

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Electrical and Communications Engineering

Matti Paavola

Advanced audio interfaces for mobile Java

This Master's Thesis has been submitted for official examination for the
degree of Master of Science in Espoo on June 2, 2003.

Supervisor of the Thesis: Professor Matti Karjalainen

Instructor of the Thesis: Antti Rantalahti, M.Sc. (Tech.)

TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä
Tekijä:
Matti Paavola

Työn nimi:
Edistyneet äänirajapinnat kannettavaan Javaan

Päivämäärä: 2. kesäkuuta 2003 Sivumäärä: 64
Osasto:
Sähkö- ja tietoliikennetekniikan osasto

Professuuri:
S-89 Akustiikka ja äänenkäsittelytekniikka
Työn valvoja:
professori Matti Karjalainen

Työn ohjaaja:
dipl.ins. Antti Rantalahti
Tiivistelmäteksti:

Tämä työ käsittelee kannettavan laitteen äänisignaalinkäsittelyn ohjaamista ohjelmal-
lisesti.

Työssä käydään läpi työn kannalta oleelliset psykoakustiikan ilmiöt ja niiden sovellus:
virtuaaliakustiikka. Toisaalta työssä tutustutaan viiteen eri äänisignaalinkäsittelyn ohjaus-
rajapintaan, jotka ovat yleisesti käytössä henkilökohtaisissa tietokoneissa. Lisäksi yksi
kannettaviin laitteisiin suunniteltu Java-kielinen rajapinta käydään läpi. Tämä ohjelmointi-
rajapinta muodostaa alustan työssä itse kehitettävälle rajapinnalle.

Työn pääasiallisena tuloksena syntyy uusi äänisignaalinkäsittelyn ohjausrajapinta. Tämä
rajapinta on suunniteltu erityisesti kannettaville laitteille. Uusi rajapinta tukee muun
muassa 3D-ääntä, keinotekoista kaiuntaa, taajuuskorjausta ja erilaisia tehostesuotimia.
Esitelty rajapinta mahdollistaa esimerkiksi virtuaaliakustiikan luomisen käyttäjälle
kuultavaksi matkapuhelimeen liitettyjen kuulokkeiden välityksellä. Rajapinnasta tarjotaan
Windows-ympäristöön referenssitoteutus ja sen päälle rakennettu esittelysovellus.

Työn tuloksena syntynyttä rajapintaa verrataan työssä läpikäytyihin yleisiin ohjelmointi-
rajapintoihin ja todetaan, että syntynyt rajapinta on kykeneväinen moniin samoihin
asioihin kuin suuremmatkin rajapinnat ollen silti kevyempi ja siten soveltuvampi
kannettaviin laitteisiin.

Avainsanat:
3D-ääni, J2ME, Java, Mobile Media API, virtuaaliakustiikka

i

Helsinki University of Technology Abstract of the Master’s Thesis
Author:
Matti Paavola

Name of the Thesis:
Advanced audio interfaces for mobile Java

Date: June 2, 2003 Number of Pages: 64
Department:
Department of Electrical and Communications Engineering

Professorship:
S-89 Acoustics and Audio Signal Processing
Supervisor:
Professor Matti Karjalainen

Instructor:
Antti Rantalahti, M.Sc. (Tech.)
Abstract:

The problem addressed in this thesis was how to access and control audio processing
features of a modern portable communications device.

As a background, the essential psychoacoustical phenomena and their application in
virtual acoustics were reviewed. Five traditional ways to access audio processing features
from a computer program were studied and considered. These were different programming
interfaces common in desktop computing nowadays. Moreover, one Java interface
specifically designed mainly for media playback and recording in mobile devices was also
studied. This interface formed the basis for the work done in this thesis.

As the main result, this thesis presents a new interface to control audio processing in a
mobile information device. The new interface has ready-made support for various audio
processing capabilities, such as 3D audio, artificial reverberation, equalization, and audio
processing effects. The interface enables the Java application in the mobile phone, for
instance, to create an artificial three-dimensional acoustical world via attached
headphones. The novel interface is designed to be both lightweight and easy to use. A
reference implementation of the new interface is provided and a demonstration application
is build on top of it.

The novel interface and the desktop computing interfaces described in this thesis were
compared. The presented new interface designed for the mobile world was found to be
capable of doing many of the same things as bigger programming interfaces of the
personal computer world.

Keywords:
3D audio, J2ME, Java, Mobile Media API, virtual acoustics

ii

Preface

This work has been done at Nokia Research Center’s Speech and Audio Systems
Laboratory in Helsinki during years 2002 and 2003.

I would like to thank both my instructor Mr. Antti Rantalahti and my superior at work Dr.
Jyri Huopaniemi for valuable comments and ideas during my thesis work. I thank my
supervisor at the university Professor Matti Karjalainen for not only supervising this
thesis, but also for being a skillful and very inspiring lecturer during my acoustics studies.
I also thank my colleagues for giving such a pleasant environment to work in.

Most of all, I would like to thank my mother, relatives, and friends for understanding and
supporting me while being almost constantly busy during my studies.

Helsinki, May 29, 2003

Matti Paavola

iii

Table of contents
1. Introduction.. 1
2. Psychoacoustics ... 2

2.1 Physiology of the ear... 2
2.1.1 The outer and the middle ear ... 2
2.1.2 The inner ear .. 3

2.2 Critical bands and masking ... 4
2.3 Loudness ... 5
2.4 Pitch .. 6
2.5 Timbre and coloration... 6
2.6 Localization... 6

2.6.1 Localization cues ... 6
2.6.2 Precedence effect ... 7

3. Virtual Acoustics ... 8
3.1 Source modeling ... 8
3.2 Room modeling... 9

3.2.1 Methods ... 9
3.2.2 Attenuation and absorptions .. 11

3.3 Listener modeling ... 11
3.4 3-D sound reproduction... 12

3.4.1 Headphone reproduction.. 13
3.4.2 Loudspeaker reproduction ... 13
3.4.3 Multichannel reproduction... 13

3.5 A typical DSP implementation.. 13
4. Existing 3D audio APIs ... 14

4.1 Java 3D API .. 14
4.1.1 High-level .. 14
4.1.2 Concept of scene graph.. 14
4.1.3 Sound sources in Java 3D .. 15
4.1.4 Virtual acoustical environment in Java 3D.. 16
4.1.5 Physical real acoustical environment in Java 3D... 17

4.2 MPEG-4 .. 17
4.2.1 Coding of Audio-Visual objects .. 17
4.2.2 Structured Audio.. 18
4.2.3 BIFS... 19
4.2.4 AudioBIFS... 20
4.2.5 Advanced AudioBIFS.. 22

4.3 A3D... 24
4.3.1 IA3d5 ... 24
4.3.2 IA3dListener .. 25
4.3.3 IA3dSource2 .. 25
4.3.4 IA3dReverb.. 27
4.3.5 IA3dGeom2 and IA3dList ... 27
4.3.6 IA3dMaterial.. 28

4.4 DirectX audio .. 28
4.4.1 IDirectMusicLoader8... 29
4.4.2 IDirectMusicSegment8 .. 30
4.4.3 IDirectMusicPerformance8.. 30
4.4.4 IDirectMusicAudioPath8... 30
4.4.5 IDirectSoundBuffer8 ... 30
4.4.6 IDirectSound3DBuffer8 .. 30

iv

4.4.7 IDirectSound3DListener8.. 31
4.4.8 Reverberations and other effects.. 31

4.5 EAX .. 32
4.5.1 The listener property set .. 33
4.5.2 The sound-source property set... 33

5. Java 2 Micro Edition.. 35
5.1 Different Java Platforms ... 35
5.2 Configurations... 36

5.2.1 Connected, Limited Device Configuration.. 37
5.3 Profiles .. 38

5.3.1 Mobile Information Device Profile.. 38
5.4 Mobile Media API .. 40

5.4.1 Features.. 41
5.4.2 Structure... 41
5.4.3 Controls.. 42

5.5 Java Community Process .. 43
6. Advanced audio API.. 44

6.1 Goals ... 44
6.1.1 Targeted users .. 44
6.1.2 Targeted platforms... 44

6.2 Features ... 44
6.2.1 General... 44
6.2.2 Source localization... 45
6.2.3 Reverb.. 45
6.2.4 Equalizer .. 45
6.2.5 Effects .. 46

6.3 Process .. 46
6.4 Interface... 46

6.4.1 Spectator .. 47
6.4.2 LocationControl and OrientationControl... 48
6.4.3 PanControl ... 49
6.4.4 EQControl.. 49
6.4.5 Effect, EffectControl, and PlayerEffectControl... 50
6.4.6 Reverb.. 51
6.4.7 Chorus.. 51

6.5 Comparison to other 3D audio APIs ... 52
6.5.1 Geometry ... 52
6.5.2 Room effect ... 52
6.5.3 Source directivity... 53
6.5.4 Effects .. 53
6.5.5 Resource consumption control .. 53

6.6 Reference implementation .. 54
6.6.1 Playback architecture... 54
6.6.2 Controlling the playback.. 55

7. A demonstration application.. 57
7.1 Description .. 57
7.2 Implementation ... 58

8. Conclusions.. 60
9. References.. 61
10. Appendix 1: AAI example code.. 64

v

Abbreviations
AAI Advanced Audio API

API Application Programming Interface

AWT Abstract Windowing Toolkit

BEM Boundary Element Method

BIFS Binary Format for Scenes

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

COM Component Object Model

DSP Digital Signal Processing

EAX Environmental Audio eXtensions

ECMA ECMA International - European association for standardizing
information and communication systems. (Formerly known as European
Computer Manufacturers Association.)

EQ Equalizer

ERB Equivalent Rectangular Bandwidth

FDN Feedback Delay Networks

FEM Finite Element Method

FIR Finite Impulse Response

HAL Hardware Abstraction Layer

HEL Hardware Emulation Layer

HRTF Head-Related Transfer Function

HTML HyperText Mark-up Language

IEC International Electrotechnical Commission

IIR Infinite Impulse Response

ILD Inter-aural Level difference

ISO International Organization for Standardization

ITD Inter-aural Time Difference

vi

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

JCP Java Community Process

JNI Java Native Interface

JSR Java Specification Request

JVM Java Virtual Machine

KVM K Virtual Machine

LFO Low Frequency Oscillator

MIDI Musical Instrument Digital Interface

MIDP Mobile Information Device Profile

MMAPI Mobile Media Application Programming Interface

MPEG Moving Picture Experts Group

PDA Personal Digital Assistant

SA Structured Audio

SAOL Structured Audio Orchestra Language

SASBF Structured Audio Sample Bank Format

SASL Structured Audio Score Language

SMIL Synchronized Multimedia Integration Language

SNHC Synthetic-Natural Hybrid Coding

T60 Time that is taken for the sound pressure level to attenuate 60 dB. A
measure of reverberation time.

UI User Interface

UML Universal Modeling Language

URL Universal Resource Locator

VRML Virtual Reality Modeling Language

X3D eXtensible 3D

 vii

1. Introduction

The hardware of mobile devices evolves all the time, in the means of processing power,
memory amount, and different novel media capabilities, such as playback, processing, and
capture for both audio and video. These improvements enable completely new types of
applications for mobile devices.

On the other hand, most of the new mobile phones sold today have support for Java
applications. The user can download Java applications to his or her phone from the
Internet and therefore, customize the services that are available in the mobile terminal.
Java Mobile Media Application Programming Interface [MMAPI 2002] enables usage of
new audio and video features of a mobile phone from a Java application. MMAPI mainly
concentrates on the playback and the capture of media content, but does not have a strong
support for media processing.

This thesis presents one suggestion how to improve audio processing capabilities of
MMAPI 1.0. A new interface, namely Advanced Audio Application Programming
Interface (AAI), is presented. It complements MMAPI 1.0 and has ready-made support for
various audio processing capabilities, such as 3D audio processing, artificial reverberation,
equalizer, and audio processing effects. This new interface enables, for instance, for the
Java application in the mobile phone a possibility to create an artificial three-dimensional
acoustical world to the user via attached headphones.

The thesis is divided so that chapters from two to five provide the necessary background
information and chapters six and seven describe the own work of the author. At first,
chapters two and three introduce the reader to the most important related psychoacoustical
phenomena and their application in virtual acoustics. Then, chapter four introduces five
essential 3D audio APIs on the personal computing market today. In chapter five, the
modules of Java that are nowadays common in the mobile phones are gone through. The
novel API of this thesis is handled in chapter six; it is first described, then compared to
APIs presented in the previous chapter, and then a reference implementation of it is
presented. Chapter seven presents one example application that is built on top of the AAI
and chapter eight concludes the thesis.

Introduction 1

2. Psychoacoustics

To be able to create artificial acoustical environments that sound like real acoustical
environments, one has to understand how human hearing works and what are the essential
properties of the sounds what comes to perception. One can then concentrate on modeling
just the essential parts of the acoustical world and not to waste resources on unessential
acoustic phenomena. The field of science that studies how different physical sound stimuli
are mapped to different sensations is called psychoacoustics.

This chapter presents the most important psychoacoustical phenomena. First, the human
ear is studied in the physiological point of view and then different properties of hearing
are gone through. Books [Blauert 1997], [Moore 1997], and [Karjalainen 1999] act as
references.

2.1 Physiology of the ear

2.1.1 The outer and the middle ear

The human ear can be divided into three parts: the outer, middle, and inner ears, as shown
in Figure 1. The outer ear is a passive part of the ear and consists of the pinna and the
auditory canal. Pinna, together with the head and upper body, colors sounds based on the
direction from which they arrive. This is one of the fundamental physical phenomena that
directional hearing uses.

Figure 1. The human ear with its three subdivisions, namely outer, middle, and inner ear, visible. [Goldstein
1999]

Psychoacoustics 2

The auditory canal leads the sound from the pinna to the eardrum, which separates the
middle ear from the outer ear. The auditory canal is a 25 mm long and 7,5 mm wide tube
on average. Based on physical dimensions of the auditory canal, it has a resonance that
boosts the frequencies around 4 kHz. Because the canal is so narrow, sound in audible
frequencies propagates there mainly in one dimension only, as planar waves. Therefore,
sounds from different directions are not treated differently anymore after the pinna and
thus the auditory canal does not have remarkable influence on spatial hearing.

The middle ear is an air cavity, insulated by the eardrum, containing small bones called
the ossicles. The cavity is connected to the back of the throat by the Eustachian tube that
balances the static air pressure with the outer ear when, for instance, flying in an airplane.
Otherwise, the static air pressure difference would tighten the eardrum making the
sensitivity of the hearing poorer.

The role of the ossicles, namely malleus, incus, and stapes, is to propagate the sound from
the eardrum to the inner ear. The inner ear is filled with liquids and thus has remarkably
different acoustical impedance than air in the auditory canal. Matching these acoustical
impedances is an important task of the middle ear. Without it, most of the sound energy
would reflect back from the oval window that is the entrance of the inner ear. This
mechanical impedance matching is caused both by the large difference in surface areas of
the eardrum and the oval window, and by the leverage effect of the ossicles.

The middle ear is not completely passive. It has a small muscle, namely stapedius,
attached to stirrup, that contracts when the ear is exposed to loud sound. When the
stapedius muscle contracts and pulls the stirrup, the transmission of the sound to the inner
ear reduces. The contraction happens after an exposure to sound over about 80 dB in level.
Reaction time is some tens or hundreds of milliseconds. The reason for this so called
acoustical reflex is probably to try to protect the inner ear from harmful loud sounds.
Unfortunately, the acoustical reflex cannot protect the ear well against the harmful sounds
of the modern society, because of two reasons. Firstly, the transmission reduction takes
place in the lower frequencies only, and secondly, the time lag between the beginnings of
the loud sound and the reflex is too long to protect against impulse sounds, such as
gunshots.

2.1.2 The inner ear

The ear acts as a sense receptor and converts the acoustical energy it senses to electrical
nerve impulses to be transferred via auditory nerve to the brain for further processing. This
conversion takes place in the inner ear. Besides of the hearing related functionality, also
the vestibular organ is located in the inner ear, but it is out of this study’s scope.

The cochlea (Figure 2) is the part of the inner ear where the sensory cells lie. It is a tube
around 35 mm in length, and is bent into a spiral form. The cochlea has rigid bony walls
and is filled with fluids. The cochlea is split in longitudinal direction with two membranes,
namely the basilar and the Reissner’s membranes. They divide the cochlea into two larger
chambers, namely scala vestibuli and scala tympani, and into one smaller chamber located
between them, scala media. The cochlea enlarges in diameter towards the outer end where
it is connected with the middle ear. On that end, there are two openings sealed with
membranes, the oval window and the round window. Scala vestibuli‘s fluid is connected
via the oval window to the stapes, the small bone that transmits the sound vibration to the
inner ear from the middle ear. Scala tympani ends to the round window that leads to the
middle ear cavity without similar bone connection. In the inner end of the cochlea there is

Psychoacoustics 3

an opening called helicotrema in the basilar membrane that connects the fluids of the large
chambers, scala vestibuli and scala tympani.

Oval
window

Round window

Bony shelf

Helicotrema

Basilar membrane
Stapes

Figure 2. A structural picture of an unfolded cochlea [Karjalainen 1999]. Printed with a permission of the
original author.

On the basilar membrane lies the organ of Corti where the receptors, the hair cells, are
located. When the sound energy makes the fluids in the cochlea vibrate, also the basilar
membrane vibrates and makes the hair cells bend. This causes them to generate electrical
impulses to the auditory nerve and to transmit the information towards the brain.

The physical properties of the basilar membrane change as the function of place: when
going towards the inner narrower end of the cochlea, the basilar membrane gets wider,
heavier, and more flexible. This makes the frequency-dependent sensitivity of the
membrane change over the distance from the windows. In other words, the amplitude
maximum of the basilar membrane’s vibration is located in a frequency dependent place.
Hair cells closer to the windows get more excitation for high-frequency sounds and cells
closer to the inner end for low-frequency sounds. This is one reason why humans can
sense the pitch of sound.

Not all the hair cells are receptors; the outer hair cells have also an effector nature and can
cause the basilar membrane to vibrate. It is assumed that these active cells make the
resonance peak of the membrane sharper and thus improve ear’s frequency selectivity as
well as sensitivity.

