>>
EffectControl

 

Figure 21. UML class diagram about EffectControl and associated interfaces. 

PlayerEffectControl extends the interface EffectControl to include methods for setting 
effect send levels. PlayerEffectControl controls the effect box behavior of a Player. 

The important property of a PlayerEffectControl is that it can be used to control the level 
of effects in other affecting effect boxes as well. For example, if there is a Player called p1 
that one Spectator is listening among other Players, and that Spectator has a global effect, 
say Reverb, turned on, p1 can be bypassed from this global Reverb by using a method call 
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((PlayerEffectControl)(p1.getControl(“PlayerEffectControl”))).setGlobalEffectSendLevel(
0);. Other Players will continue using the global Reverb normally. 

6.4.6 Reverb 

Reverb is an interface for manipulating the settings of an effect called reverb. Therefore, 
Reverb implements Effect interface. A Reverb can be instantiated using method 
EffectControl.createEffect(“Reverb”).  

Reverberation is essential in perceiving the properties of the room. Mainly it tells the size 
of the room and gives some hints about the wall materials. 

In the API, there are several preset modes available for reverberation. A subset of the 
modes from “IA-SIG Interactive 3D Audio Rendering Guidelines (Level 2)” [I3DL2 
1999] is used. The modes at least available for the reverb are:  

• alley  

• arena  

• auditorium  

• bathroom  

• cave  

• hallway  

• hangar  

• livingroom  

• mountains  

• room  

The preset modes are tunable with a single parameter, the reverberation time. It is a single 
intuitive value that will affect how reverberant the acoustical space sounds. This parameter 
has a default value for every preset reverberation mode and then the user can, for example, 
make the preset room more reverberant by raising the value. Methods for setting and 
getting the reverberation time are setReverbTime() and getReverbTime(). It is 
recommended to first get the preset’s reverberation time, then scale it, and finally set the 
new, scaled value. 

6.4.7 Chorus 

Chorus is an interface for manipulating the settings of an effect called chorus and its 
special case flanger. Chorus, like Reverb, implements Effect. A Chorus can be instantiated 
using method EffectControl.createEffect(“Chorus”). 

Chorus makes the sound source sound like a group of similar sound sources playing the 
same sound. This makes the sound “richer”. 

Advanced audio API 51



 
 
A special case of a chorus is a flanger: two similar sources are played so close together in 
time that they sound like one, but instead with “wooshing” effect or with a sound similar 
to the sound of a jet plane passing overhead.  

In the API, there are several preset modes available for chorus. The modes at least 
available for the chorus are:  

• chorus  

• flanger  

Minimum tunable parameters for the chorus (and the flanger) are average delay and delay 
modulation’s rate and depth. 

6.5 Comparison to other 3D audio APIs 

This section compares the features of the presented APIs, namely Java 3D 1.3, MPEG-4, 
DirectX 9.0, EAX 2.0, A3D 3.0, and AAI. 

6.5.1 Geometry 

There are basically two different ways to define the geometry in the virtual acoustical 
world: scene graph based that describes the world in a treelike structure and non scene 
graph based that does not use any particular structure and instead describes the sound 
source and listener locations and possible walls essentially as a list. 

Of the presented APIs, Java 3D and MPEG-4/BIFS are scene graph based and on the other 
hand, DirectX, A3D and AAI are list based. EAX cannot be classified because it does not 
define geometry being an extension to DirectX that defines the geometry. 

BIFS and A3D have the possibility to introduce walls that have acoustical properties into 
the world in addition to sources and listeners that other APIs only provide. BIFS uses 
scene graph for walls and A3D offers special lists for wall vertices that can be defined 
once but used multiple times.  

6.5.2 Room effect 

Different APIs have different settings for the reverberation. DirectX, EAX and A3D have 
settings similar to, or the same as, I3DL2. DirectX has exactly the same parameters and 
presets that I3DL2 defines: 12 parameters (Table 2) and 30 presets. EAX and A3D have 
only slightly different presets the amount being 26. The parameters are the same as in 
I3DL2 except that EAX provides an additional high-level “room size” parameter. AAI’s 
reverb is also I3DL2 based offering a 10-preset subset that can be controlled with one 
parameter, reverb time (T60). 

Java 3D offers an eight-parameter subset of I3DL2 parameters, but does not have any 
presets. Instead of presets, Java 3D offers an easy way to calculate reverb decay and delay 
automatically internally: the application can define the boundaries of the room and then 
reverb decay and delay are calculated accordingly. 

