

Jyri Pakarinen 27.5.2004 Helsinki University of Technology Laboratory of Acoustics and Audio Signal Processing

Contents

- The problem: modeling nonlinear strings
- Part I: Digital waveguide (DWG) approach
- Construction of the kantele string model
- Part II: Finite difference time-domain (FDTD) approach
- Sound examples
- Conclusions

Problem: Physical modeling of a nonlinear vibrating string

- Real string vibration elastic (nonlinear)
- Tension modulation results in
 - Initial pitch glides
 - Generation of missing harmonics
- We want to construct a computational model which simulates this behavior

Part I

Digital waveguide (DWG) approach

(((-)))

Linear string model: Theory

• Vibration of a string can be modeled by the 1-D wave equation:

$$K\frac{(\partial^2 y)}{(\partial x^2)} = \epsilon \frac{(\partial^2 y)}{(\partial t^2)}$$

 $((\circ))$

1

• Traveling wave solution:

$$y(x,t) = y_r(t-x/c) + y_1(t-x/c)$$

• Can be implemented as two delay lines!

Linear string model: DWG example

((-))

Nonlinear DWG string model

Time-varying allpass filters distributed along the string in order to modulate delay line lengths

(0)

Nonlinear DWG string model (cont.)

Interaction possible during run-time

Left-proceeding velocity wave

Time integrated sum of velocity waves a.k.a. string displacement

Kantele string model

Vibrational polarizations have different lengths

((-))

 $v_{v}(n)$

 $Z_{ybridge}$

String model of horizontal polarization

1

Uses two nonlinear DWG models with slightly different lengths

Kantele string model (cont.)

Uses two nonlinear DWG models with slightly different lengths

 $((\circ))$

Kantele string model (cont.)

Uses two nonlinear DWG models with slightly different lengths

((0))

Part II

 $((\circ))$

1

Finite difference timedomain (FDTD) approach

Linear FDTD string

(0)

1

Derivatives approximated with differences in the wave equation

• y(n+1,m) = y(n,m-1) + y(n,m+1) - y(n-2,m)

Nonlinear FDTD string

Processing speed of the linear FDTD string can be modulated by interpolating in time

Synthesis results

Fundamental frequency glide modeled realistically by both models

(0)

Synthesis results

The DWG approach synthesizes better the generation of missing harmonics

Sound examples

- Nonlinear DWG string was plucked at 1/3 of its length
- Allpass-coefficient scaling was varied
- A = 0 (linear string)
- A = 0, 0.2, 0.4, ... 1
- A = 5 (exaggerated nonlinearity)

((0))

Conclusions

- Two physical models for simulating nonlinear strings were presented
- In the DWG approach, <u>time varying allpass</u> <u>filters</u> were used in modulating the delay line lengths
- In the FDTD approach, <u>interpolation</u>
 <u>between time samples</u> was used in modulating the time step of the algorithm