Another thing that probably improves the sensitivity of pitch analysis is that the nerve
impulses transmitted from the hair cells are statistically synchronized to the waveform of
the affecting sound. The cells mainly emit pulses during the positive half-wave of the
sound (increased pressure) and not during the negative half-wave.

2.2 Critical bands and masking

Critical bands play a central role in hearing. The human auditory system can be divided to
critical bands in the frequency domain. When two pure tones are so close in frequency that
there is considerable overlap in their amplitude envelopes on the basilar membrane, they
are said to lie within the same critical band. About 24 critical bands span the audible
frequency range. Their bandwidth varies as a function of their center frequency so that at
lower frequencies the bandwidth is around constant 100 Hz, but at around 500 Hz the
bandwidth starts to rise logarithmically, being several kilohertz wide in the highest audible
frequencies. Critical bands have to be understood so that their location in the frequency

Psychoacoustics 4

scale is not fixed, but rather so that hearing treats different sounds laying within one
critical bandwidth together in various ways.

One scale of pitch, namely the Bark-scale, is formed by attaching critical bandwidths next
to each other on the frequency scale. One Bark then corresponds one critical bandwidth.
The other scale addressing the same needs as the Bark-scale is the ERB-rate scale. It
mainly differs from the Bark-scale by the method how the analysis bandwidth of the
hearing is measured. The actual subjective pitch scale, the mel-scale, is presented in a
separate section later.

Masking is one phenomenon where critical bands play an important role. When the ear is
exposed to two or more different tones, one of these tones may mask the others. This
happens in the frequency domain between tones inside the same critical band and partially
for neighboring bands, and in the time domain between tones that are temporally near each
other, so that even a loud sound after a weaker one can mask the other. This premasking
happens only in a period starting 5-10 ms before the masking tone starts. After a masking
tone ends, postmasking masks tones until 150-200 ms has passed.

2.3 Loudness

In the physical world, the sound pressure means how much air pressure maximally alters
from static air pressure when sound wave propagates via one point. The sound pressure is
measured in Pascal scale (Pa = N/m2) and the range of human hearing is of magnitude
from 10-5 Pa to 102 Pa. The range being so large, it is convenient to use a different scale:
sound pressure level Lp in decibels (dB). Lp = 20log10(p/p0), where p0 is the reference
value 20µPa. This decibel scale also happens to be closer to how human perceives the
loudness of sound than Pascal scale.

10

20

30

40

50

60

70

80

90

100

110

120

130

 3

20 31.5 63 125

140

120

100

80

60

40

20

0

250 500 1k 2k 4k 8k 16k

Frequency (Hz)

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB

)

Loudness level (phons)

Treshold of audibility

Figure 3. Equal-loudness curves after ISO 226:1987 [Karjalainen 1999]. Printed with a permission of the
original author.

Psychoacoustics 5

Loudness is strongly related to sound pressure level, but also the other magnitudes of
sound, such as frequency, spectral distribution, and duration, affect the perceived
loudness. Frequency dependency of loudness can be seen on Figure 3, where equal-
loudness curves are presented. On the curve, the perceived loudness stays the same.
Loudness level is defined in phons, so that at 1kHz frequency, the level in phons is
numerically equal to sound pressure level in decibels. Loudness level of one or more
sounds in phons can furthermore be converted to loudness in sones to actually present the
overall perception.

Phons and sones are quite rarely used and sound pressure level in decibels is much more
common. The sound pressure level is usually given using some frequency dependent
weighting to represent human’s sensation a little better than a non-weighted value. A-
weighting curve is the most commonly used weighting. It approximates roughly equal-
loudness curve of 30 phons.

2.4 Pitch

Perceived pitch is strongly related to physical frequency, but like in the case of loudness, it
is a combination of also other properties of the sound. The unit used for subjective pitch is
the mel. Doubling the number of mels, pitch is perceived twice as high. From 0 to 2400
mels span the frequency range from 0 to 16 kHz, and 100 mels corresponds roughly one
critical bandwidth (one Bark). Mel scale is one example of the important role the critical
bands play in hearing.

Like in the case of phons and sones, mels are not widely used and logarithmic frequency
scale is used instead in technical applications. Logarithmic frequency scale is anyway
closer to pitch perception than the normal linear frequency scale.

2.5 Timbre and coloration

A piano sound and a violin sound can have equal loudness and pitch, but they still sound
different. This is because their frequency components are differently spread on the
spectrum and time: they have different timbre.

Humans can hear quite easily changes in timbre. We say then that the sound is colored.
Colorations on sound are actually changes in the frequency response of the system. A just
noticeable difference in the spectrum of a signal is approximately 1 dB in each critical
band (1 Bark), if the reference is on the short time memory of the listener. If time has
passed (hours or days) since reference, the errors in the spectrum can be up to ±5-10 dB
until they are perceived clearly.

2.6 Localization

2.6.1 Localization cues

Listener's two main cues for localizing a sound source are the interaural time difference
(ITD) and the interaural level difference (ILD). ITD is caused by the wave propagation
time difference, and ILD by the shadowing effect of the head. ITD is significant primarily
below 1.5 kHz and ILD primarily above 1.5 kHz. These cues tell in which cone of

Psychoacoustics 6

confusion the source lies. The cones of confusion are roughly speaking cones that have a
line between ears as their symmetry axis. In other words, on the cone the difference
between distances from the sound source to the left ear and to the right ear is the same.

Human can differentiate if the sound source is on the back or on the front, so still one cue
is needed. The location on the cone is revealed by spectral cues of the sound that are
caused by the physiology of upper part of the human body, mainly by pinnae, but also, for
instance, by shoulders. Reflections from different body parts colorize the sound differently
depending on the arrival direction.

All these location cues can be presented as head-related transfer functions (HRTF) that
present how the sound changes when arriving from a direction to the ear canal. HRTFs are
of individual nature, because all humans have different anatomy of head and torso.

2.6.2 Precedence effect

What if the same sound comes from multiple directions? This is a quite common situation
that happens, for example, when the sound comes directly from the source and also via a
reflection. If the sounds come really close together in the time domain, so that the second
sound follows within 1-1.5 ms, they are perceived as a single source, and the location is
determined somewhere between two real sources, based on time and level differences
between these real sources. If it takes a little bit longer time for the second source's sound
to arrive to ears, the location is determined almost entirely based on the first source. So,
the ear is practically deaf to the second source when it comes to location, and "considers"
this second sound to be an early reflection. This is called the precedence effect, and it
takes place until 30-40 ms. After that, the second sound is perceived as an echo or
reverberation. Although the secondary sound does not affect the location if the delay is
between circa 1.5 ms and 30 ms, it still has an effect on coloration.

Psychoacoustics 7

3. Virtual Acoustics

“Virtual acoustics is a general term for the modeling of acoustical phenomena and systems
with the aid of a computer.” [Huopaniemi 1999] This chapter introduces first virtual
acoustics modeling, and then reproduction techniques. Modeling can be divided into three
tasks: source, transmission medium, and receiver modeling. Each of them is presented in
separate subchapters and then ways to reproduce the modeled audio scene are introduced.
The last subchapter handles implementation issues.

[Huopaniemi 1999] and [Savioja 1999] act as references in this chapter. Parts of the text
have been previously published in [Kujala, Paavola 2002].

3.1 Source modeling

The most straightforward way to model an audio source in a virtual acoustical scene is to
use pre-recorded monophonic digital audio and then treat it as an omni-directional point
source. The recorded audio should be anechoic, that is, not containing any reflections or
reverberation; the room modeling part is responsible for creating these effects in virtual
acoustics. High quality anechoic recordings can be done in an anechoic chamber. Instead
of using natural pre-recorded digital audio, also synthetic audio can be used, thus saving
bandwidth. Furthermore, audio synthesis techniques usually produce anechoic data.

The omni-directional point source model is usually used, but there are also more accurate
models available. Natural sound sources are not omni-directional in general. They have a
frequency-dependent directivity pattern. For instance, a human mouth radiates more
energy to the front of the speaker. The radiation is attenuated and low-pass filtered when
going to the backside of the speaker because of the shadowing effect of the head.

Most musical instruments have complex radiation patterns. They are caused by different
modes of vibration in the bodies of instruments (e.g. in the string instruments) or multiple
audio output points of an instrument (e.g. in the wind instruments). Another kind of factor
in instrument directivity is the shadowing effect of the instrument player himself or
herself.

Source directivity can be modeled in two ways: with directivity filtering or with a set of
elementary sources. With directivity filtering, a point source is filtered with a filter whose
parameters depend on the direction wherefrom the source is observed. Usually, with real-
time applications, low-order filters that are symmetric to the main-axis of the instrument
suffice. In the case of a set of elementary sources, multiple point sources are used instead
of one to create the required directivity pattern.

Virtual Acoustics 8

3.2 Room modeling

3.2.1 Methods

There are three different approaches to model room acoustics computationally: wave-
based, ray-based, and statistical modeling techniques. A classification of the methods is
illustrated in the Figure 4 according to [Savioja 1999].

Figure 4. Principal computational models of room acoustics according [Savioja 1999]. Printed with a
permission of the original author.

Statistical modeling methods are mainly suitable for noise level estimations in cases when
sound is transmitted via different structures. The temporal behavior of a sound field is
typically not modeled making these methods inappropriate for auralization purposes of
virtual acoustics.

Because sound propagation follows the wave equation, the wave-based modeling
approach that approximates the equation yields the best results. The downside is that this
method is computationally rather complex and not well suitable for real-time applications.
The computational complexity narrows the use of wave-based methods to small sized
rooms and lower frequencies only. Wave-based methods include finite element method
(FEM), boundary element method (BEM), and finite-difference time-domain (FDTD).
FEM and BEM are methods, which fill the modeled space with small units, elements.
Usually, these elements are used to calculate the frequency domain responses of a given
field. The difference between FEM and BEM is that FEM discretizes the whole region and
BEM discretizes the region boundaries only. In comparison to usual frequency domain
approach of FEM and BEM, the main principle in the FDTD is that derivatives in the
wave equation are replaced by corresponding finite differences. The FDTD approach
produces a more suitable time-domain impulse response of the modeled space.

The third approach is ray-based modeling. Ray-based methods derive from computer
graphics and treat the sound acting as rays, like light. This approximation is valid when
the wavelength is long compared to the roughness of the surface, and on the other hand,
short compared to dimensions of the surfaces in the acoustical space under modeling. The
most common ray-based methods are ray-tracing and image-source methods. The idea

Virtual Acoustics 9

behind both of them is to find reflection paths from the source to the listener; the
distinction is the way paths are searched for.

The basic ray-tracing algorithm works so that many rays are cast from the sound source to
different, usually equally distributed over a sphere, directions, the rays then reflect from
the surfaces according to specular reflection1, and finally some of the rays hit the listener.
The rays hitting the listener mark the reflection paths. The listener is usually modeled as a
sphere with a big-enough finite volume to make enough rays to hit it.

In image-source method, no rays are cast, but instead the reflections from surfaces are
modeled by generating mirrored image sources of the real source behind the reflecting
surface. The direct paths from the image sources happen to come from the same direction
the actual reflected path would come. Also the distance equals to the real reflection path.
In other words, there is an image source for every reflection path from the source and the
direct path from these image sources is used for calculations of the room response instead
of reflected paths. Images of the images correspond reflection paths of multiple
reflections. One advantage in image-source method is that the movement of the listener
does not cause the need to recalculate the image sources, just the actual reflection path has
to be formed and checked that it is obstacle free.

time

amplitude
direct sound

early reflections

late reverberation

0 dB

reflections
delay reverb delay

-60 dB

reverberation time (T60)

Figure 5. Room impulse response is typically divided into direct sound, early reflections, and late
reverberation.

Figure 5 illustrates a typical division of the room impulse response: direct sound, early
reflections, and late reverberation. Ray-based methods are efficient for finding early
reflections, but become computationally heavy when later reflections are searched for.
Usually in room simulations, the early reflections are calculated with these methods, but
late reverberation is simulated with an efficient approximative recursive algorithm instead.
One important class of such algorithms is feedback delay networks (FDN) that was
introduced by Stautner and Puckette in [Stautner, Puckette 1982].

1 In specular reflection, the angle of incident of an incoming ray is the same as the angle of reflection of the
outgoing ray.

Virtual Acoustics 10

A feedback delay network (Figure 6) consists of multiple delay lines that are
interconnected with a feedback matrix to form a feedback loop. The delay lines have
unequal lengths. For instance, mutually coprime numbers can be used as lengths to
minimize the collision of echoes in the impulse response. Hn filters at the end of each
delay line simulate the absorption caused by the reflection and the distance attenuation.
[Zölzer 2002]

feedback matrix

H1delay line 1

input output

X

L R

+X

b1

+

c1

H2delay line 2 X+X

b2

+

c2

H3delay line 3 X+X

b3 c3

H4delay line 4 X+X

b4 c4

Figure 6. A feedback delay network.

3.2.2 Attenuation and absorptions

The distance attenuation of the sound follows the 1/r-law. It means that the sound pressure
level drops 6 dB when the distance doubles. This has to be taken into account for all the
paths from the source to the listener gained from the image-source or ray-tracing methods.

In addition to the 1/r-law distance attenuation, also another effect is distance dependent:
air absorption. It also depends on the temperature and the humidity. The air absorption
affects the sound by low-pass filtering. Air absorption and distance attenuation are usually
implemented as a common filter, because they both are functions of distance.

Furthermore, on the reflection paths there is one more important absorpting phenomenon:
the absorption caused by reflections from the surfaces. It is the most complex of all,
because it is a function of many parameters: incident angle, the scattering and diffraction
phenomena etc.

3.3 Listener modeling

When the direction of the sound source (image or real) is known, the source's sound is
filtered with the HRTF of that direction and as an output two signals are produced; one for
each ear. When listening to this signal, the source sounds like being in that direction.

Virtual Acoustics 11

As mentioned earlier, HRTFs are of individual nature, so they have to be measured
somehow. This usually happens in an anechoic chamber by placing small microphones in
the ear canals of the person and then measuring transfer functions from loudspeakers
placed around the person to the microphones. Usually, there is a row of speakers that is
moved by a turntable around the person and then the responses are measured from each
speaker in each position of the turntable. Another option is that the position of the
speakers can be fixed and the person sits on a turntable and spins with it. Figure 7
illustrates the former way of measuring HRTFs.

Figure 7. An apparatus for HRTF measurements in the anechoic chamber of the Institute of Sound and
Vibration Research (ISVR) at the University of Southampton, UK. <URL:

http://www.isvr.soton.ac.uk/FDAG/VAP/>. Printed with a permission of ISVR.

Naturally, it is possible to measure the responses only from a discrete amount of
directions. When a sound is wanted to be reproduced coming between the measured
directions, it is either just estimated by choosing the nearest measured direction or it can
be interpolated between measured directions.

A straightforward approach is to implement HRTFs as FIRs. They can, for instance, be
FIRs with minimum-phase reconstruction, and the ITD is then modeled separately for
each ear. Frequency warping can also be used to make the filters computationally more
efficient.

3.4 3-D sound reproduction

After calculating the required sound field for virtual acoustics, it has to be somehow
created to the listener's ear canal. There are different ways.

Virtual Acoustics 12

3.4.1 Headphone reproduction

A natural approach is to use headphones. Playing the calculated sound data via good
quality headphones works quite well. Even better results can be obtained by first
equalizing the response by headphone specific compensation filter. One thing that can
cause the virtual acoustical world to collapse is the movement of the head; the virtual
world then spins with the head movement. This can be prevented with the use of head-
tracker and then compensating the head movements by altering the orientation of the
virtual listener accordingly.

3.4.2 Loudspeaker reproduction

Another approach is to use loudspeakers. Here the biggest problem is the leaking of the
sound from the left channel to the right ear and vice versa. This so-called crosstalk has to
be cancelled with crosstalk cancellation filters. The filtering works correctly only in a
certain position between the speakers; this so called "sweet spot" is not wide. This limits
the movement of the listener dramatically compared to other reproduction methods.

3.4.3 Multichannel reproduction

Also, multiple speakers around the listener can be used, but then we are not talking
anymore about binaural reproduction. The disadvantages of multichannel reproduction are
the limitation of virtual source directions to the directions of the speakers installed and the
big amount of hardware required. The advantages, on the other hand, are that no listener
modeling is needed and the virtual world follows automatically the turnings of the listener.

3.5 A typical DSP implementation

One way to implement the virtual acoustics in a resource-limited mobile device is
illustrated in Figure 8. The direct sound is first attenuated with 1/r-law and then filtered
with some HRTF approximation. The reflected sound, on the other hand, is first filtered
with a room filter that tries to approximate the distance attenuation, the air absorption, and
the attenuation on the reflections. It is typically a low-pass filter. Then, a delay line is used
to generate early reflections and a recursive algorithm generates late reverberation.
Finally, the direct sound and the reflected sound are added together to form the output for
headphones. In this model, only the direct sound is HRTF-filtered.

HRTF
approximation

distance
attenuation

room
filter

late
reverberationearly reflections delay line

+

+

+

+++

+++

+ +

+

from a
sound file to

headphones

+

+

L

L

L

R

R

R

Figure 8. DSP blocks of a typical virtual acoustics implementation.

Virtual Acoustics 13

4. Existing 3D audio APIs

In this chapter, the most important already existing 3D application programming interfaces
(API) that contain advanced audio processing features are introduced. These include Java
3D API and MPEG-4. Also VRML and X3D have possibilities for spatialized audio, but
MPEG-4 extends their way of audio presentation and thus VRML and X3D are omitted
here. Although, when describing MPEG-4, similarities to VRML are emphasized.
Furthermore, 3D audio extensions to SMIL have also been studied [Siemens 2002], but
they are not publicly available yet.

Two soundcard manufacturer’s APIs are presented as well. They are Creative Lab’s EAX
and Aureal’s A3D. DirectX audio, being the basis of EAX and also otherwise popular API
in the Microsoft Windows world, deserves an own subchapter too.

The presented APIs are compared in section 6.5. Also the comparison against the new API
this thesis introduces is there.

4.1 Java 3D API

Java 3D API is an extension to J2SE that provides tools to construct three-dimensional
graphics for Java applications and applets. This chapter gives on overview of the API in
general and then 3D sound part of it is described in more detail. [Walsh, Gehringer 2002]
acts as a reference together with the API documentation [JAVA3D 2002].