BIFS has two alternative ways to set the reverb: perceptual and physical. The perceptual 
approach offers 13 parameters to control reverberation. They are of really perceptual 
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nature, like source brilliance and room presence. The other approach is physical where 
different acoustical materials are bound with the geometry defined for the room (walls).  

Since BIFS and A3D are the only APIs that have capability for wall geometry definitions 
with wall material, they are the only APIs that support automatic calculation of the early 
reflections, obstruction and occlusion. However, EAX offers an option to manually set 
magnitudes for the obstruction and occlusion for each source, but that requires quite a lot 
manual calculations of walls’ shadowing. Similar manual obstruction and occlusion 
settings are possible also with AAI’s EQControl. 

6.5.3 Source directivity 

Java 3D and BIFS have fine-grained control for source directivity: multiple angles from 
the source main axis are defined and then the gains and the frequencies for the low-pass 
filters are defined for those angles. 

DirectX and A3D have only two definable angles and the remaining directivity is then 
interpolated between them. The gain outside of the outer angle is definable in both APIs, 
but it is frequency independent. EAX adds frequency dependent directivity to the DirectX.  

In addition to directivity, A3D has possibility for volumetric sources. 

AAI does not provide automatic directivity calculations, but frequency dependent source 
directivity can be manually implemented using EQControl. 

6.5.4 Effects 

Sometimes it is required to be able to alter sound also in unnatural ways, in contrast to the 
natural environment modeling such as 3D localization and reverberation. From the set of 
presented APIs only AAI and DirectX have predefined effects (apart from reverb) 
available. AAI provides three: chorus, flanger, and graphical equalizer; and DirectX, on 
the other hand, has eight standard effects: chorus, compression, distortion, echo, flange, 
gargle, parametric equalizer, and Waves reverberation. Also other user-specified effects 
can be registered into the both systems. 

Although MPEG-4/BIFS does not provide predefined effects, it has the most fundamental 
possibilities to define effects. AudioFX nodes can be added into the signal processing tree 
and SAOL is used to define them. In other words, a specialized programming language is 
provided for effects programming. 

Java 3D and A3D do not provide direct help for the effect creation, but manual processing 
of the input streams is always possible. 

AAI and MPEG-4 allow the effects to be either global, thus affecting all the sources, or 
source-specific. The rest of the APIs allow source-specific effects only.  

6.5.5 Resource consumption control 

Processing of sound data is in general a laborious task. The APIs offer different ways to 
try to deal with that. 

Deferred settings is one way. It means that while an application sets processing 
parameters, such as source locations, they are not taken into action right away, but instead 
accumulated into a buffer. The settings in the buffer can then be processed together when 
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a sufficient amount of settings have been accumulated. DirectX and EAX have deferred 
settings and also A3D has a similar system, but it is called instead as a frame buffer. 

A3D has a system called as a resource manager that has an ability to control, in a clever 
way, which of the sources fall back on software processing in the lack of hardware 
resources and further on no processing at all in the lack of software processing resources. 
The audibility and the priority of the source affect this fallback process. 

The resource consumption of the reverb can be limited in Java3D, in A3D and in DirectX. 
DirectX also provides a choice to use two alternative HRTFs for 3D calculations: “light” 
or “full”. 

MPEG-4 and AAI do not provide any ways for process consumption optimization. In the 
case of AAI, it is clearly a weakness; AAI will mostly be run on the devices with limited 
processing power.  

6.6 Reference implementation 

As a part of this thesis, a reference implementation of Advanced audio API was 
implemented. The reference implementation runs on top of Microsoft’s Windows 2000 
operating system and provides the implementation of AAI’s LocationControl, 
OrientationControl, PanControl, EffectControl, Effect, Reverb, and Spectator. 

The reference implementation of AAI is constructed on top of the MMAPI 1.0 Windows 
reference implementation and thus is based on MIDP 1.0.3 and CLDC 1.0. 

The audio processing is done by a native audio engine running on the Windows platform. 
This engine is not part of the thesis. 

6.6.1 Playback architecture 

com.nokia.mid.M ixer

+ open()
+ write()
+ pause()
+ resume()
+ flush()
+ drain()
+ close()
+ getSamplesPlayed()
+ setVolume()
+ getVolume()
+ setPan()
+ setLocation()
+ setSpecLocation()
+ setSpecOrientation()
+ setSpecEnvironment()
+ getSpecEnvironment()

javax.microedition.media.Player

java.lang.Runnable
audio engine 

gateway
native audio 

engineC++C
Player 

implementation Java

 

Figure 22. The architecture from the audio playback point of view. Only the relevant methods are shown. 

Figure 22 describes the basic architecture that enables the playback of a wav-file. The 
original Player implementation creates a separate Thread that has the functionality to 
repeatedly read a bufferful of data from its input stream and then send it to the Mixer’s 
write method that sends it further to the native audio engine. In the original MMAPI 
reference implementation, Mixer class was replaced by an interface for Windows’ native 
audio resources. 
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One complication here is that CLDC’s native interface supports calling C functions only 
[KVM 2001], but the native audio engine uses C++ classes as its public interface. 
Therefore, a gateway is needed to convert the calls. As C is a non-object language (unlike 
Java or C++), all the object behavior in the traffic between them has to be emulated by the 
Mixer and the gateway. An extra integer argument, namely handle, is passed in every C 
function call to represent the object that cannot be directly passed via C.  

6.6.2 Controlling the playback 

javax.microedition.media.Player

com.nokia.mid.aai.Reverb

com.nokia.mid.aai.Spectator

com.nokia.mid.aai.Effect

com.nokia.mid.aai.EffectControl

com.nokia.mid.aai.LocationControl

com.nok ia.mid.aai. OrientationControl
javax.microedition.media.VolumeControl

com.nokia.mid.aai.PanControl

com.nokia.mid.impl.Mixer

+ setVolume()
+ getVolume()
+ setPan()
+ setLocation()
+ setSpecLocation()
+ setSpecOrientation()
+ setSpecEnvironment()
+ getSpecEnvironment()

com.nokia.mid.aai. impl.
PanCtrl

+ setPan()
+ getPan()

Volum eControl  
implementation

+ setMute()
+ isMuted()
+ setLevel()
+ getLevel()

com.nokia.mid.aai.impl.
ReverbImpl

+ getPreset()
+ setPreset()
+ getPresetNames()

Player implementation

# doSetLevel()
+ doSetPan()
+ doSetLocation()
+ getControl()
+ getControls()

1

1

1

1

1

1

1

1

com.nokia.mid.aai.impl.
OriCtrl

+ setOrientation()
+ getHeading()
+ getPitch()
+ getRoll()

com.nokia.mid.aai.impl.
EffCtrl

+ createEffect()
+ insertEffect()
+ getEffectNames()
+ removeEffect()
# update()

0..n1 0..n1

com.nokia.mid.aai.impl.LocCtrl

+ setCartesian()
+ setSpherical()
+ getX()
+ getY()
+ getZ()

1

1

1

1

com.nokia.mid.aai.impl.SpecImpl

+ isClosed()
+ close()
+ getControl()
+ getControls()
# doGetControl()
# doSetLocation()
# doSetOrientation()
# doSetSpecEnvironment()
# doGetSpecEnvironment()

1

1

1

1
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1

1

1
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1
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1

com.nokia.mid.
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Figure 23. The architecture from the control point of view. Only the relevant methods are shown. 

Figure 23 illustrates how the different Controls are implemented and also how a Spectator 
is added parallel to Player. 

SpecImpl class implements the Spectator functionality. It uses Mixer, likewise Player, to 
control the native audio engine. Parameters that a Spectator controls are all global so no 
instance of Mixer is needed to be associated; only calling the Spectator related static 
methods of Mixer is enough. 

Controls supplementing a Player are the original VolumeControl implementation together 
with author’s PanCtrl implementing PanControl, and LocCtrl implementing 
LocationControl. Spectator’s Control implementations by the author are OriCtrl 
implementing OrientationControl, EffCtrl implementing EffectControl, and the same 
LocCtrl that can also control Player. 

All the Controls work so that when they are asked to modify some associated audio 
processing parameter they call the associated method of their “host”. These associated 
methods are named with a prefix “doSet”. For instance, when the application programmer 
wants to turn the Spectator in the virtual world, he or she calls Spectator’s 
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OrientationControl’s setOrientation method and gives the new orientation. In practice, 
OriCtrl.setOrientation is called and it passes the new orientation to 
SpecImpl.doSetOrientation that furthermore passes the new orientation angles to 
Mixer.setSpecOrientation. 