4.1.1 High-level

Java 3D API is a high-level API that makes it possible for the programmer to concentrate
on what to draw instead of how to draw. This distinguishes it from low-level rendering
APIs like OpenGL and Direct3D. Usually, Java 3D API implementations are layered on
top of these low-level APIs. Being high-level, Java 3D still offers also control over low-
level rendering details if necessary.

4.1.2 Concept of scene graph

Java 3D is based on treelike structure to describe the three-dimensional world. Similar
structure is used in many other 3D APIs and is called as a scene graph.

Scene graph stores the information of the scene in a tree that consists of nodes. Nodes can
either represent objects or properties of the virtual world or they can be group nodes that
contain other nodes. Group nodes organize the tree so that individual objects form together
some bigger entity and those bigger entities can again be grouped together to form a
higher level entity and so on. The result is a tree where leaf nodes represent the simplest

Existing 3D audio APIs 14

objects in the world and the world is represented by the whole tree together. Figure 9
illustrates one simple scene graph.

Bed

Bed room

House

Sofa

Living room

Table

Figure 9. An example of a scene graph.

As Java is an object-oriented language, nodes in Java 3D are actually objects, instances of
one of the class Node’s subclasses. Nodes of the scene graph can be divided to four
categories: shape nodes, environment nodes, group nodes, and to the ViewPlatform that
forms a separate category alone. The shape nodes represent some geometrical visible 3D
objects in the world such as cubes, points, or even something more complex like a teapot.
The environment nodes are not (at least directly) visible. They affect the environment in
an area of the virtual world. Light, Sound, and Fog are examples of environment nodes.
The ViewPlatform node is a special node. It controls the position, orientation and scale of
the virtual observer in the world. The scene is being viewed from the place of
ViewPlatform.

Nodes can be divided further into smaller parts. NodeComponents are pieces of nodes
and they hold properties or data of the node or nodes associated to them. For instance, the
shape nodes have NodeComponents called Geometry and Appearance; former defining the
geometry and topology of the shape and the latter defining among others the material the
shape is made of. NodeComponents can be shared between multiple nodes. This makes it
possible to, for instance, for the chair and the sofa to easily share the same Appearance,
for example, black leather. There is no need to define Appearance separately for each
shape.

4.1.3 Sound sources in Java 3D

The audio properties of the virtual world are defined in Java 3D with two different types
of environmental nodes: Sound and SoundScape.

Sound is the base class for different types of sounds and provides methods for controlling
the overall gain, muting, and looping of the sound, and setting the MediaContainer that
stores the actual sound data to be played. Typically, MediaContainer is set up to read the
data from a sound file, such as “.wav”, located with an URL.

Sound class has various subclasses. A BackgroundSound defines an unattenuated, non-
spatialized sound source that has no position or direction. It is useful for playing mono or
stereo music track or an ambient sound.

Existing 3D audio APIs 15

Sound

PointSound BackgroundSound

ConeSound

Figure 10. UML class diagram of Sound with its subclasses.

The other subclass of Sound is PointSound that defines a spatially located sound source.
PointSound is an omnidirectional source that radiates equally to all directions. PointSound
has methods for setting its location and distance attenuation curve. The attenuation curve
is defined in an array of distance and gain scale factor pairs. Between defined distances the
gain scale factor is linearly interpolated.

PointSound has a subclass ConeSound that is like a PointSound, but has directivity.
ConeSound has definable direction and directivity pattern that tells how the sound of the
source attenuates when listening from off the front direction of the source. The directivity
pattern can be defined using three arrays of equal length: angular distance from the front
direction of the source, gain factor, and low-pass filter cutoff frequency. This makes it
possible for not only the gain to attenuate when moving from the front of the source
towards the side of it, but also the sound to be filtered so that sounds with higher pitch
attenuate more than lower sounds. The directivity is symmetrical around the main axis of
the source.

4.1.4 Virtual acoustical environment in Java 3D

Class Sound is used to define sound sources, but also the other attributes of the sound can
be controlled in Java 3D. Node SoundScape defines the space where the sounds are
listened. SoundScape has two important fields: AuralAttributes that has various
parameters to define the environment where the Sounds are listened, and Bounds that
defines the space in the virtual world where the AuralAttributes are applied. A scene graph
can contain multiple SoundScapes and this makes it possible for the acoustical
environment to change when moving around in the world.

AuralAttributes is a sub-class of NodeComponent and defines the SoundScape. The
settings in AuralAttributes include simple gain scale factor, sound velocity scale factor,
and parameters controlling reverberation, distance frequency filtering, and velocity-based
Doppler effect.

Java 3D’s reverberation model is tunable with multiple parameters. It is divided into two
components: to the early, distinct reflections and to the late reverberation. Both
components have the separate settings for the gain and the delay time for the first reflected
sound to reach the listener. The decay time, the echo dispersement (echo density), and the
low-pass filter cutoff frequency of the late reverberation are definable, as well as the
modal reverb density, which defines how smoothly the reverberation decays. An

Existing 3D audio APIs 16

alternative way to define late reverberation delay and decay is also offered: one can just
define bounds of the virtual physical space (room); then delay and decay are calculated
automatically internally. To complete the set of the reverberation parameters offered by
Java 3D there is also one parameter that can be used to control the rendering: reverb order
can be set to limit the number of reflections calculated and thus make the rendering less
demanding.

Distance filtering can be used to simulate the air absorption, which has characteristics to
attenuate higher frequencies more than lower ones. Distance filtering in Java 3D is defined
giving distance/frequency pairs, which define the cutoff frequency of the low-pass filter
applied for specified distances from the source.

The Doppler effect means the frequency shift sensed by the observer when the distance to
the source changes. When the source moves towards the observer the observed frequency
raises and the other way around when the distance gets longer. Using the Doppler effect,
the sense of sound source movement gets stronger. The strength of the Doppler effect can
be tuned with two scaling factors: one for the relative velocity of the sound source and one
for the frequency shift caused by the velocity. If the Doppler effect is turned off, the
frequency shift factor can be used to directly tune the pitch of the sound.

4.1.5 Physical real acoustical environment in Java 3D

In addition to the scene graph, Java 3D has also class PhysicalEnvironment that controls
the physical environment where the view of the virtual world is generated.
PhysicalEnvironment has accessors to AudioDevice that has ways to access physical
parameters like distance and angle from the listener to the nearest speaker and the info if
the headphones are used instead of speakers.

4.2 MPEG-4

Moving Picture Experts Group (MPEG) is one of the many Working Groups in the
ISO/IEC. MPEG has been responsible of developing successful standards MPEG-1 and
MPEG-2. After them, it continued its work by developing the MPEG-4 standard. The first
version of MPEG-4 became International Standard in 1999. Since that, MPEG has worked
to produce successive versions and addendums to MPEG-4, and furthermore, two
successive standardization projects have followed, namely MPEG-7 and MPEG-21,
initiated in 1996 and 2000, respectively.

In this chapter, overview of MPEG-4 is given with emphasis in the audio properties
MPEG-4 provides. [Pereira, Ebrahimi 2002] and [MPEG] act as references in this chapter.

4.2.1 Coding of Audio-Visual objects

The scope of both MPEG-1 and MPEG-2 has been effectively compressing and then
transferring audio-visual streams that contain natural audio and video content from a place
to another. The content is mixed together in production phase and the consumption is of
passive nature, spectating precomposed media. The MPEG-4 takes a different approach:
coding of audiovisual objects.

The content in MPEG-4 consists of multiple audiovisual objects. These audiovisual
objects can be of different nature: they can be such as arbitrarily shaped video objects,
multichannel audio objects, or objects that contain only speech. The objects of MPEG-4

Existing 3D audio APIs 17

presentation are combined in the receiving end to form an audiovisual scene. The rules
how to combine the objects are described using a scene description language that in the
case of MPEG-4 is BInary Format for Scenes (BIFS). It is described in the later chapters.
Forming scene in the receiving end makes it possible to make the composing procedure
interactive and to enable for the user to interact with the scene. The scene can, for
instance, be a 3D world that the user can observe from different viewpoints.

MPEG-4 also utilizes the concept of synthetic-natural hybrid coding (SNHC). SNHC
means that the audiovisual object can be either natural, like video produced with a video
camera or audio produced with a microphone, or synthetic, such as animation produced
using computer graphics, music produced using synthesizer, or speech produced using
speech synthesis. Natural objects can be transmitted within MPEG-4 stream in a
traditional way, but synthetic objects can be produced in the receiving end using just the
parameters transferred with MPEG-4 stream, thus saving bandwidth. At the end, both
types of objects are mixed together to form a composed scene.

In addition to the bandwidth saved by transferring just parameters of synthetic objects,
also the separate coding of natural objects saves bandwidth in general: the most optimal
compression algorithm can be chosen for different kinds of natural objects. For example,
speech can be coded with a speech codec and background music with a generic audio
codec. This approach gives the most efficient kind of coding for both forms of audio and
probably coding both combined with generic audio codec still maintaining the quality of
speech would waste more bandwidth than two separate codecs together. Furthermore,
different bit and sampling rates can be used for different sound components on the scene.

4.2.2 Structured Audio

In MPEG-4, the audio coding tools are divided into two major categories following the
SNHC approach presented in the previous chapter. The division is illustrated in Figure 11.
There are separate tools for the natural audio and for the synthetic audio. The natural audio
tools are generic audio and speech, and synthetic audio tools are structured audio (SA) and
text-to-speech interface (TTSI). SA is introduced in more detail in this chapter.

MPEG-4 audio coding tools

Natural Synthetic

Generic
audio Speech Structured

audio

Text-to-
speech

interface

Figure 11. The division of MPEG-4 audio coding tools.

Structured audio (SA) is a concept of MPEG-4 that allows a very low bit-rate transmission
of synthetic audio, such as synthetic music or sound effects. SA offers ways to describe
the audio, not in a traditional form of sampled waveforms, but instead as the algorithms
used to produce the audio signal with the necessary timing information. MPEG-4 defines
two languages for these purposes: Structured Audio Orchestra Language (SAOL) for
describing the algorithms and Structured Audio Score Language (SASL) for the timing
and controlling of the algorithms. As a rough analogy with the real world could be that

Existing 3D audio APIs 18

SAOL describes how various instruments in the symphony orchestra sound and SASL
describes the score the orchestra is playing. In addition to the instruments described as
algorithms with SAOL, there is also a format to transfer sample data, Structured Audio
Sample Bank Format (SASBF). SASBF data can be utilized in SAOL algorithms or used
as-is to form wavetable based instruments. Figure 12 visualizes the structure of the SA
decoder.

Scheduler Sample Data StorageSynthesis Engine

SASL
or

MIDI
SAOL SASBF

decoded
sound output

Figure 12. SA decoder.

SAOL is a programming language with C-like syntax and basic operators. The instruments
are described in SAOL as networks of various digital signal-processing (DSP) routines.
SAOL has a library of around 100 core opcodes that represent various kinds of
mathematical and DSP functions, such as, signal generators, DSP filters, pitch converters,
and delay functions. All the SAOL functions are normatively defined in the standard. This
guarantees that the same SAOL stream always produces the same sound output when
played with a MPEG-4 compatible player.

SASL controls the SAOL instruments. SASL contains the timing information to
instantiate the instruments, to control their parameters, and to change the tempo. SASL
events are sent to the scheduler part of the SA decoder. SASL events contain time stamps
and the scheduler takes care of ordering the events to the correct order and then triggering
them at specified times during the decoding process. Instead of SASL, SA decoder can
also use MIDI stream as a score language.

4.2.3 BIFS

As stated earlier, MPEG-4 has a scene description language called BInary Format for
Scenes (BIFS) for describing how to combine the various audio-visual objects. BIFS is
strongly based on the Virtual Reality Modeling Language (VRML) [VRML97] and its
successor Extensible 3D (X3D). Compared to the combination of Java and Java 3D
presented earlier, BIFS is not a full scale powerful programming language, but as it still
defines runtime semantics, it is not pure 3D file format either. It is something between.

Existing 3D audio APIs 19

Runtime dynamic behavior of BIFS can be defined using ECMA Script that is a language
similar to commonly known Javascript.

BIFS describes the scene using a scene graph concept similar to Java 3D. The concept of
scene graph was described in the Java 3D chapter. The scene described with BIFS can be
either flat or 3D, and contain many kinds of audiovisual objects. There can be visual
objects such as rectangular video, video with shape, synthetic face and body, generic 3D
objects, text, and graphics; and audio objects, such as speech, natural music, synthetic
music and information about room effect. Next subchapters tell more about audio nodes in
BIFS.

4.2.4 AudioBIFS

Audio nodes of BIFS are called as AudioBIFS. They were specified in two stages: first 10
AudioBIFS nodes came out with the first version of MPEG-4 and were later followed by
four additional nodes defined in the first amendment of MPEG-4 Systems standard. These
latter nodes are called as Advanced AudioBIFS and address mainly to 3D sound
propagation in room. In this subsection, the core AudioBIFS nodes are described. The
following subsection covers Advanced AudioBIFS. All audio nodes have been grouped in
this thesis to five categories, and this grouping can be seen in Figure 13.

AudioClip (VRML)

AudioSource

(AudioBuffer)

AudioMix

AudioSwitch

AudioDelay

AudioFX

(AudioBuffer)

Sound (VRML)

Sound2D

DirectiveSound*

ListeningPoint

Leaf nodesIntermediate nodesRoot nodes

AcousticMaterial*

AcousticScene*

PerceptualParameters*

Room modelListener model

Figure 13. AudioBIFS and Advanced AudioBIFS nodes. Advanced AudioBIFS nodes are marked with
asterisk (*). AudioBuffer is stated twice because of its dual nature.

Only two of the AudioBIFS nodes are inherited from VRML: Sound and AudioClip.
Sound is the node that attaches the sound source into the BIFS scene. It has a location and
direction in the 3D space. A Sound has also four fields to define direction and location
dependent sound attenuation. This directivity is specified with two distances both to the
back and to the front of the source. They define two ellipsoids that are symmetric to the
main axis of the source. Inside the inner ellipsoid the observed sound pressure level stays
constant; between the surfaces of the two ellipsoids level decreases 20 dB when the
distance grows; and outside of the outer ellipsoid the source is silent to the observer. A

Existing 3D audio APIs 20

Sound has also a Boolean field spatialize that can be used to toggle the spatialization of
the field on or off. Spatialization means rendering the direction and the location of the
source to the sound heard by the user.

Sound node has also a field for a source. This source can, for instance, be an AudioClip.
An AudioClip associates Sound to the actual source of sound specified with Universal
Resource Locator (URL). An AudioClip has fields to control the starting and stopping of
the playback in specified times. Also looping is possible. With an AudioClip node it is
possible to include only sound that is an interactively downloaded audio clip; streaming is
not possible. MPEG-4 adds a new parallel node to this VRML originated AudioClip; an
AudioSource is capable to play also audio streams made with MPEG-4 audio coding tools
described earlier.

Like AudioClip, also Sound has MPEG-4 specific dual nodes: Sound2D and
DirectiveSound. These three are called here as root nodes, because they are the nodes that
are associated to the scene graph and other audio nodes associated to them can be
considered to form an audio sub-tree of that specific sound source in the scene. Basically
an audio sub-tree in the scene graph can be understood so that leaf nodes produce sound to
the audio sub-tree, intermediate nodes form the signal processing network that connects
the leafs to the root node that acts as a virtual source in the scene. The concept of the audio
sub-tree is described in more detail later.

As being Advanced AudioBIFS node, DirectiveSound of root nodes is described in the
next subsection, but Sound2D is described here. Sound defines the location in 3D space,
which is sometimes unnecessary for 2D applications. Sound2D addresses to this need and
defines the place of the sound source on a plane with two coordinates instead of three. The
vertical plane has a width of 2 meters and is 1.5 meters high. The viewpoint is 1 meter
away right in front of the plane facing its center point. Sound2D does not have fields for
defining the sources directivity pattern, but the spatialization can be toggled.

The intermediate nodes of the audio sub-tree form the signal paths from the leaf nodes to
the root node. They mix the sound of their children (that are leaf nodes or other
intermediate nodes) and process it in some way and output sound to their parent node in
the tree. The tree-like network makes it possible for one virtual sound source in the scene
to consist of multiple sound streams (leaf nodes) that are processed and mixed in a certain
manner. The intermediate nodes are AudioMix, AudioSwitch, AudioDelay, AudioFX, and
to some extent AudioBuffer that has also leaf node behavior.

AudioMix and AudioSwitch serve the same need: to mix multiple sources (children) to
the output (parent), but they have different kind of ways to control the mixing. AudioMix
has a matrix that defines the proportions of the input channels that are mixed to the output
channels. AudioSwitch is simpler: no gains can be specified; the inputs connected to the
outputs are defined with boolean values.

AudioDelay delays its children’s outputs with the same, specified amount of time. It can
be used to fine-tune the synchronization between various streams on the scene.

AudioFX performs arbitrary audio filtering to its children and passes the filtered audio to
its parent. AudioFX has a field that specifies the filtering algorithm in SAOL of structure
audio tool described earlier. Also SASL can be used additionally in a separate field to
control the parameters of the filtering algorithms if necessary. AudioFX is a handy tool to
add for instance reverberation to anechoic speech generated by text-to-speech synthesis.

Existing 3D audio APIs 21

AudioBuffer has a dual nature: it acts like AudioClip, producing sound like a leaf node,
but on the other hand, it can be used to capture sound from its children as well. This
captured sound is the sound AudioBuffer outputs. AudioBuffer has also functionality to
enable transferring MPEG-4 encoded sounds to be used as wavetables of the SA decoder.

In BIFS, the viewpoint to the scene is specified with Viewpoint node. The point where the
sounds are heard is usually the same point. However, the observation point of the sounds
can also be specified separately with a ListeningPoint node. This makes the listening
point independent of the viewpoint, if necessary.

4.2.5 Advanced AudioBIFS

Advanced AudioBIFS add 3D sound propagation properties to original AudioBIFS.
Advanced AudioBIFS consists of four new nodes: DirectiveSound to replace Sound when
spatial properties of the sound source are essential; AcousticMaterial and AcousticScene
to define acoustical properties of the space (room effect) using physical parameters; and
PerceptualParameters to define the same properties in alternative way, using perceptual
parameters.

DirectiveSound has the same kind of semantics than Sound, but adds some features. The
setting of the source directivity is more fine-grained. Arbitrary numbers of angles can be
specified; and for all of those angles, parameters directivity and frequency can be given to
define frequency-dependent directional filtering. Furthermore, the speed of sound can be
changed to affect the propagation delay, distance-dependent attenuation can be defined by
setting the distance where attenuation is 60 dB, and specific air absorption filter can be
switched on. Air absorption is simulated according to distance-dependent air absorption
curves defined in ISO9613 standard. DirectiveSound has also a Boolean field to turn the
room processing specified by the nodes presented next, completely off.

AcousticScene can be used to define a smaller region of the entire scene to limit the
acoustical processing in that area only. Only the surfaces on that area will by modeled
when the ListeningPoint is inside. With AudioScene, also the late reverberation
parameters are defined: frequency dependent reverberation time (T60), delay after the late
reverberation starts, and the level of the reverberation can be defined.

Material node gives the visual properties of a geometrical shape object on the scene. Like
Material node, AcousticMaterial can be used to define visual properties of object, but it
has also additional fields that define the acoustical properties of that same geometrical
object; an object can have frequency dependent transfer functions for both reflections from
its surfaces and for transmission of sound through the object.

As told earlier, PerceptualParameters can be used as an alternative way to
AcousticScene and AcousticMaterial to specify how rooms and objects in those affect the
observed sound. With AcousticScene and AcousticMaterial, the space was specified using
physical measures. With PerceptualParameters, perceptual measures are used instead.
PerceptualParameters is given as a field of a DirectiveSound node, thus it can be specific
to each virtual source. The given perceptual measures control the energy division on
various parts of the room impulse response (RIR) in both time and frequency domains.
RIR is divided into four parts in the time domain: direct sound, directional early
reflections, diffuse early reflections, and late reverberation; and into three parts in the
frequency domain: low, mid, and high frequencies. These parts are specified by the user
giving appropriate time limits and frequency borders. The effects that various perceptional
measures given have to the different parts of RIR are described in Table 1. In the table, the

Existing 3D audio APIs 22

perceptual parameter is on the z-axis and the different frequency/time bands are on the x-
axis. There is a field refDistance that defines the distance where parameters apply; when
the distance changes the parameters are scaled accordingly automatically.

Table 1. The effect of various perceptual parameters on energy (E) and on decay time (T).

 DIRECT
SOUND

DIRECTIONAL
EARLY
REFLECTIONS

DIFFUSE
EARLY
REFLECTIONS

LATE
REVERBE-
RATION

frequency
band L M H L M H L M H L M H

source-
Presence E

source-Warmth E

source-
Brilliance E

room-Presence E

late-
Reverberance T

heavyness T

liveness T

envelopment E E

directFilter-
Gains E E E

inputFilter-
Gains E E E E E E E E E E E E

omniDirectivity E E E E E E E E E

Fields sourcePresence, sourceWarmth, and sourceBrilliance affect the direct sound. The
late reverberation is affected by roomPresence, giving the overall gain of it, and
lateReverberance, heaviness, and liveness, specifying different decay times. Envelopment
specifies the relative energies of the direct sound and the directional early reflections.

Furthermore, three additional filters are specified with the fields directFilterGains,
inputFilterGains, and omniDirectivity. They all are specified in a similar way, using three
figures: gains for low, mid, and high frequencies. DirectFilterGains sets a filter for the
direct sound only, making an occlusion2 effect possible. OmniDirectivity sets filters for
the room part of the RIR only affecting thus directional early reflections, diffuse early
reflections, and late reverberation. inputFilterGains affects all parts equally.

2 The occlusion effect means the shadowing of the sound by an object between the source and the listener.

Existing 3D audio APIs 23

Additionally, out of the table, modal density of the RIR can be specified. It controls the
density of the resonances in the frequency-domain response. Early decay time can be
specified with field runningReverberance by giving time when the level decreases 10 dB.

4.3 A3D

A3D is a positional sound C++ API and engine made by Aureal Inc. The latest version of
A3D API is 3.0 [A3D] and it is presented in this chapter. A3D 3.0 never came popular;
Aureal had economical problems and Creative Labs became the owner of the A3D
technology. The predecessors, A3D 1.0 and A3D 2.0 are popular APIs, though. The main
differences between versions are that A3D 2.0 adds rendering of early reflections to the
basic positional audio that A3D 1.0 offers, and A3D 3.0 adds support for late
reverberation, sources with finite volume instead of point sources, and the possibility to
use MPEG audio layer 3 compressed audio sources. [Hagen, Muschett 2002]

A3D API 3.0 follows Component Object Model (COM) [COM] software architecture
developed by Microsoft and is implemented as a COM server. The A3D 3.0 server is
accessible for application developers via various interfaces that follow COM model. The
following sections describe these interfaces with their most important functionality.

4.3.1 IA3d5

IA3d5 is the top-level interface of A3D and all the other interfaces are created or queried
from it. The initialization and finalization of the audio engine is done via methods IA3d5
offers.

IA3d5 hosts the frame buffer based architecture of A3D. When the audio scene is
described using the various methods of A3D, the scene information is not passed to the
audio rendering hardware or software immediately. Instead, the scene description data is
accumulated first to a frame buffer and after application has completed the scene, it calls
IA3d5’s Flush method to take the accumulated audio frame into use to the rendering
engine. This is similar to the concept of double buffering in computer graphics. Instead of
graphical information, an audio frame is a collection of acoustical parameters describing
how the scene should be rendered. These parameters include, for instance, updates to
listener and source positions, and dynamically changing obstacles in the scene with their
geometry and material. In other words, the frame buffer is first cleared with Clear method,
then the updates to the virtual audio world are described, and finally these updates are sent
to the renderer with Flush method.

IA3d5 has the global functionality of the virtual audio world. The distance attenuation
model and Doppler effect can both be scaled with scaling factors from their natural
settings. Setting both factors to 1.0 equals natural 1/distance attenuation and 340 m/s
speed of sound for use in Doppler calculations. Global equalization is also possible, but it
is limited into one fixed band treble attenuation only, of which mentioned use case is
underwater acoustics simulation. Global gain is controllable, too.

Methods for tuning in various ways the computational capacity used for rendering are
offered. The maximum delay for reflections can be set to limit the memory buffer needed
for storing the waveform data to be heard as an echo later. A3D has also a concept called
Resource Manager. Usually the underlying hardware has some maximum number of 3D
audio sources and reflections that can be rendered simultaneously. The virtual world might
have more audio sources active in a same time. To overcome this problem, A3D

Existing 3D audio APIs 24

introduces a real-time software rendering engine, namely A2D. If the audio hardware does
not have enough capacity to render all the necessary audio sources, Resource Manager
gives the less important source to A2D for rendering them using efficient software
algorithms. If also software channels of A2D run out, the least important sources are
converted as virtual sources. A virtual source is playing in means that the pointers to the
audio data are updated as time passes, but it is not rendered at all and is therefore inaudible
using only very limited amount of computing resources. IA3d5 offers methods to control
the amount of software rendered A2D sources and as well it is possible to limit the amount
of hardware sources used. To classify sources according to their importance, Resource
Manager uses two values for each source, audibility and priority. Audibility is calculated
from distance attenuation, gain, equalization, and occlusion of the specific source. The
priority of each source can be set by the application. The weight how much priority counts
compared to audibility for Resource Manager can be set.

The used coordinate system can be chosen between left-handed and right-handed versions.
Also geometrical scaling is available making possible to specify how many units
correspond to one meter in the real world. This enables use of arbitrary unit for length and
makes audio scene geometry calculations easy to cooperate with visual calculations – what
ever their scale is.

The reproduction method can be accessed. There are supported modes for headphone
listening and for two different loudspeaker settings: speakers set into narrow angle and to
wide angle. In the case of four output channels, they can be grouped as two stereo
channels or as one quad channel with rear speakers.

4.3.2 IA3dListener

Interface IA3dListener provides controls for listener model. IA3dListener has methods for
setting the position, orientation, and velocity of the listener. Velocity is used for Doppler
calculations.

Reference to IA3dListener is gained by querying from IA3d5.

4.3.3 IA3dSource2

IA3dSource2 controls the source model of A3D. It has the same methods as IA3dListener
to set the position, orientation, and velocity, but otherwise it has richer functionality.

IA3dSource2 is created with NewSource method of IA3d5. NewSource is given a
parameter that tells if the source is of 3D or native type. 3D sources are rendered using
spatialization and environmental effects like reflections, occlusion and reverb; the first
order reflections and occlusion calculations can be switched off later if necessary. The
native sources, in the other hand, are played as are, using just gain and pan control.

There are two ways to associate audio data into a source. With straightforward method
LoadFile you can load an audio file or you can use a sequence of the following methods:
SetAudioFormat, to describe the audio format used; AllocateAudioData, to allocate
memory and resources; Lock, to get a pointer to the part of audio data buffer where it is
safe to write without affecting current playback; and after copying the audio data UnLock,
to release the pointer of the audio buffer for playback.

For playback control there are methods Play and Stop, for starting and stopping the
playback, respectively. Play command is accumulated into frame buffer and takes place
after Flush, but unlike Play, Stop is signaled immediately. Play method takes as an

Existing 3D audio APIs 25

argument about if the playback will continue in a loop or is the data played just once.
Playback position can be controlled with sample accurate accessors Set- and
GetPlayPosition, to control it as bytes, or with accessors Set- and GetPlayTime, to control
is as seconds.

As was mentioned before, IA3d5 has the global scaling factors for some parameters.
These same parameters can be scaled source specifically as well. These scaling factors
settable from IA3dSource2 include the distance attenuation model, Doppler effect,
equalization (that is limited into one fixed band treble attenuation only), and gain. The
distance attenuation model can furthermore be fine-tuned with methods Set- and
GetMinMaxDistance. SetMinMaxDistance takes three arguments: min distance, max
distance, and behavior after max distance. When the source is closer than min distance, the
distance dependent attenuation is not in effect. With this feature, the sources can be made
audible in a larger area than just applying strictly natural distance attenuation model. Max
distance specifies the distance where to the attenuation increases. Further than max
distance, the behavior argument specifies if the attenuation either stays in a constant level
it has reached in max distance or becomes muted after max distance.

The directivity of the source is accessible via methods Set- and GetCone. SetCone takes
three arguments: two angles (inner and outer) and a gain factor for source radiation
towards back of the source. The radiation pattern is calculated so that it is one when the
angle from the source’s main axis to the listener is below inner angle; when the angle is
between inner and outer angle, gain is interpolated between one and backward gain; and
when the angle is bigger than outer angle, the applied gain is constantly the backward
gain. The source directivity is applied only for direct sound; for the reflections, it is
ignored.

A3D 3.0 enables volumetric sources. That means that sources can have finite space instead
of being point sources. With methods Set- and GetVolumetricBounds the dimensions of
the source can be accessed and the rendering characteristics for volumetric sources are
specified using method SetVolumetricDamping. It takes as a parameter a structure with
various values. The occlusion of a volumetric source is calculated based on two values:
size-relative damping fraction and visibility-relative damping fraction. The former is the
relative size of the occluding polygon compared to the combined size of sound source and
occluding polygon together. Visibility-relative fraction corresponds how many source
polygon corner points are occluded; there is no straight-line form source polygon point to
the listener. The weighting between the two damping factors can be set. The behavior
outside the volumetric source is specified using parameter AzimuthPan that disables
volumetric effect when set as 0 and on the other end, when set as 1.0 makes all the points
on the surface of the source generate sound at full level maximizing the volumetric effect.
Behavior inside the volumetric source can be switched either to mono, to make all the
speakers give the same signal at full level, or to normal point source.

The pitch of the source can be scaled and if the sources are of native type, the stereo
panning can also be accessed. The calculated audibility and the amount of occlusion can
be queried if necessary for instance to make decision in the application program about
possibly manually dropping hardly audible source. Priority of the source needed by the
aforementioned Resource Manager can also be set to fine tune the automatic dropping
mechanism.

The reflections of the sound can be scaled with two factors: the gain and delay scaling
factors. Setting them to 1.0 correspond natural gain and delay for the reflections,

Existing 3D audio APIs 26

respectively. The interface IA3dGeom2 also offers methods for these two factors, but
unlike case is here, they affect globally to all sources.

4.3.4 IA3dReverb

The reverberation settings in A3D are stored as IA3dReverb objects. New IA3dReverb
objects can be created with NewReverb method of IA3d5 and it also has a method to
chose which reverb object is in use. There can be multiple instances of IA3dReverb, but
only one reverberation setting can be active in a time.

The reverb can be set either by using one of the 26 predefined named settings and fine-
tuning it with three parameters or by setting 12 reverb parameters to create a fully custom
reverb.

The presets can be fine-tuned with three parameters: decay time, damping factor, and
volume. Decay time defines the T60 value, that is the time it takes for the reverberation to
attenuate 60 dB. Damping factor controls how high frequencies damp compared to middle
and low ones. The volume tells the level of the reverb effect compared to the direct sound.

To make a custom reverb, the following 12 parameters are needed. The level of the room
effect is controlled with two parameters: one general and other relative for high
frequencies. This room effect level is a general level for all room related effects and
additionally separate relative levels can be set for reflections and reverb only. The decay
time of the reverberation is also specified with two figures: decay time at low frequencies
and then relative to it, at high frequencies. Delay that it takes for the first reflection to
arrive after direct sound and delay from it to the late reverberation can be set. Also modal
diffusion and echo density of the late reverberation can be set. Furthermore, for the values
specific to high frequencies, the reference frequency can be set.

The amount of reverb (how wet or dry it is) can be set also individually for each source
with a method of source: SetReverbMix; also the treble attenuation for the reverb can be
set here if, for instance, wanted it to match similar settings of direct path.

4.3.5 IA3dGeom2 and IA3dList

To be able to calculate reflections and occlusions, the A3D engine needs information
about the geometry of the scene. Usually, the geometry does not have to be so accurate as
with visual applications, but simplified geometry is still needed. The geometry is defined
with a IA3dGeom2 object. IA3dGeom2 is queried from IA3d5 like IA3dListener.

Like usually in 3D graphics, the geometry in A3D consists of polygons. All geometrical
objects are defined using either polygons of three corner points, namely triangles, or with
polygons having four corner points, namely quads. Those polygons define the surfaces of
the object. They are the most primitive objects and therefore called as primitives.

In A3D, the primitives are described using a code block that starts with method Begin and
ends with method End. The Begin takes as an argument which kind of polygons are used,
triangles or quads. Between End and Begin, the corner points, also known as vertices are
set calling method Vertex. When correct number of vertices has been set, the polygon is
ended and the next primitive is started automatically even that Begin/End block has not
ended yet. Multiple polygons of the same type can be defined inside one Begin/End block.

For the reflection calculations, knowing the normal of the surface is necessary. The
incident and the reflected angles are calculated based on normal. The normals for each

Existing 3D audio APIs 27

polygon can be set manually before calling Vertex by calling Normal or if Normal is not
called, the normals are calculated automatically. In A3D the surfaces are flat shaded, so
each polygon can have just one normal direction.

Just like normal, each polygon can also have own material properties that are tied to
polygon using BindMaterial. The materials are described in the next chapter.

In addition to basic primitives, triangles and quads, there are also primitives called
subfaces. They take also the form of triangle or quad, but instead of being independent,
they are placed onto surfaces. Their special property compared to basic primitives is that
they make the surface they are lying in transparent. Subface triangles and quads are an
efficient way to make openings to otherwise solid surfaces. The transparency of the
subfaces can be tuned.

Various rendering features can be controlled from IA3dGeom2. Both occlusions and early
reflections can be switched on or off separately for group of polygons. Also global control
of them is possible. The occlusion and reflections calculations take remarkably processing
power. The power consumption can be reduced by setting the intervals of the occlusion
and reflection calculations longer. They can be set separately in A3D. Default value of the
interval is one meaning that calculations are performed separately for each frame.

IA3dGeom2 also has various methods for using transformation matrices to transform
objects and add hierarchy to the virtual world by grouping objects under the same matrix.
Even listener or sources can be bound with a matrix if they are, for instance, wanted to
move with an object. Transformation matrices are widely used in computer graphics. The
details are omitted here.

A3D has also another way - other than transformation matrices - to group objects: lists. An
object of IA3dList interface is first created with NewList of IA3dGeom2. IA3dList has
Begin and End methods to define vertices in a similar manner as was the case with
AS3dGeom2, but in addition, IA3dList has also Call method that actually sends the
geometry to the engine. With lists, the geometry can be defined just once, but used
multiple times, and thus computing power is saved.

4.3.6 IA3dMaterial

Different kinds of materials reflect and transmit sound in different ways. In A3D, each
object can be rendered using different material. The materials are controlled with
IA3dMatrial interface. The IA3dMaterials are created using NewMaterial of IA3dGeom2
and then after the material properties have been set, the material can be taken into use with
method BindMaterial of IA3dGeom2. All the polygons sent to engine after that will have
the specified material properties until next material is bound.

An IA3dMaterial has four parameters to be defined. It has reflectance to specify how
much sound is reflected and transmittance to tell how much sound is transmitted when the
sound has to travel via an obstacle. Both reflectance and transmittance have figures both to
overall and high frequency specific attenuation.

4.4 DirectX audio

This subchapter describes the audio part of Microsoft DirectX family. Microsoft DirectX
is a set of APIs for creating efficient multimedia applications for Microsoft Windows

Existing 3D audio APIs 28

platforms. There are versions for C/C++, C#, and Visual Basic languages. DirectX
provides hardware abstraction layer (HAL) that hides device-specific dependencies of the
hardware. The level of abstraction is chosen so that it is as close to hardware as possible
still being so general that no code has to be rewritten when using different hardware. If
DirectX based application is run on a hardware that does not support some feature used,
DirectX might still support this specific feature in software, through so called hardware
emulation layer (HEL). [Kovach 2000]

DirectX is divided into several APIs that support different fields needed in multimedia
applications: input devices, graphics devices, and network connections among others.
Here we concentrate on the audio features of DirectX version 9.0. They are divided into
two APIs: DirectMusic and DirectSound. These two interfaces became more unified in the
8.0 version of DirectX: one major change from version 7.0 being that as DirectMusic was
previously targeted for message-based musical data only, it now supports wave-based data
as well. Manually parsing and streaming of the wave data directly to DirectSound is not
necessary anymore, and wave files can instead be loaded and played by DirectMusic.
DirectMusic can be thought to have a higher abstraction level than DirectSound.
DirectMusic includes synthesizer to play, for instance, MIDI and then feed the generated
wave data to DirectSound that is, on the other hand, specialized just into wave audio.