LocCtrl is the only Control that needs direct native support in this API. LocCtrl needs 
trigonometric functions to convert the coordinates given in spherical coordinate system to 
the Cartesian coordinate system. Unfortunately, neither MIDP 1.0 nor CLDC 1.0 provides 
trigonometric functions, so a helper class Trig was build. Trig gives access to the native 
sine and cosine implementations. 

EffCtrl that implements EffectControl functionality provides programmer a factory 
method, namely createEffect, to instantiate various Effects. The only effect 
implementation available here is ReverbImpl that implements the Reverb interface. 
ReverbImpl provides all 30 presets that “IA-SIG Interactive 3D Audio Rendering 
Guidelines (Level 2)” [I3DL2 1999] describes, not just the subset that the AAI requires. 
Reverb settings work in the way that when the application programmer calls the 
ReverbImpl.setPreset the EffCtrl’s protected method update is called. EffCtrl.update reads 
the associated ReverbImpl’s settings and then passes them to 
SpecImpl.doSetSpecEnvironment that passes them further to the Mixer. EffCtrl.update 
checks that the Reverb is inserted into the EffectControl before sending any parameters 
further. 

The whole architecture of the reference implementation was redesigned many times 
during the work to make it iteratively compact, simple and efficient. For each iteration, 
some methods or even whole classes were dropped and the implementation became more 
compact. 
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7. A demonstration application 

A demonstration MIDP application was build both for demonstrating and testing the novel 
API. In this chapter, the features of the demonstration MIDlet are first described and then 
the implementation is gone through. 

7.1 Description 

The demonstration MIDlet consists of a house where the user can walk around. He or she 
can walk through corridors and enter different rooms. Besides the user, there are other 
creatures in the house. They also move around the house, but their movement cannot be 
controlled: it is random. 

Different creatures make different sounds. There are, for instance, dogs, different kind of 
birds, and some musicians performing opera. The creatures act as point sound sources in 
the virtual acoustical world and the user hears their relative direction. The relative 
directions change constantly while the sources and the user move in the virtual world. 

Different rooms in the house have different kind of acoustical conditions. The reverb 
setting in use is dependent on the room where the user in the particular moment is located 
in. The locations of the sound sources are monitored constantly and compared with the 
room coordinates; those sources that are in the other rooms behind a door are completely 
occluded. 

In addition to the virtual acoustical world, there is a graphical user interface where all the 
sources and the user are visible in the floor plan. The floor plan turns and scrolls while the 
user moves. So the user is always visible constantly on the center of the screen and facing 
upward. The user has five actions that he can do: move a step forward or backward, turn 
ten degrees left or right, or, by pressing “fire” button, change actively the reverb setting of 
the room where he is located at the moment. The display shows the coordinates of the user 
in millimeters, user’s rotation in degrees, and the reverberation preset of the room. The 
graphical user interface is visible in Figure 24. 
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Figure 24. A screenshot of the AAI reference implementation with the demonstration MIDlet running. The 
faces on the screen illustrate the sound sources. The listener is visible on the center of the screen. 

7.2 Implementation 

The MIDlet is constructed so that it has four major classes that form the core of the 
program. These classes are Source that represents a sound source; Spy that represents the 
user; House that contains the information of the floor plan and geometrical routines; and 
MansionCanvas that takes care of instantiating all the other important objects, painting the 
graphics and reacting on user’s key presses. Additionally, there are smaller classes that 
provide necessary auxiliary processing for the main classes. The structure of the program 
is shown as a class diagram in Figure 25. 

Source has a Player instance to take care of the sound playing. A LocationControl is used 
to update the position of the sound source. Source has also a run method that is called 
from a separate thread. The run updates the location of the Source repeatedly in a random 
way. Additionally, Source has a draw method that is called by MansionCanvas.paint when 
the Source is drawn to the GUI. 

Spy represents the user in the virtual world. Spy has a Spectator instance to take care of 
the room and listener modeling. LocationControl and OrientationControl are used to move 
the virtual user accordingly when the user moves and a Reverb created by an 
EffectControl is used to model the reverberation properties of the room. When the user 
walks to another room the Reverb settings are changed accordingly. 
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Figure 25. The classes of AAI demonstration MIDlet. Only the most relevant methods and associations are 
shown. 

House has the geometry and reverberation settings of each room in the building stored. 
House has a draw method that draws the floor plan based on this stored geometry when it 
is called from MansionCanvas.paint. Additionally, House provides collision detection 
calculation routines that are used by the Source and Spy to prevent walking through the 
walls. 