Like A3D, DirectX audio follows Microsoft’s Component Object Model (COM). The
most important interfaces of the DirectX audio 9.0 [DirectX 9.0 2002] are described in the
subsequent sections. The features important to 3-D sound and virtual acoustics are
emphasized. The most important interfaces are illustrated in Figure 14.

Loader Segmentloads Performanceplays

3DListener

Buffer

0..10..1

AudioPath
*

1

*

1

1
+primary buffer

1

3DBuffer effect

Buffer
1..*
+secondary buffer
1..*

0..10..1 **

Figure 14. The most important classes of DirectX audio and their relations. Prefixes IDirectSound and
IDirectMusic are omitted. effect can be any effect DirectX offers.

4.4.1 IDirectMusicLoader8

IDirectMusicLoader8 is an interface that is capable of loading different kinds of audio
content from disc or from other resource, such as a memory location. Audio files can be
among others MIDI files, WAV files, or DirectMusic Producer segment files.

Once a piece of audio data is loaded, it is typically represented in DirectMusic as an object
that implements the IDirectMusicSegment8 interface described in the next section.

Existing 3D audio APIs 29

4.4.2 IDirectMusicSegment8

A segment in DirectMusic is the basic unit of playable data. Segment gives a common
abstraction level, for example, to MIDI sequences and waveforms.

4.4.3 IDirectMusicPerformance8

The Performance is the object that manages the flow of data from the source to the
synthesizer. The audio system is initialized with Performance’s methods. Performance has
also methods for starting and stopping the playback of an associated segment.

Performance uses AudioPath to playback segments. Performance has a default AudioPath
associated to it, but other AudioPaths can be used as well. AudioPath is described in the
next section.

4.4.4 IDirectMusicAudioPath8

AudioPath manages the flow of audio data from the performance to the final mixer.
AudioPath can direct data via various DirectSound buffers before it enters to the primary
DirectSound buffer where the final output is mixed. Buffers on the AudioPath can contain,
for example, different musical effects or 3-D sound processing. There can be multiple
AudioPaths so that different sound sources can have individual settings, such as 3-D
location coordinates.

4.4.5 IDirectSoundBuffer8

DirectSound has two kinds of buffers: secondary and primary. Each sound source has one
secondary buffer and each application has one primary buffer. Secondary buffers feed the
primary buffer. Secondary buffers can have one or more effects associated into them.

Buffers have methods for controlling, for instance, playback level and rate. Effects
described later are associated with buffers.

4.4.6 IDirectSound3DBuffer8

3DBuffer is an interface that can be asked from a secondary buffer when 3-D audio is
used. Alternative way to get 3DBuffer is to query from the AudioPath. 3DBuffer has
methods for setting various 3-D parameters for the sound source represented by that
secondary buffer.

The location and the velocity of the sound source can be defined with methods of
3DBuffer. They are set using Cartesian vectors x, y, and z. The velocity definition affects
only the Doppler effect and does not actually move the sound source. The movement has
to be done by manually altering the location.

The sound source has also orientation that is used with its directivity calculations. The
directivity of the source can be set using two angles: InsideConeAngle and
OutsideConeAngle. Within InsideConeAngle the sound level is in its normal setting and
outside of OutsideConeAngle the sound level is at specific level set with method
SetConeOutsideVolume. Between the defined angles the sound level is interpolated
between the normal level and the outside level. The directivity is symmetric with respect
to the source’s orientation axis.

Existing 3D audio APIs 30

The distance attenuation behavior of each 3-D sound source can be altered by setting two
values: the minimum and the maximum distances. They specify the limits for the sound
attenuation to take place. Closer than the minimum distance the sound does not get louder
anymore when coming closer to the listener and when going farther than the maximum
distance the attenuation does not increase anymore.

When the secondary buffer for 3-D audio processing is created, a 3-D algorithm can be
specified. The choice affects only when processing is done on software using HEL. The
alternatives are “no virtualization”, “hrtf light”, and “hrtf full”. The first one uses simply
stereo panning and therefore the vertical axis is ignored for location. The second and the
last one use 3-D audio processing with different qualities. The exact difference between
the latter ones is not documented.

4.4.7 IDirectSound3DListener8

Like secondary buffers represented sound sources in the virtual acoustical world, the
primary buffer represents the listener. Interface 3DListener can be queried from the
primary buffer or alternatively from the AudioPath. 3DListener can be used to control
spatial parameters of the listener and also general parameters of the acoustical
environment.

The location and the velocity of the listener can be set with similar methods using
Cartesian vectors like was the case with sound sources. There is only one exception: the
orientation of the listener is defined using two vectors: front vector and top vector. With
sound sources, only front vectors were needed, because sources are axis symmetrical.

The global parameters that can be controlled from the 3DListener are scaling factors for
distance, rolloff, and Doppler. Distance factor scales the unit of distance used and makes it
possible for using, for instance, feet instead of standard unit meters to express all the
distances in the application. Rolloff factor can be used to scale the natural 1/r-attenuation
of sound and Doppler factor to scale the amount of Doppler effect from its natural amount.

Every change to the settings of 3DBuffer or 3DListener causes recalculations to 3-D
processing. DirectSound offers a way to group various changes together and commit them
simultaneously. This is called as deferred settings. All the setting methods of 3DBuffer
and 3DListener have a possibility to use flag DS3D_DEFERRED. Using this flag causes
the settings not to affect immediately, but instead to accumulate. The accumulated settings
can be then committed simultaneously by calling method CommitDeferredSettings of the
3DListener. Thus, the 3-D calculations have to be performed just once even if multiple
parameters have to be changed.

4.4.8 Reverberations and other effects

Effects in DirectSound are set on secondary buffers. One secondary buffer can have
multiple effects associated. DirectX has nine standard effects available, but also other
effects can be registered into the system. The standard effects are chorus, compression,
distortion, echo, environmental reverberation, flange, gargle, parametric equalizer, and
Waves reverberation. All the effects have multiple parameters to control settings like
dry/wet-ratio, modulation depth and frequency etc. The two reverberations are described
now in more detail.

Waves reverb is based on the Waves MaxxVerb technology [MaxxVerb 2000]. Waves
reverb has settings for input gain and reverb mix in decibels, for reverb time in

Existing 3D audio APIs 31

milliseconds, and for high-frequency ratio of the reverb time. Waves reverb is intended to
be used with music.

The other reverberation, the environmental reverb of DirectX provides partial support for
environmental reverberation defined in Interactive 3-D Audio Level 2 [I3DL2 1999]
specification. The easiest way to use environmental reverb is to set parameters by using
presets. Altogether 30 preset settings similar to I3DL2 are offered. Other way to use
environmental reverb is to set all the reverberation parameters by hand. The parameters
are the same described in I3DL2 listener property set and can be found from Table 2.
Furthermore, there is also a parameter for setting the quality of the reverb meaning the
compromise between the perceived quality of the reverb and the computing costs.

Table 2. The reverberation parameters of I3DL2 listener property set.

Parameter Description

Room Intensity of the room effect.

Room HF Attenuation at high frequencies in the room effect.

Room rolloff
factor

Scaling factor for the 1/r-attenuation of the room
effect.

Decay time Reverberation decay time at low frequencies.

Decay HF ratio High frequency decay time relative to low frequency
decay time.

Reflections Intensity level of early reflections relative to Room
value.

Reflections delay Delay time of the first reflection relative to the direct
path.

Reverb Intensity of late reverberation relative to Room value

Reverb delay The time limit between the first reflection and the late
reverberation.

Diffusion Echo density in the late reverberation decay.

Density Modal density in the late reverberation decay.

HF reference Reference high frequency.

4.5 EAX

EAX stands for Environmental Audio eXtensions and is an extension either to Microsoft’s
DirectSound 3D that is a part of DirectX, or to OpenAL [OPENAL]. EAX 1.0 was
released by Creative Labs in 1998 and it has been followed by EAX 2.0 in 1999 and EAX

Existing 3D audio APIs 32

Advanced HD in 2001 [Hagen, Muschett 2002] [Creative]. The properties of EAX 2.0 are
described in this subchapter from the DirectX point of view. EAX is divided into the
listener property set and the sound-source property set.

4.5.1 The listener property set

The listener property set gives extra controls for the primary buffer of DirectSound.
However, in the newest versions of DirectX (versions 8 and 9), almost all the listener
settings EAX 2.0 provides are already covered by I3DL2 reverb (Table 2). Moreover, the
presets are the same with just a couple of exceptions.

One thing that EAX adds to DirectSound 9 is the possibility to set one higher-level
property, namely apparent size of the surrounding “room”. This environment size setting
affects five lower-level listener properties: reflections, reflections delay, reverb, reverb
delay, and decay time.

4.5.2 The sound-source property set

The sound-source property set gives additional settable properties for a secondary buffer.
These properties are all new compared to existing settings in the DirectSound 9. The
properties are listed in Table 3. They are the same as in I3DL2 except that Occlusion room
ratio, air absorption factor, and outside volume HF are new.

Table 3. The sound-source properties of EAX 2.0. Properties marked with asterisk (*) do not
exist in I3DL2.

Parameter Description

Direct Relative correction to the source’s direct-path
intensity.

Direct HF Relative correction to the source’s direct-path
intensity at higher frequencies.

Room Additive source-specific setting to the global listener
room property.

Room HF Additive source-specific setting to the global listener
room HF property.

Obstruction The amount of obstruction muffling affecting the
source’s direct-path sound at high frequencies.

Obstruction LF
ratio

Obstruction attenuation at low frequencies relative to
the attenuation at high frequencies.

Occlusion The amount of obstruction muffling affecting both the
source’s direct-path and reflected sound at high
frequencies.

Occlusion LF
ratio

Occlusion attenuation at low frequencies relative to
the attenuation at high frequencies.

Existing 3D audio APIs 33

Occlusion room
ratio*

Additional amount of occlusion attenuation for
reflected sound.

Room rolloff
factor

Additive source-specific setting to the global listener
room rolloff factor property.

Air absorption
factor*

Multiplicative source-specific setting to the global
listener Air absorption HF property.

Outside volume
HF*

This property makes the source directivity pattern
frequency-dependent setting separate high frequency
attenuation to the rearwards radiation.

Existing 3D audio APIs 34

5. Java 2 Micro Edition

This chapter describes Java 2 Micro Edition that is the underlying platform of the novel
API.

5.1 Different Java Platforms

In early 1996, Sun Microsystems Inc. released the first version of Java Development Kit
(JDK), and since that many subsequent releases have followed. Initially, the Java language
was targeted towards consumer devices such as interactive TV, but as time passed, the
Java platform grew and it started to be targeted more towards desktop and enterprise
computing. The consequence was that the large collection of libraries could not fit
anymore to limited consumer devices. Sun realized the problem and grouped the new Java
2 Platform into three editions to better meet the requirements of different environments:
Enterprise Edition, Standard Edition, and Micro Edition. Java 2 Platform, Enterprise
Edition is targeted for enterprises in need of scalable server solutions, Standard Edition is
for desktop computer market, and Micro Edition is for consumer and embedded devices.
This thesis concentrates on Micro Edition (J2ME).

Highly optimized Java runtime environments of J2ME technology specifically address the
large consumer space, which covers the range of extremely tiny products such as smart
cards or pagers all the way up to the TV set-top boxes, devices almost as powerful as
desktop computers. J2ME aims to maintain the qualities that Java technology has become
known for: built-in consistency across products, portability of code, safe network delivery
and upward scalability. J2ME allows device manufacturers to open up their devices for
widespread third-party application development and dynamically downloaded content,
without losing the security or the control of the underlying manufacturer-specific platform.
Probably in the future, the majority of applications will be developed, instead of device
manufacturers, by third-party developers.

While consumer devices have many things in common, they are also extremely diverse in
form, function, and features. The devices can be operated in various ways: for instance,
with keyboard, stylus, or voice. The range of existing device types and hardware
configurations is large, and the technology is constantly improving rapidly. Also a diverse
range of applications changes and grows in unforeseen ways all the time. To address this
multidimensional diversity, an essential requirement for the J2ME architecture is not only
small size but also modularity and customizability. This is supported by two essential
concepts of J2ME environment: configurations and profiles. They are described in the
following chapters. [Riggs et al 2001]

Java 2 Micro Edition 35

5.2 Configurations

A J2ME configuration defines a minimum platform for a “horizontal” category or
grouping of devices, each with similar requirements on total memory budget and
processing power. A configuration defines the Java language and virtual machine features
and minimum class libraries that a device manufacturer or a content provider can expect to
be available on all devices of the same category.

Java 2
Enterprise

Edition (J2EE) Java 2 Standard
Edition (J2SE)

Java Virtual Machine

Low-end
consumer
devices

KVM

Java 2 Micro Edition

CDC CLDC

MIDPFoundation
profile

Personal Profile

Optional
Packages

Optional
Packages

High-end
consumer
devices

Desktop and
personal

computers

Servers and
enterprise
computers

Figure 15. Java 2Platform editions.

To avoid fragmentation, there is a very limited number of J2ME configurations. Currently,
only two standard J2ME configurations are available: Connected, Limited Device
Configuration (CLDC) and Connected Device Configuration (CDC). They are visible on
Figure 15 that illustrates Java 2 Platform editions. CLDC focuses on low-end consumer
devices, that are typically personal, mobile, battery-operated, connected information
devices such as cellular phones, pagers, and personal digital assistants (PDA). CDC’s
focus area is high-end consumer devices, such as TV set-top boxes, Internet TVs, and
high-end communicators. CDC includes a much more comprehensive set of Java libraries
and virtual machine features than CLDC.

The majority of functionality in CLDC and CDC has been directly inherited from Java 2
Platform, Standard Edition. Each class inherited from the J2SE environment must be
precisely the same or a subset of the corresponding class in the J2SE environment. In
addition, CLDC and CDC can introduce features that are not drawn from the J2SE, but
instead designed to specifically fulfill the needs of small-footprint devices. [Riggs et al
2001]

Java 2 Micro Edition 36

5.2.1 Connected, Limited Device Configuration

CLDC is the target configuration for the API defined in this thesis, so it will be described
in more detail in this chapter.

Target devices of CLDC 1.1 are characterized in the specification [CLDC 2003] as
follows:

• At least 192 kB of total memory budget available for the Java platform,

• a 16-bit or 32-bit processor,

• low power consumption, often operating with battery power,

• and connectivity to some kind of network, often with a wireless,
intermittent connection and with limited bandwidth.

Typically, these target devices are manufactured in very large quantities, meaning that
manufacturers are usually extremely cost-conscious and interested in keeping the per-unit
costs as low as possible.

CLDC Specification addresses the following areas:

• Java language and virtual machine features

• Core Java libraries (java.lang.*, java.util.*)

• Input/output

• Security

• Networking

• Internationalization

Areas such as application life-cycle management, user interface, and event handling are
not part of CLDC. They can be addressed by profiles implemented on top of the CLDC.
Profiles are described in detail in a separate chapter later.

The virtual machine itself is a part of CLDC specification CLDC libraries being the other
part. The virtual machine of CLDC is called as KVM3 instead of the Java Virtual Machine
(JVM) of J2SE. The goal for KVM was to be as compliant with the Java Virtual Machine
Specification [Lindholm, Yellin 1999] as possible. However, with strict memory
constraints of CLDC target devices, some features of J2SE JVM had to be left out from
KVM. The most important of the dropped features that KVM doesn’t have is Java Native
Interface (JNI); the way in which the k virtual machine invokes native functionality is
implementation-dependent. Other missing features include user-defined class loaders,
reflections (and dependent features such as remote method invocation and object
serialization), thread groups, daemon threads, and finalization. Also the set of Error
classes included in CLDC is limited. CLDC 1.0 was lacking even floating point support
[CLDC 2000], but it was added later in CLDC 1.1.

3 The letter K comes from “kilo” to describe the unit of size that KVM is measured in: kilobytes.

Java 2 Micro Edition 37

Like the JVM of J2SE, the KVM has a capability to detect and reject invalid class files.
However, since the standard class file verification process of J2SE requires quite a lot of
memory and processing power, J2ME uses more compact and efficient verification
solution. Instead of one heavy verification process done by the device, the task is now
divided into two parts. There is a special pre-verification tool, which is typically used by
the application programmer in the development environment. Then when running the
application, the in-device verifier utilizes the information generated by the pre-verification
tool to speed up the runtime verification process.

5.3 Profiles

A J2ME device profile is layered on top of a configuration. A profile addresses the
specific demands of a certain “vertical” market segment or device family. The main goal
of a profile is to guarantee interoperability within a certain vertical device family or
domain by defining a standard Java platform for that market. Profiles typically include
class libraries that are far more domain-specific than the class libraries provided in a
configuration. [Sun 2000]

Profiles can be thought to be of two different categories: device-specific or application-
specific. A device-specific profile serves as a common denominator for certain kind of
Java enabled devices such as cell phones, washing machines, or electronic toys. An
application developer can then write an application on top of a device-specific profile and
that application will then work in all devices, say cell phones, which support that profile.

Another point of view is to create a profile for a specific application group. Then all the
device manufacturers that want to support the group of that kind of applications are able to
do that by implementing that application-specific profile in their devices. This is possible,
because in J2ME, it is possible for a single device to support multiple profiles.

Profiles target specifically against the problem of portability in the J2ME domain that
hosts such a wide range of devices. Grouping of devices is possible by categorizing
devices by profiles they implement and application programmer can choose from limited
amount of profiles which one to use without need to write device dependent code. New
devices can take advantage of a large and familiar application base by just implementing
an appropriate profile. Most importantly new applications can be dynamically downloaded
to existing devices.

At the implementation level, a profile is defined simply as a collection of Java APIs and
class libraries that reside on top of a specified configuration giving some domain-specific
additional functionality.

5.3.1 Mobile Information Device Profile

Mobile Information Device Profile (MIDP) [MIDP 2002] is targeted for a well-defined
group of devices, Mobile Information Devices (MID). A MID should have a display
capable to display at least 96*54 resolution with black and white pixels. The aspect ratio
of the pixels should be approximately 1:1. A MID should have one or more of the
following user-input mechanisms: “one-handed keyboard” such as ITU-T phone pad,
“two-handed keyboard” such as QWERTY, or a touch screen. The memory requirements
for a MID are the following in the MIDP 2.0 specification:

• 256 kilobytes of non-volatile memory for the MIDP implementation

Java 2 Micro Edition 38

• 8 kilobytes of non-volatile memory for application-created persistent
data

• 128 kilobytes of volatile memory for the Java runtime

Furthermore, a MID should have two-way wireless, possibly intermittent, limited
bandwidth network. Additionally, a MID should be able to play tones. These requirements
for a MID are typically fulfilled by modern cell phones and personal digital assistants
(PDA) with network connections.

MIDs span a potentially wide set of capabilities, but MIDP addresses only those APIs that
are considered absolute requirements to achieve broad portability. These APIs are:

• Application (i.e., defining the semantics of a MIDP application and how
it is controlled)

• User interface (includes display and input)

• Persistent storage

• Networking

• Sounds

• Timers

The MIDP is designed to operate on top of CLDC and being so, the features of CLDC
complement MIDP.

MIDP abandons the Applet model familiar from J2SE, because of strict memory
limitations and requirement to support data sharing between applications. In MIDP, the
basic unit of execution is a MIDlet. The MIDlet model is quite similar to the Applet
model. MIDlet has one class that extends javax.microedition.midlet.MIDlet and possibly
other classes that are needed by MIDlet. These classes are packed in a JAR file with
standard JAR Manifest and optional other files such as pictures or sound files. Each JAR
file may be accompanied by an application descriptor. The application descriptor allows
the application management software on the device to verify that the MIDlet is suited to
the device before loading the full JAR file of the MIDlet suite. It also allows
configuration-specific attributes (parameters) to be supplied to the MIDlets without
modifying the JAR file.

Like application model (MIDlet), MIDP also introduces a new user interface (UI) model.
Abstract Windowing Toolkit (AWT) of J2SE is optimized for desktop computers and is
not suitable for MIDs. AWT was abandoned mainly because of the following reasons: it is
based on windows and MIDs are not in general capable of displaying overlapping
windows; AWT was designed to work with a pointer device unlike most of MIDs; and
furthermore, AWT uses dynamically generated event objects that might be overwhelming
to MIDs limited CPU and memory capacity.

LCDUI, the new UI model of MIDP is logically composed of two APIs: the high-level
and the low-level. High-level API employs a high level of abstraction and offers a
complete user interface components such as alerts, lists, text boxes, and forms. The actual
drawing to the MID’s display is performed by the implementation and the visual
appearance is not definable by the application programmer. Furthermore, navigation,

Java 2 Micro Edition 39

scrolling, and individual user input keys are not accessible directly by the application. This
makes the applications to maintain uniform look and feel of the hosting device.

The other UI API, the low-level API offers very little abstraction. This API is designed for
applications that need precise placement and control of graphic elements, as well as access
to low-level input events. Some applications also need to access special, device-specific
features. Applications that use the low-level API are not guaranteed to be portable, since
the low-level API provides the means to access details that are specific to a particular
device. Being so, programmers using the low-level UI API should take care of portability
when designing applications by among other things inquiring on the size of the display
and then adjusting their drawing routines accordingly.

5.4 Mobile Media API

There was no generic sound or multimedia support directly in CLDC 1.0 or even in MIDP
1.0 [MIDP 2000]. This generated a need to produce an extension to provide multimedia
support for J2ME environments. Mobile Media API 1.0 [MMAPI 2002] was the resulting
specification. It can be implemented, for instance, together with MIDP 1.0 (Figure 16) and
actually, the new MIDP 2.0 already contains a limited audio-only subset of MMAPI. The
standardization was done in Java Community Process (JCP) during years 2001 and 2002.
JCP is described later. So far at least mobile phone models Nokia 3650, Nokia N-Gage,
and Sony Ericsson T610 support MMAPI.

J2ME virtual machine

MMAPI

MIDlet

MIDP

CLDC

Operating system

Figure 16. MMAPI can be implemented, for instance, to coexist with MIDP 1.0 to support multimedia needs
of a MIDlet.

Java 2 Micro Edition 40

5.4.1 Features

The main feature of the Mobile Media API (MMAPI) is to offer tools for playback of any
time-based media content, such as audio, video, or animation. The API has a high level of
abstraction: it is generic what comes to protocol used to transfer the media or content type
used to store the media. This addresses to the needs of the modern world where media
types and formats keep evolving all the time just like their storage devices and
transmission paths and protocols.

In addition for supporting any external media types, MMAPI also has a media type of its
own. In the lowest end of mobile devices, simple buzzer tones might be the only
multimedia capability supported. Keeping this in mind, MMAPI offers internal format for
simple tone sequences. MMAPI’s tone sequence consists of byte array with tone-duration
pairs to form melodies and additionally support for defining blocks of tones to enable easy
repetition of song parts.

MMAPI offers multiple ways to control how the media content is played back and
handled. Not all the target devices that use MMAPI have capabilities to support such wide
variety of different ways to control media. The design of MMAPI allows some of the
features been left unimplemented and thus MMAPI support is possible also for devices
with not so rich set of features. On the other hand, some devices might be capable of
processing media in some ways that MMAPI does not have support. This problem is
solved with MMAPI’s extensible structure; it is possible to add new features without
breaking old functionality and being compatible to original MMAPI.

CLDC is the main target of MMAPI and this sets strict memory consumption limitations.
MMAPI is designed to have as small footprint as possible and this means that the API
does not offer any unnecessary parallel, overloaded methods for the same functionality.

5.4.2 Structure

MMAPI divides multimedia processing into two separate conceptual parts: into protocol
handling and content handling. Protocol handling takes care of the reading of the data
from the source and transmitting it to media processing system. The source can be
anything from the network server to some capturing device like microphone or camera.
After protocol handling, content handling processes the data and renders it to output
devices. Processing can mean, for instance, parsing and decoding the multimedia format.

MMAPI has two high-level objects to represent the dual nature of multimedia processing:
DataSource and Player. The former takes care of the protocol handling and the latter of the
content handling. A DataSource reads data from a source and then offers methods for a
Player to read data from the DataSource itself, hiding the details how data is actually
obtained from the source.

A Player reads data from the DataSource, processes data, and renders finally it to the
output device. Player has methods for starting and stopping the media playback. Player
has also a multistage life-cycle model. The purpose of different life-cycle stages is to give
a possibility to limit the usage of scarce multimedia resources to as small as possible.
Stages are in the order of usual occurrence in straightforward onetime playback the
following: UNREALIZED, REALIZED, PREFETCHED, STARTED and CLOSED. The
state transitions are illustrated in Figure 17.

Java 2 Micro Edition 41

UNREALIZED

REALIZED

PREFETCHED

STARTED

CLOSED

start()

prefetch()

realize()

stop()

close()close()

close()

close()

deallocate()

Figure 17. State transition diagram of the Player.

A Player is unrealized when it has just been instantiated. Realized Player has typically
opened the media stream and prefetched Player has furthermore opened the scarce media
resources of the device. Started Player is playing the media and closed Player has been
closed and cannot been used again. Player offers methods for controlling transitions
between the stages; also falling back in the stage hierarchy and thus freeing a resource
when necessary is possible by these methods.

Players are instantiated with static factory methods of a class called Manager. Manager
acts as a common access point for obtaining these system dependent resources. Manager
ties DataSource and Player together and the factory methods return specific Players for
wanted media type.

Furthermore, a Player acts as a factory for media type specific controls. These controls
implement the interface Control and offer possibilities to control media properties such as
volume, pitch, tempo, and metadata. Closer look into various Controls is taken in the next
sub-chapter.

5.4.3 Controls

MMAPI offers the following pre-defined Controls: FramePositioningControl,
GUIControl, and VideoControl for controlling media that is in visual form;
VolumeControl, PitchControl, MIDIControl, TempoControl, and ToneControl for audio
data; MetaDataControl for metadata; and finally StopTimeControl and RateControl to
control playback flow in general level. Furthermore, there is RecordControl for recording
purposes.

VolumeControl offers methods for setting and getting the sound level in linear point scale
with values from 0 to 100. Also muting is supported.

With PitchControl it is possible to shift the pitch of the played back audio. No absolute
pitch can be set; only relative values are supported. Pitch shift is expressed in
millisemitones compared to original pitch of the media.

RateControl can be used to change the speed of the media playback. Rate is expressed in
millipercents of the original rate. By setting negative value, it is possible to play the media
in reverse. Also TempoControl affects the playback speed, but it is independent of
RateControl and uses absolute values expressed in thousandths of beats-per-minute (milli-
BPM). Furthermore, tempo set by TempoControl is volatile and changes e.g. when played
MIDI sequence contains META tempo events unlike RateControl’s rate.

Java 2 Micro Edition 42

MIDIControl gives advanced, low level functionality to control MIDI playback, but
VolumeControl, TempoControl, and PitchControl are sufficient for most needs what
comes to basic MIDI playback.

ToneControl acts as an interface for MMAPI’s internal tone sequence format.
ToneControl has fields defining the semantics of the format and then a method for taking
the sequence into use for that Player.

RecordControl offers methods for setting the output locator for the recorded media and
various controls for the recording itself. The media currently played by the Player will be
recorded.

If media is wanted to be played just until some point in its internal media time, with
StopTimeControl that time of stopping can be defined.

If there is a need for the Player to supply components for the graphical user interface
(GUI), they can be provided by GUIControl. It has a functionality to create appropriate
GUI primitive of the platform. For example, for MIDP platform that will be an object
extending javax.microedition.lcdui.Item. VideoControl is a special case of GUIControl for
displaying video on the GUI. VideoControl has methods for accessing displayed video’s
size and location. It also provides snapshots of the displayed video if required. With
FramePositioningControl, it is possible to seek displayed video by frame-by-frame basis.
In some implementations so accurate seeking might not be possible, but the best effort will
anyway be given.

Metadata means data about data. This data can be accessed by MetaDataControl in
MMAPI. Metadata of the media is identified with keys. Four pre-defined keys are
available as fields of MetaDataControl: keys for copyright information, author, title, and
date.

5.5 Java Community Process

Like CLDC and MIDP, Mobile Media API was also specified using Java Community
Process (JCP) [JCP 2001]. JCP is an open organization that develops Java technology
specifications, reference implementations, and technology compatibility kits. JCP is a
formal process that makes the Java platform evolve. The JCP has over 300 company and
individual participants.

The new technology specifications for Java that JCP produces are called as Java
Specification Requests (JSR). JSRs are the actual descriptions of proposed and final
specifications for the Java platform. JSR development work is carried out in so called
Expert Groups. They usually consist of many companies of the field from all over the
world. An Expert Group should be large enough to guarantee reasonable industry
representation to later support the new specification. For every JSR a new Expert Group is
formed and multiple JSRs are on the process simultaneously. The development of a new
JSR is done on multiple steps where improved versions of the specification are produced
and then reviewed and accepted by voting.

JSR-30, JSR-139, JSR-37, JSR-118, and JSR-135 specify CLDC 1.0, CLDC 1.1, MIDP
1.0, MIDP 2.0, and Mobile Media API, respectively.

Java 2 Micro Edition 43

6. Advanced audio API4

This chapter describes the novel API designed in this thesis. First the major requirements
of the API are gone through, then the API itself is described, and finally the reference
implementation done is presented.

6.1 Goals

6.1.1 Targeted users

The targeted user group of this API was set to be application programmers that want to
add some advanced audio effects to their applications running in mobile devices. It had to
be taken into consideration that the programmers do not necessarily have special
knowledge of audio processing or psychoacoustics. The API had to offer enough presets
to make it usable for non-audio experts.

A typical user was thought to be a game programmer that wants to enhance sensation of an
acoustical environment with some characters moving around in space. He or she might
also want to dynamically filter sounds with equalizer or some effect to simulate some
change in a sound source.

6.1.2 Targeted platforms

The target environment for the API was chosen to be CLDC devices and this requires the
API to be compatible with J2ME CLDC. API was also supposed to be compatible with
Mobile Media API 1.0 so that it is a natural extension to it. However, a couple of small
additions had to be done to original MMAPI 1.0. The size of API code should be as small
as possible to keep the footprint of the virtual machine (KVM) small.

In the following chapters, the features that aim to fulfill the needs of the target users and
platform are described. These features form the set of requirements.

6.2 Features

6.2.1 General

The API had to be easy and intuitive to use also for programmers that do not have any
special audio knowledge. Most of the audio features have preset modes to make it possible
for the user to easily adjust the parameters without having any special audio knowledge of

4 The Advanced audio API and the associated documentation presented herein are copyright © 2003 Nokia
Corporation. All rights reserved. No part of the Advanced audio API or its documentation may be
reproduced in any form by any means without prior written authorization of Nokia.

Advanced audio API 44

what would be the appropriate values of the parameters. Special care was taken when
designing the names of these preset modes. The names of the preset modes had to be
descriptive, but compact. The Javadoc documentation was intended to be the self-
contained, complete programming documentation for the API.

6.2.2 Source localization

One of the main features of this API is the possibility to locate sound sources in a virtual
space. Human can perceive direction of a sound source quite accurately using certain
physical properties of the sound arriving to ears. These so called location cues can be
simulated by a computer and thus, a virtual direction for arriving sound can be created.

The distance has an effect of attenuating the far positioned source and also lowering the
relative level of the source compared to the reverberation level. This being the case, giving
just the direction of the source is not enough, because the distance of the source can also
be simulated.

This API uses an approach where the sound sources have a location primarily defined in
3D-coordiantes so that both the distance and the direction are specified by just giving the
XYZ-coordinates. 3D-coordination and its representation are compatible with Mobile 3D
Graphics API for J2ME [M3D 2003].

API supports changing the location of a sound source smoothly. It is possible to give two
locations for the source and force the source to move from one location to the other. The
speed of sound sources moving in space relatively to the listener is definable. This could
be done, for example, by defining the period of time when the movement is going to be
completed.

6.2.3 Reverb

Reverberation is essential in perceiving the properties of the room. Mainly it tells the size
of the room and gives some hints about the wall materials.

The API was chosen to offer several preset modes available for reverberation. A subset of
the modes from “IA-SIG Interactive 3D Audio Rendering Guidelines (Level 2)” [I3DL2
1999] were used, but the goal was not to entirely fulfill the details of the reverberation
model presented in it. Mobile devices with limited processing capacity might not always
be capable of fulfilling I3DL2 completely.

The preset modes were to be tunable with a single simple parameter, reverberation time. It
makes the preset modes more flexible. The presets were chosen so that they span through
wide range of different reverbs and with the capability of adjusting the reverberation time,
many different kinds of reverberations came available.

Because reverberation algorithms are computationally really laborious, it was decided that
one common reverb is enough for all the sound sources; no individual reverberation
parameters can be set to sources. Although the reverb is common, bypassing single
sources is possible; this makes it possible to use sources that are non-anechoic recordings
and already reverberant.

6.2.4 Equalizer

Equalizers are usually used for two reasons: to compensate unideal frequency response of
a system to make it sound more natural or to create intentionally some unnatural coloring

Advanced audio API 45

to the sound to create an effect. The equalizer in this API has to be able to serve both of
these purposes.

Like the reverb, the equalizer has also several preset settings available. Modes like
telephone band, bass boost, loudness, karaoke, subsonic cutoff, ultrasonic cutoff, and
muffling could be available for easy using. Also some programmers might want to use the
traditional EQ presets named after musical genres (Classical, Jazz, Rock, Pop).

There are also convenient methods for altering bass or treble only without need to specify
any frequencies. Most of the people are familiar with these traditional settings of
consumer audio devices.

There are methods for getting and setting individual EQ-band gains and a method for
asking the amount of the EQ-bands available. People that are more familiar with EQ are
able to create effects or to compensate the response of the system with these methods.

6.2.5 Effects

The API was chosen to support arbitrary audio effects via a general interface. A user can
ask for the available effects in the device and then choose which ones to use. Here we
mean by effects the common ways to process sound of some musical instrument. Most of
the musical effects originate from electrical guitar footswitches, but the effects are not
limited to be used just with guitars.

The most important parameters of the effects had to be made controllable. For instance,
chorus, flanger, and phaser effects have at least the following common parameters: blend,
frequency of low frequency oscillator (LFO), and amplitude of LFO. Different effects
might also have different non-common parameters that must be supported, too.

The effects can be inserted in two places on the signal path. They can be inserted as source
specific effects or as global effects. The computationally easiest effects should be channel
specific so that they can be tuned for each sound source independently. The
computationally most demanding effects can be tuned only globally for all the sources
together.

6.3 Process

The interface was defined using an iterative process. The initial version was written by the
author and then reviewed by the colleagues. Altogether three reviews were organized and
the interface was always tuned based on the feedback got in the previous review session.

The API was first written using empty Java methods with thorough Javadoc commenting
and then Javadoc tool was used to generate the documentation in the HTML form.

6.4 Interface

Advanced audio API (AAI) consists of Java interfaces that supplement the classes and
interfaces of MMAPI. AAI provides a new interface called as Spectator that is used to
control directly or via other classes the listener model and the room model of the virtual
acoustical space. New Controls are introduced as well: EQControl, LocationControl,
OrientationControl, PanControl, and EffectControl. EffectControl utilizes new interface

Advanced audio API 46

Effect and its sub-interfaces Reverb and Chorus. All these interfaces are described in
detail in the following subchapters.

6.4.1 Spectator

Spectator is a representation of a human spectator of Players in virtual acoustical space.
Spectator is used to control directly or via other classes the listener model and the room
model of virtual acoustical space.

Spectator implements Controllable interface, and can thus create at least five different
Controls for itself if they are supported by underlying audio engine: VolumeControl,
EQControl, EffectControl, LocationControl, and OrientationControl. They are used to
configure global volume, global equalizer, global effects, and Spectator’s location and
orientation respectively. Some global properties such as volume and equalizer might also
be controllable directly from the device’s native user interface. Spectator’s relations to the
other interfaces are illustrated in Figure 18.

<<Interface>>
Spectator

<<Interface>>
Controllable

<<Interface>>
Orientation-

Control

<<Interface>>
LocationControl

<<Interface>>
Effect

<<Interface>>
EQControl

<<Interface>>
EffectControl

<<Interface>>
VolumeControl

Figure 18. UML class diagram about Spectator’s relations to the other interfaces.