MansionCanvas instantiates the House, the Spy, and all the Sources. It also creates 
separate threads for every Source to run Source’s random movement routines. 
MansionCanvas.paint takes care of painting all the graphics on the screen, but it is assisted 
by subroutines Source.draw and House.draw that paint their part of the graphics. 
Furthermore, MansionCanvas reads the user input and redirects the user commands to 
appropriate objects providing also the source occlusion calculations during the paint 
routine. 

Besides the main classes presented above, helper classes are needed. Trig provides support 
for trigonometric operations that Source, House and Spy need to use. Sine and cosine are 
not part of CLDC 1.0 or MIDP 1.0 so those functions are provided by Trig and also 
coordinate transformations between Cartesian and spherical coordinate systems are there. 
Besides Trig, Source has two inheritors: StaticSource and FastSource. They extend 
Source’s functionality by overriding the run method. StaticSource does not move at all 
and FastSource, on the other hand, moves much more than an ordinary Source. 
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8. Conclusions 

The problem addressed in this thesis was how to access and control audio processing 
features of a modern portable communications device. 

As a background, psychoacoustics and its application in virtual acoustics were reviewed. 
On the other hand, traditional ways to access audio processing features from a computer 
program were studied and considered. These ways were five different programming 
interfaces common in the desktop computing nowadays. Moreover, one interface 
specifically designed mainly for media playback and recording in mobile devices was also 
studied. This interface formed the basis for the own work done in this thesis. 

As the main result, this thesis presented one new interface to control audio processing in a 
mobile information device. This interface was implemented and a demonstration 
application was build on top of it. 

All the APIs described in this thesis including the novel API were compared. The main 
found lacks of the novel API could be stated to be the following. It is incapable to control 
the resource consumption of the audio processing. This feature could be relatively 
important to have, because we are talking about resource limited mobile devices. It could 
be easily gained by setting priorities for various sounds. Another lacking relatively 
important feature is the automatic calculation for the occlusion and obstruction caused by 
obstacles, such as walls, in the virtual acoustical space. This would need a definition 
system for the room geometry to the API. That would considerably make the API bigger.  

Otherwise, this novel API designed for the mobile world was capable of doing many of 
the same things as bigger APIs of the desktop computing world. The novel API was 
designed to be both lightweight and easy to use, and as the matter of fact, the first actual 
user of the API professed to have learned the API in one hour. 

As the interface presented is concentrated on audio signal processing, a possible future 
work could provide a similar interface for video signal processing. 
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10. Appendix 1: AAI example code 

     // 
     // creates two sound sources into an alley 
     // 
     void createAudioScene() { 
         try { 
             Player p1 = Manager.createPlayer("http://abc.wav"); 
             Player p2 = Manager.createPlayer("http://def.wav"); 
             Spectator s = Manager.createSpectator(""); 
             p1.realize(); 
             p2.realize(); 
          
             //set the source one 10 meters away to the front 
             LocationControl lc_player1; 
             if ((lc_player1 = 

(LocationControl)p1.getControl("LocationControl")) 
                 != null) { 
                 lc_player1.setUnitsPerMeter(1000); 
                 lc_player1.setCartesian(0, 0, -10000, 0);  
             } 
          
             //set the source two 5 meters away to the right 
             LocationControl lc_player2; 
             if ((lc_player2 = 

(LocationControl)p2.getControl("LocationControl")) 
                 != null) { 
                 lc_player2.setUnitsPerMeter(1000); 
                 lc_player2.setCartesian(5000, 0, 0, 0);  
             } 
          
             // set the listener to origin 
             LocationControl lc_spec; 
             if ((lc_spec = 

(LocationControl)s.getControl("LocationControl")) 
                 != null) { 
                 lc_spec.setUnitsPerMeter(1000); 
                 lc_spec.setCartesian(0, 0, 0, 0);  
             } 
          
             // set global reverb 
             EffectControl globalEffectC; 
             if ((globalEffectC = 
                  (EffectControl)s.getControl("EffectControl")) 
                 != null) { 
                 Reverb reverb = 

(Reverb)globalEffectC.createEffect("Reverb"); 
                 reverb.setPreset("alley"); 
                 globalEffectC.insertEffect(reverb); 
             } 
          
             p1.prefetch(); 
             p2.prefetch(); 
             p1.start(); 
             p2.start(); 
         } catch (MediaException pe) { 
         } catch (IOException ioe) { 
         } 
     } 
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