A Spectator can be instantiated with Manager.createSpectator() in a similar way as Players
are instantiated with Manager.createPlayer(). There is typically just one instance of a
Spectator in an application. Anyway, multiple instances can be created for multiple
simultaneous human users of the application if the underlying audio engine supports that
and there are multiple output devices available. Manager.createSpectator() returns a
Spectator that is located in the origin and points directly towards the negative z-axis
direction.

A Spectator has two life-cycle states: ACTIVE and CLOSED. The purpose of these life-
cycle states is to provide programmatic control over potentially time-consuming
operations. When all the Players are gone, the Spectator is not automatically closed. This
makes it possible to maintain settings of Spectator, such as the global Effects, through
multiple Player life cycles. On the other hand, sometimes it is necessary to release all the
resources of a Spectator and not use them again. This is possible with close() method.

Advanced audio API 47

When a Spectator is first constructed, it is in the ACTIVE state. An ACTIVE Spectator
means that the Spectator is running and processing data. Calling close on the Spectator
puts it in the CLOSED state. In the CLOSED state, the Spectator has released most of its
resources and cannot be used again. All the settings made with Spectator’s Controls are
then lost.

The location and the orientation of a Spectator can be specified with the Controls
LocationControl and OrientationControl Spectator offers.

6.4.2 LocationControl and OrientationControl

LocationControl is an interface for manipulating the virtual location of an object (usually
a Player or a Spectator) in virtual acoustical space.

Y

X

Z

Figure 19. Location is defined in right-handed coordinates.

Location is a representation of a place in a virtual acoustical space. This interface allows
the location to be specified in three-dimensional space with method setLocation(). The
method has possibility to set the new location immediately (by giving zero as parameter)
or to set it slowly so that the movement is exactly completed after given time.

The initial location of the Player has to be set before prefetching the Player, because it also
takes care of the initialization of the spatialization. If the location is set first time when the
Player has been already prefetched, the spatialization is not necessarily active.

OrientationControl is an interface for manipulating the virtual orientation of an object
(usually Spectator) in virtual acoustical space.

Y

X

Z

Heading

Pitch

Roll

Figure 20. Orientation is defined in right-handed coordinate system.

Advanced audio API 48

Orientation is a representation of a direction in a virtual acoustical space. Orientation is
defined in rotation angles around coordinate axes. Positive rotation directions around the
coordinate axes are counterclockwise when looking towards the origin from a positive
coordinate position on each axis. The initial orientation is towards negative Z-axis.
Orientation is defined in three angles: heading that represents rotation around Y-axis, pitch
that represents rotation around X-axis, and Orientation that represents rotation around Z-
axis. Orientation is applied in the following order: heading, pitch, and roll.

6.4.3 PanControl

PanControl is an interface for manipulating the panning of a Player in the stereo output
mix.

This interface allows the panning between the left and right channels to be specified using
an integer value that varies between –100 and 100. The pan scale specifies panning in a
linear scale. It ranges from –100 to 100, where 0 represents panning for both channels, -
100 full panning to the left, and 100 full panning to the right. The mapping for producing
linear multiplicative values is implementation dependent. With stereo sources, the effect
of the panning set is undefined.

API supports changing the panning of a sound source smoothly. The setPan method has
possibility to set the new panning immediately (by giving zero as duration parameter) or
to set it slowly so that the change is exactly completed after given time. The panning
setting is not in effect if the location of the source has been specified with LocationControl
and the spatialization is in use.

6.4.4 EQControl

EQControl is an interface for manipulating the equalization settings of a Player or a
Spectator.

This interface allows the sound source to be filtered with an equalizer. The equalizer can
be set up with three different ways: using presets, using bass and treble controls, or by
setting individual frequency bands by hand.

The preset settings can directly be taken into use with method setPreset(). The current
preset can be found out with method getPreset().

There are convenient methods setBass() and setTreble() for altering bass or treble only
without need to specify any frequencies. SetBass() and setTreble() reset the current set up
on the band on question (bass or treble frequencies respectively). There are also methods
for asking current bass and treble setting (getBass() and getTreble()), but if the equalizer
settings have been altered after bass and treble set-up by setting presets or altering
individual EQ-bands, bass and treble settings are not anymore unambiguously defined and
EQControl.UNDEFINED will be returned.

There are also methods for getting and setting individual EQ-band gains (setLevel() and
getLevel()) and methods for asking the amount of the EQ-bands available
(getNroOfBands()) or their center frequencies (getCenterFreq()). People that are more
familiar with EQ are able to create effects or to compensate the response of the system
with these methods.

Advanced audio API 49

The gains in this class are defined in decibels, but it has to be understood that many MIDs
contain a dynamic range control (DRC) system that will affect the actual effect and
therefore, the value in decibels will affect as a guideline rather than as a strict rule.

6.4.5 Effect, EffectControl, and PlayerEffectControl

Effect is an abstract audio filter with various preset settings. Individual Effects might have
various parameters. All Effects have accessors for effect level. The effect level affects
how much of the sound is passed via the effect in percents. 100 means that all the sound is
processed in the effect and 0 means that no processing is done at all and all the sound is
bypassed. Values between 0 and 100 affect the wet/dry ratio of the processing in the
accuracy that the system supports. The effect is considered to be “wetter” when the effect
level rises. Effects are presettable like EQ and can be instantiated with createEffect() of
the EffectControl.

EffectControl controls the effect box behavior of a Spectator or a Player. An effect box is
a combination of various Effects. It is like a multieffect whose individual effects can be
added or removed. Spectator and Player can have EffectControls. Being so, they can use
zero or more Effects.

With certain kind of effects (non-linear effects), the processing order affects the result. It
is possible with this interface to specify the wanted processing order by inserting effects
with an index number (method insertEffect()) to the signal path, but the proposed order is
not necessarily obeyed; this depends on underlying audio engine’s capabilities. When
inserting effects in the middle of the effect chain the previous effect on the insertion place
and all the subsequent effects will be shifted one step to make space for the new effect.
Usually, in the case of global Effects (the Effects of Spectator), the order of the Effects
doesn’t count, because the Effects are parallel on the signal path, unlike typical serial
processing order of the Player-specific Effects.

<<interface>>
Spectator

<<interface>>
Player

<<interface>>
PlayerEffect-

Control

<<interface>>
Effect

<<interface>>
Effect

<<interface>>
EffectControl

Figure 21. UML class diagram about EffectControl and associated interfaces.

PlayerEffectControl extends the interface EffectControl to include methods for setting
effect send levels. PlayerEffectControl controls the effect box behavior of a Player.

The important property of a PlayerEffectControl is that it can be used to control the level
of effects in other affecting effect boxes as well. For example, if there is a Player called p1
that one Spectator is listening among other Players, and that Spectator has a global effect,
say Reverb, turned on, p1 can be bypassed from this global Reverb by using a method call

Advanced audio API 50

((PlayerEffectControl)(p1.getControl(“PlayerEffectControl”))).setGlobalEffectSendLevel(
0);. Other Players will continue using the global Reverb normally.

6.4.6 Reverb

Reverb is an interface for manipulating the settings of an effect called reverb. Therefore,
Reverb implements Effect interface. A Reverb can be instantiated using method
EffectControl.createEffect(“Reverb”).

Reverberation is essential in perceiving the properties of the room. Mainly it tells the size
of the room and gives some hints about the wall materials.

In the API, there are several preset modes available for reverberation. A subset of the
modes from “IA-SIG Interactive 3D Audio Rendering Guidelines (Level 2)” [I3DL2
1999] is used. The modes at least available for the reverb are:

• alley

• arena

• auditorium

• bathroom

• cave

• hallway

• hangar

• livingroom

• mountains

• room

The preset modes are tunable with a single parameter, the reverberation time. It is a single
intuitive value that will affect how reverberant the acoustical space sounds. This parameter
has a default value for every preset reverberation mode and then the user can, for example,
make the preset room more reverberant by raising the value. Methods for setting and
getting the reverberation time are setReverbTime() and getReverbTime(). It is
recommended to first get the preset’s reverberation time, then scale it, and finally set the
new, scaled value.

6.4.7 Chorus

Chorus is an interface for manipulating the settings of an effect called chorus and its
special case flanger. Chorus, like Reverb, implements Effect. A Chorus can be instantiated
using method EffectControl.createEffect(“Chorus”).

Chorus makes the sound source sound like a group of similar sound sources playing the
same sound. This makes the sound “richer”.

Advanced audio API 51

A special case of a chorus is a flanger: two similar sources are played so close together in
time that they sound like one, but instead with “wooshing” effect or with a sound similar
to the sound of a jet plane passing overhead.

In the API, there are several preset modes available for chorus. The modes at least
available for the chorus are:

• chorus

• flanger

Minimum tunable parameters for the chorus (and the flanger) are average delay and delay
modulation’s rate and depth.

6.5 Comparison to other 3D audio APIs

This section compares the features of the presented APIs, namely Java 3D 1.3, MPEG-4,
DirectX 9.0, EAX 2.0, A3D 3.0, and AAI.

6.5.1 Geometry

There are basically two different ways to define the geometry in the virtual acoustical
world: scene graph based that describes the world in a treelike structure and non scene
graph based that does not use any particular structure and instead describes the sound
source and listener locations and possible walls essentially as a list.

Of the presented APIs, Java 3D and MPEG-4/BIFS are scene graph based and on the other
hand, DirectX, A3D and AAI are list based. EAX cannot be classified because it does not
define geometry being an extension to DirectX that defines the geometry.

BIFS and A3D have the possibility to introduce walls that have acoustical properties into
the world in addition to sources and listeners that other APIs only provide. BIFS uses
scene graph for walls and A3D offers special lists for wall vertices that can be defined
once but used multiple times.

6.5.2 Room effect

Different APIs have different settings for the reverberation. DirectX, EAX and A3D have
settings similar to, or the same as, I3DL2. DirectX has exactly the same parameters and
presets that I3DL2 defines: 12 parameters (Table 2) and 30 presets. EAX and A3D have
only slightly different presets the amount being 26. The parameters are the same as in
I3DL2 except that EAX provides an additional high-level “room size” parameter. AAI’s
reverb is also I3DL2 based offering a 10-preset subset that can be controlled with one
parameter, reverb time (T60).

Java 3D offers an eight-parameter subset of I3DL2 parameters, but does not have any
presets. Instead of presets, Java 3D offers an easy way to calculate reverb decay and delay
automatically internally: the application can define the boundaries of the room and then
reverb decay and delay are calculated accordingly.

BIFS has two alternative ways to set the reverb: perceptual and physical. The perceptual
approach offers 13 parameters to control reverberation. They are of really perceptual

Advanced audio API 52

nature, like source brilliance and room presence. The other approach is physical where
different acoustical materials are bound with the geometry defined for the room (walls).

Since BIFS and A3D are the only APIs that have capability for wall geometry definitions
with wall material, they are the only APIs that support automatic calculation of the early
reflections, obstruction and occlusion. However, EAX offers an option to manually set
magnitudes for the obstruction and occlusion for each source, but that requires quite a lot
manual calculations of walls’ shadowing. Similar manual obstruction and occlusion
settings are possible also with AAI’s EQControl.

6.5.3 Source directivity

Java 3D and BIFS have fine-grained control for source directivity: multiple angles from
the source main axis are defined and then the gains and the frequencies for the low-pass
filters are defined for those angles.

DirectX and A3D have only two definable angles and the remaining directivity is then
interpolated between them. The gain outside of the outer angle is definable in both APIs,
but it is frequency independent. EAX adds frequency dependent directivity to the DirectX.

In addition to directivity, A3D has possibility for volumetric sources.

AAI does not provide automatic directivity calculations, but frequency dependent source
directivity can be manually implemented using EQControl.

6.5.4 Effects

Sometimes it is required to be able to alter sound also in unnatural ways, in contrast to the
natural environment modeling such as 3D localization and reverberation. From the set of
presented APIs only AAI and DirectX have predefined effects (apart from reverb)
available. AAI provides three: chorus, flanger, and graphical equalizer; and DirectX, on
the other hand, has eight standard effects: chorus, compression, distortion, echo, flange,
gargle, parametric equalizer, and Waves reverberation. Also other user-specified effects
can be registered into the both systems.

Although MPEG-4/BIFS does not provide predefined effects, it has the most fundamental
possibilities to define effects. AudioFX nodes can be added into the signal processing tree
and SAOL is used to define them. In other words, a specialized programming language is
provided for effects programming.

Java 3D and A3D do not provide direct help for the effect creation, but manual processing
of the input streams is always possible.

AAI and MPEG-4 allow the effects to be either global, thus affecting all the sources, or
source-specific. The rest of the APIs allow source-specific effects only.

6.5.5 Resource consumption control

Processing of sound data is in general a laborious task. The APIs offer different ways to
try to deal with that.

Deferred settings is one way. It means that while an application sets processing
parameters, such as source locations, they are not taken into action right away, but instead
accumulated into a buffer. The settings in the buffer can then be processed together when

Advanced audio API 53

a sufficient amount of settings have been accumulated. DirectX and EAX have deferred
settings and also A3D has a similar system, but it is called instead as a frame buffer.

A3D has a system called as a resource manager that has an ability to control, in a clever
way, which of the sources fall back on software processing in the lack of hardware
resources and further on no processing at all in the lack of software processing resources.
The audibility and the priority of the source affect this fallback process.

The resource consumption of the reverb can be limited in Java3D, in A3D and in DirectX.
DirectX also provides a choice to use two alternative HRTFs for 3D calculations: “light”
or “full”.

MPEG-4 and AAI do not provide any ways for process consumption optimization. In the
case of AAI, it is clearly a weakness; AAI will mostly be run on the devices with limited
processing power.

6.6 Reference implementation

As a part of this thesis, a reference implementation of Advanced audio API was
implemented. The reference implementation runs on top of Microsoft’s Windows 2000
operating system and provides the implementation of AAI’s LocationControl,
OrientationControl, PanControl, EffectControl, Effect, Reverb, and Spectator.

The reference implementation of AAI is constructed on top of the MMAPI 1.0 Windows
reference implementation and thus is based on MIDP 1.0.3 and CLDC 1.0.

The audio processing is done by a native audio engine running on the Windows platform.
This engine is not part of the thesis.

6.6.1 Playback architecture

com.nokia.mid.M ixer

+ open()
+ write()
+ pause()
+ resume()
+ flush()
+ drain()
+ close()
+ getSamplesPlayed()
+ setVolume()
+ getVolume()
+ setPan()
+ setLocation()
+ setSpecLocation()
+ setSpecOrientation()
+ setSpecEnvironment()
+ getSpecEnvironment()

javax.microedition.media.Player

java.lang.Runnable
audio engine

gateway
native audio

engineC++C
Player

implementation Java

Figure 22. The architecture from the audio playback point of view. Only the relevant methods are shown.

Figure 22 describes the basic architecture that enables the playback of a wav-file. The
original Player implementation creates a separate Thread that has the functionality to
repeatedly read a bufferful of data from its input stream and then send it to the Mixer’s
write method that sends it further to the native audio engine. In the original MMAPI
reference implementation, Mixer class was replaced by an interface for Windows’ native
audio resources.

Advanced audio API 54

One complication here is that CLDC’s native interface supports calling C functions only
[KVM 2001], but the native audio engine uses C++ classes as its public interface.
Therefore, a gateway is needed to convert the calls. As C is a non-object language (unlike
Java or C++), all the object behavior in the traffic between them has to be emulated by the
Mixer and the gateway. An extra integer argument, namely handle, is passed in every C
function call to represent the object that cannot be directly passed via C.

6.6.2 Controlling the playback

javax.microedition.media.Player

com.nokia.mid.aai.Reverb

com.nokia.mid.aai.Spectator

com.nokia.mid.aai.Effect

com.nokia.mid.aai.EffectControl

com.nokia.mid.aai.LocationControl

com.nok ia.mid.aai. OrientationControl
javax.microedition.media.VolumeControl

com.nokia.mid.aai.PanControl

com.nokia.mid.impl.Mixer

+ setVolume()
+ getVolume()
+ setPan()
+ setLocation()
+ setSpecLocation()
+ setSpecOrientation()
+ setSpecEnvironment()
+ getSpecEnvironment()

com.nokia.mid.aai. impl.
PanCtrl

+ setPan()
+ getPan()

Volum eControl
implementation

+ setMute()
+ isMuted()
+ setLevel()
+ getLevel()

com.nokia.mid.aai.impl.
ReverbImpl

+ getPreset()
+ setPreset()
+ getPresetNames()

Player implementation

doSetLevel()
+ doSetPan()
+ doSetLocation()
+ getControl()
+ getControls()

1

1

1

1

1

1

1

1

com.nokia.mid.aai.impl.
OriCtrl

+ setOrientation()
+ getHeading()
+ getPitch()
+ getRoll()

com.nokia.mid.aai.impl.
EffCtrl

+ createEffect()
+ insertEffect()
+ getEffectNames()
+ removeEffect()
update()

0..n1 0..n1

com.nokia.mid.aai.impl.LocCtrl

+ setCartesian()
+ setSpherical()
+ getX()
+ getY()
+ getZ()

1

1

1

1

com.nokia.mid.aai.impl.SpecImpl

+ isClosed()
+ close()
+ getControl()
+ getControls()
doGetControl()
doSetLocation()
doSetOrientation()
doSetSpecEnvironment()
doGetSpecEnvironment()

1

1

1

1

uses

1

1

1

1

1

1

1

1

com.nokia.mid.
aai. impl .Trig

+ sin()
+ cos()

uses

Figure 23. The architecture from the control point of view. Only the relevant methods are shown.

Figure 23 illustrates how the different Controls are implemented and also how a Spectator
is added parallel to Player.

SpecImpl class implements the Spectator functionality. It uses Mixer, likewise Player, to
control the native audio engine. Parameters that a Spectator controls are all global so no
instance of Mixer is needed to be associated; only calling the Spectator related static
methods of Mixer is enough.

Controls supplementing a Player are the original VolumeControl implementation together
with author’s PanCtrl implementing PanControl, and LocCtrl implementing
LocationControl. Spectator’s Control implementations by the author are OriCtrl
implementing OrientationControl, EffCtrl implementing EffectControl, and the same
LocCtrl that can also control Player.

All the Controls work so that when they are asked to modify some associated audio
processing parameter they call the associated method of their “host”. These associated
methods are named with a prefix “doSet”. For instance, when the application programmer
wants to turn the Spectator in the virtual world, he or she calls Spectator’s

Advanced audio API 55

OrientationControl’s setOrientation method and gives the new orientation. In practice,
OriCtrl.setOrientation is called and it passes the new orientation to
SpecImpl.doSetOrientation that furthermore passes the new orientation angles to
Mixer.setSpecOrientation.

LocCtrl is the only Control that needs direct native support in this API. LocCtrl needs
trigonometric functions to convert the coordinates given in spherical coordinate system to
the Cartesian coordinate system. Unfortunately, neither MIDP 1.0 nor CLDC 1.0 provides
trigonometric functions, so a helper class Trig was build. Trig gives access to the native
sine and cosine implementations.

EffCtrl that implements EffectControl functionality provides programmer a factory
method, namely createEffect, to instantiate various Effects. The only effect
implementation available here is ReverbImpl that implements the Reverb interface.
ReverbImpl provides all 30 presets that “IA-SIG Interactive 3D Audio Rendering
Guidelines (Level 2)” [I3DL2 1999] describes, not just the subset that the AAI requires.
Reverb settings work in the way that when the application programmer calls the
ReverbImpl.setPreset the EffCtrl’s protected method update is called. EffCtrl.update reads
the associated ReverbImpl’s settings and then passes them to
SpecImpl.doSetSpecEnvironment that passes them further to the Mixer. EffCtrl.update
checks that the Reverb is inserted into the EffectControl before sending any parameters
further.

The whole architecture of the reference implementation was redesigned many times
during the work to make it iteratively compact, simple and efficient. For each iteration,
some methods or even whole classes were dropped and the implementation became more
compact.

Advanced audio API 56

7. A demonstration application

A demonstration MIDP application was build both for demonstrating and testing the novel
API. In this chapter, the features of the demonstration MIDlet are first described and then
the implementation is gone through.

7.1 Description

The demonstration MIDlet consists of a house where the user can walk around. He or she
can walk through corridors and enter different rooms. Besides the user, there are other
creatures in the house. They also move around the house, but their movement cannot be
controlled: it is random.

Different creatures make different sounds. There are, for instance, dogs, different kind of
birds, and some musicians performing opera. The creatures act as point sound sources in
the virtual acoustical world and the user hears their relative direction. The relative
directions change constantly while the sources and the user move in the virtual world.

Different rooms in the house have different kind of acoustical conditions. The reverb
setting in use is dependent on the room where the user in the particular moment is located
in. The locations of the sound sources are monitored constantly and compared with the
room coordinates; those sources that are in the other rooms behind a door are completely
occluded.

In addition to the virtual acoustical world, there is a graphical user interface where all the
sources and the user are visible in the floor plan. The floor plan turns and scrolls while the
user moves. So the user is always visible constantly on the center of the screen and facing
upward. The user has five actions that he can do: move a step forward or backward, turn
ten degrees left or right, or, by pressing “fire” button, change actively the reverb setting of
the room where he is located at the moment. The display shows the coordinates of the user
in millimeters, user’s rotation in degrees, and the reverberation preset of the room. The
graphical user interface is visible in Figure 24.

A demonstration application 57

Figure 24. A screenshot of the AAI reference implementation with the demonstration MIDlet running. The
faces on the screen illustrate the sound sources. The listener is visible on the center of the screen.

7.2 Implementation

The MIDlet is constructed so that it has four major classes that form the core of the
program. These classes are Source that represents a sound source; Spy that represents the
user; House that contains the information of the floor plan and geometrical routines; and
MansionCanvas that takes care of instantiating all the other important objects, painting the
graphics and reacting on user’s key presses. Additionally, there are smaller classes that
provide necessary auxiliary processing for the main classes. The structure of the program
is shown as a class diagram in Figure 25.

Source has a Player instance to take care of the sound playing. A LocationControl is used
to update the position of the sound source. Source has also a run method that is called
from a separate thread. The run updates the location of the Source repeatedly in a random
way. Additionally, Source has a draw method that is called by MansionCanvas.paint when
the Source is drawn to the GUI.

Spy represents the user in the virtual world. Spy has a Spectator instance to take care of
the room and listener modeling. LocationControl and OrientationControl are used to move
the virtual user accordingly when the user moves and a Reverb created by an
EffectControl is used to model the reverberation properties of the room. When the user
walks to another room the Reverb settings are changed accordingly.

A demonstration application 58

Runnable

MIDlet

StaticSource

+ run()

FastSource

+ run()

Trig

Canvas

MansionMidlet

House
- ROOMS int[][]

+ isInside()
+ inWhichRoom()
+ presetName()
+ presetNameByIndex()
+ draw()

Player

LocationControl

Source
- x : int
- y : int

+ start()
+ stop()
+ setLocation()
+ run()
+ draw()

1 11 1

creates

Effect

uses

MansionCanvas

paint()
+ keyPressed()11 11

1

1

1

1

7

1

7

1

Spectator

LocationControl

creates

EffectControl

creates

Reverb

creates

OrientationControl

Spy
- specX : int
- specY : int
- specRot : int

+ rotateLeft()
+ rotateRight()
+ moveForward()
+ moveBackward()

1

1

1

1

11 11

uses

creates

uses

Figure 25. The classes of AAI demonstration MIDlet. Only the most relevant methods and associations are
shown.

House has the geometry and reverberation settings of each room in the building stored.
House has a draw method that draws the floor plan based on this stored geometry when it
is called from MansionCanvas.paint. Additionally, House provides collision detection
calculation routines that are used by the Source and Spy to prevent walking through the
walls.

MansionCanvas instantiates the House, the Spy, and all the Sources. It also creates
separate threads for every Source to run Source’s random movement routines.
MansionCanvas.paint takes care of painting all the graphics on the screen, but it is assisted
by subroutines Source.draw and House.draw that paint their part of the graphics.
Furthermore, MansionCanvas reads the user input and redirects the user commands to
appropriate objects providing also the source occlusion calculations during the paint
routine.

Besides the main classes presented above, helper classes are needed. Trig provides support
for trigonometric operations that Source, House and Spy need to use. Sine and cosine are
not part of CLDC 1.0 or MIDP 1.0 so those functions are provided by Trig and also
coordinate transformations between Cartesian and spherical coordinate systems are there.
Besides Trig, Source has two inheritors: StaticSource and FastSource. They extend
Source’s functionality by overriding the run method. StaticSource does not move at all
and FastSource, on the other hand, moves much more than an ordinary Source.

A demonstration application 59

8. Conclusions

The problem addressed in this thesis was how to access and control audio processing
features of a modern portable communications device.

As a background, psychoacoustics and its application in virtual acoustics were reviewed.
On the other hand, traditional ways to access audio processing features from a computer
program were studied and considered. These ways were five different programming
interfaces common in the desktop computing nowadays. Moreover, one interface
specifically designed mainly for media playback and recording in mobile devices was also
studied. This interface formed the basis for the own work done in this thesis.

As the main result, this thesis presented one new interface to control audio processing in a
mobile information device. This interface was implemented and a demonstration
application was build on top of it.

All the APIs described in this thesis including the novel API were compared. The main
found lacks of the novel API could be stated to be the following. It is incapable to control
the resource consumption of the audio processing. This feature could be relatively
important to have, because we are talking about resource limited mobile devices. It could
be easily gained by setting priorities for various sounds. Another lacking relatively
important feature is the automatic calculation for the occlusion and obstruction caused by
obstacles, such as walls, in the virtual acoustical space. This would need a definition
system for the room geometry to the API. That would considerably make the API bigger.

Otherwise, this novel API designed for the mobile world was capable of doing many of
the same things as bigger APIs of the desktop computing world. The novel API was
designed to be both lightweight and easy to use, and as the matter of fact, the first actual
user of the API professed to have learned the API in one hour.

As the interface presented is concentrated on audio signal processing, a possible future
work could provide a similar interface for video signal processing.

Conclusions 60

9. References

[A3D] “A3D 3.0 API Reference Guide”, Aureal Inc., 2000.

[Blauert 1997] Blauert, “Spatial hearing: the psychophysics of human sound
localization”, Revised Edition, The MIT Press, 1997.

[CLDC 2000] “CLDC Specification, V1.0a“, <URL:
http://jcp.org/aboutJava/communityprocess/final/jsr030/>

[CLDC 2003] “CLDC Specification, V1.1“, <URL:
http://jcp.org/aboutJava/communityprocess/final/jsr139/>

[COM] “Component Object Model technologies”, www site,
Microsoft Corporation, <URL:
http://www.microsoft.com/com/>

[Creative] “Environmental Audio Extensions: EAX 2.0”, version 1.3,
Creative Technology Limited, 2001.

[DirectX 9.0 2002] “DirectX 9.0 Programmer’s Reference”, Microsoft
Corporation, 2002

[Goldstein 1999] Goldstein, “Sensation and Perception”, the fifth edition,
Brooks/Cole Publishing Company, 1999.

[Hagen, Muschett
2002]

Hagén, Muschett, “Gamer’s Guide to 3D sound and reverb
APIs”, updated January 8, 2002, <URL:
http://3dsoundsurge.com/features/articles/APIs/APIs.html>

[Horstmann, Cornell
1999]

Horstmann, Cornell, “Core Java 1.2 Volume 1-
Fundamentals”, 1999.

[Huopaniemi 1999] Huopaniemi, “Virtual Acoustics and 3-D Sound in Multimedia
Signal Processing”. Libella Oy, Espoo, Finland. The report
series of Helsinki University of Technology, Laboratory of
acoustics and audio signal processing, 1999.

[I3DL2 1999] “IA-SIG Interactive 3D Audio Rendering Guidelines (Level
2)”, MIDI Manufacturers Association, Sep. 20, 1999. <URL:
http://www.iasig.org/wg/closed/3dwg/3dl2v1a.pdf>

[JAVA3D 2002] ”Java 3D 1.3 API Documentation”, 2002. <URL:
http://java.sun.com/products/java-
media/3D/forDevelopers/J3D_1_3_API/j3dapi/>

References 61

http://jcp.org/aboutJava/communityprocess/final/jsr030/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://www.microsoft.com/com/
http://3dsoundsurge.com/features/articles/APIs/APIs.html
http://www.iasig.org/wg/closed/3dwg/3dl2v1a.pdf

[JCP 2001] “JCP 2: Process Document “, Sun Microsystems, Inc., 2001.

<URL: http://jcp.org/procedures/jcp2/>

[Karjalainen 1999] Karjalainen, “Kommunikaatioakustiikka”, korjattu esipainos,
Libella Oy, Espoo, Finland. The report series of Helsinki
University of Technology, Laboratory of acoustics and audio
signal processing, 1999.

[Kovach 2000] Kovach, “Inside Direct3D”, Microsoft Press, Washington
2000

[Kujala, Paavola 2002] Kujala, Paavola, “Virtual Teleconferencing”, course work for
Audio Signal Processing, Helsinki University of Technology,
2002.

[KVM 2001] “KVM Porting Guide”, Version 1.0.3, Sun Microsystems,
Inc., 2001.

[Lindholm, Yellin
1999]

Lindholm, Yellin, “The Java Virtual Machine Specification”,
Second Edition, Addison-Wesley, 1999.

[M3D 2003] “JSR 184; Mobile 3D Graphics API for J2ME”, www page,
<URL: http://jcp.org/en/jsr/detail?id=184>

[MaxxVerb 2000] “Waves’ MaxxVerb ‘Reverberation’ Technology Integrated
into Microsoft’s DirectX Media Object Architecture in
DirectX 8”, Press Release, Waves, Ltd., 2000, <URL:
http://www.waves.com/htmls/press/maxxverb_pr.html>.

[MIDP 2000] “MIDP Specification, V1.0a“, <URL:
http://jcp.org/aboutJava/communityprocess/final/jsr037/>

[MIDP 2002] “MIDP Specification, V2.0“, <URL:
http://jcp.org/aboutJava/communityprocess/final/jsr118/>

[Moore 1997] Moore, “An introduction to the psychology of hearing”, The
Fourth Edition, Academic Press, Inc., 1997

[MPEG] “The MPEG Home Page”, <URL:
http://mpeg.telecomitalialab.com/>

[OPENAL] “OpenAL | Open Source Audio Library”, a www page, <URL:
http://www.openal.org/>

[Pereira, Ebrahimi
2002]

Pereira, Ebrahimi (editors), ”The MPEG-4 book”, Prentice
Hall, 2002.

[Riggs et al 2001] Riggs, Taivalsaari, VandenBrink, “Programming Wireless
Devices with the Java 2 Platform, Micro Edition”, Addison
Wesley 2001.

[Savioja 1999] Savioja, “Modeling Techniques for Virtual Acoustics”,
Helsinki University of Technology, Telecommunications
Software and Multimedia Laboratory, Report TML-A3, 1999.

References 62

http://jcp.org/procedures/jcp2/
http://jcp.org/en/jsr/detail?id=184
http://www.waves.com/htmls/press/maxxverb_pr.html
http://jcp.org/aboutJava/communityprocess/final/jsr037/
http://jcp.org/aboutJava/communityprocess/final/jsr118/
http://mpeg.telecomitalialab.com/
http://www.openal.org/

<URL: http://www.tml.hut.fi/~las/publications>

[Siemens 2002] “Siemens scientists develop 3-D streaming speech
technology”, press release, <URL:
http://www.siemens.com/>, Princeton, New Jersey, February
12, 2002.

[Stautner, Puckette
1982]

Stautner, Puckette, “Designing multichannel reverberators”,
Computer Music Journal, 6(1):52-65, 1982.

[Sun 2000] “Java 2 Platform Micro Edition (J2ME) Technology for
Creating Mobile Devices”, Sun Microsystems, Inc., 2000.

[VRML97] “Information technology -- Computer graphics and image
processing -- The Virtual Reality Modeling Language (VRML)
-- Part 1: Functional specification and UTF-8 encoding“,
ISO/IEC 14772-1, 1998.

[Walsh, Gehringer
2002]

Walsh, Gehringer, “Java 3D API jump-start”, Prentice-Hall,
Inc., 2002.

[Zölzer 2002] Zölzer (editor), “DAFX – Digital Audio Effects”, John Wiley
& Sons, Ltd, 2002.

References 63

http://www.tml.hut.fi/~las/publications

Appendix 1: AAI example code 64

10. Appendix 1: AAI example code

 //
 // creates two sound sources into an alley
 //
 void createAudioScene() {
 try {
 Player p1 = Manager.createPlayer("http://abc.wav");
 Player p2 = Manager.createPlayer("http://def.wav");
 Spectator s = Manager.createSpectator("");
 p1.realize();
 p2.realize();

 //set the source one 10 meters away to the front
 LocationControl lc_player1;
 if ((lc_player1 =

(LocationControl)p1.getControl("LocationControl"))
 != null) {
 lc_player1.setUnitsPerMeter(1000);
 lc_player1.setCartesian(0, 0, -10000, 0);
 }

 //set the source two 5 meters away to the right
 LocationControl lc_player2;
 if ((lc_player2 =

(LocationControl)p2.getControl("LocationControl"))
 != null) {
 lc_player2.setUnitsPerMeter(1000);
 lc_player2.setCartesian(5000, 0, 0, 0);
 }

 // set the listener to origin
 LocationControl lc_spec;
 if ((lc_spec =

(LocationControl)s.getControl("LocationControl"))
 != null) {
 lc_spec.setUnitsPerMeter(1000);
 lc_spec.setCartesian(0, 0, 0, 0);
 }

 // set global reverb
 EffectControl globalEffectC;
 if ((globalEffectC =
 (EffectControl)s.getControl("EffectControl"))
 != null) {
 Reverb reverb =

(Reverb)globalEffectC.createEffect("Reverb");
 reverb.setPreset("alley");
 globalEffectC.insertEffect(reverb);
 }

 p1.prefetch();
 p2.prefetch();
 p1.start();
 p2.start();
 } catch (MediaException pe) {
 } catch (IOException ioe) {
 }
 }

	Introduction
	Psychoacoustics
	Physiology of the ear
	The outer and the middle ear
	The inner ear

	Critical bands and masking
	Loudness
	Pitch
	Timbre and coloration
	Localization
	Localization cues
	Precedence effect

	Virtual Acoustics
	Source modeling
	Room modeling
	Methods
	Attenuation and absorptions

	Listener modeling
	3-D sound reproduction
	Headphone reproduction
	Loudspeaker reproduction
	Multichannel reproduction

	A typical DSP implementation

	Existing 3D audio APIs
	Java 3D API
	High-level
	Concept of scene graph
	Sound sources in Java 3D
	Virtual acoustical environment in Java 3D
	Physical real acoustical environment in Java 3D

	MPEG-4
	Coding of Audio-Visual objects
	Structured Audio
	BIFS
	AudioBIFS
	Advanced AudioBIFS

	A3D
	IA3d5
	IA3dListener
	IA3dSource2
	IA3dReverb
	IA3dGeom2 and IA3dList
	IA3dMaterial

	DirectX audio
	IDirectMusicLoader8
	IDirectMusicSegment8
	IDirectMusicPerformance8
	IDirectMusicAudioPath8
	IDirectSoundBuffer8
	IDirectSound3DBuffer8
	IDirectSound3DListener8
	Reverberations and other effects

	EAX
	The listener property set
	The sound-source property set

	Java 2 Micro Edition
	Different Java Platforms
	Configurations
	Connected, Limited Device Configuration

	Profiles
	Mobile Information Device Profile

	Mobile Media API
	Features
	Structure
	Controls

	Java Community Process

	Advanced audio API
	Goals
	Targeted users
	Targeted platforms

	Features
	General
	Source localization
	Reverb
	Equalizer
	Effects

	Process
	Interface
	Spectator
	LocationControl and OrientationControl
	PanControl
	EQControl
	Effect, EffectControl, and PlayerEffectControl
	Reverb
	Chorus

	Comparison to other 3D audio APIs
	Geometry
	Room effect
	Source directivity
	Effects
	Resource consumption control

	Reference implementation
	Playback architecture
	Controlling the playback

	A demonstration application
	Description
	Implementation

	Conclusions
	References
	Appendix 1: AAI example code

