Acoustic Timbre Enhancement of Guitar Pickup Signals with Digital Filters

 $((\circ))$

Henri Penttinen

Helsinki University of Technology Laboratory of Acoustics and Audio Signal Processing Espoo, Finland

CONTENT

How to make a guitar pickup signal sound natural ?

• WHY ??

(((-))

- REASON
- SOLUTION
 - Methods
 - Measurement setups
- Changing the perceived size of a guitar body
- Discussion and future work
- Conclusions

WHAT'S THE PROBLEM ?

Quality reproduction of guitar pickup signals can be problematic in concert situations

- External microphone
 - + Natural timbre
 - Acoustic feedback
 - Crosstalk

(((-)))

Cannot move freely

- Internal microphone
 - Unnatural timbre
 - + Less acoustic feedback
 - + NO crosstalk
 - + Free to move

Henri Penttinen

4

WHAT ARE WE MISSING ?

EFFECT OF GUITAR BODY:

 $((\odot))$

- Amplifies and colors string vibrations
- Typically two strong body resonances (80-200Hz)
 Size does matter ~ SIZE DEPENDENT
- At high frequencies more resonances

5

- A body model filter approximates the important characteristics:
 - Discrete resonances (low frequency)
 - Reverberation (high frequencies)
- Implemented with digital filters

MEASUREMENT SETUP

Two signals are recorded simultaneously
1. Microphone 1 m in front of soundhole

· 2. Bridge pickup

(((-)))

Henri Penttinen

m

RESPONSES PART I

Body model filter for steel stringed acoustic guitar

1

Steel stringed

(((-)))

Microphone Guitar pickup Filtered

SAME THING BUT WITH NYLON STRINGS

Body model filter for classical acoustic guitar

Classical guitar

(((-)))

Microphone Guitar pickup Filtered

Henri Penttinen

9

TRANSFORM AN ELECTRIC GUITAR TO AN ACOUSTIC ONE

- I) Same measurement setup as before
 - DIFFERENCE: magnetic pickup (works only for steel strings)

OR

 $((\square))$

- II) Modified Impulse Response (MIR)
 - Boost high frequencies (both steel and nylon strings)
- Magnetic pickup behaves as a lowpass filter (*fc* = 2-5kHz)
 Body models reverse this effect

Master's Thesis Presentation

Henri Penttinen

RESPONSES PART II

THE RETURN OF THE RESPONSES

Body model filter for electric guitar

(((-))

Steel stringed acoustic Electric guitar Filtered (II, steel stringed) Filtered (II, nylon stringed) Filtered (I)

Distorted & clean (no filtering) Distorted & clean (Stereo = I & II)

DIFFERENT FILTER STRUCTURES

- Finite Impulse Response (FIR) filters – Orders 300 to 5000 (typical 1000)
- Infinite Impulse Response (IIR) filters
 - Design methods: Linear prediction and Prony's method (orders 300 to 1000)
- FIR is the best

 $((\circ))$

DIFFERENT FILTER STRUCTURES II

- Frequency-warped filters (WFIR & WIIR orders 100-200)
 - Unit delays replaced with allpass sections
 - Frequency resolution can be altered
 - Improves performance of IIR filters
 - Further improved by cascading two warped filters

 $((\circ))$

DIFFERENT FILTER STRUCTURES III

- Reverb algorithms can also be used
 - Short delay lines produce a colored response
 - Computationally very efficient
 - Accurate control not possible
 - Original 🍕 Reverb I 🍕 Reverb II 🐗
- Model separately the two low frequency modes

- Improve control and efficiency

 $((\cdots))$

CHANGING THE PERCEIVED SIZE

- Low frequency resonances size-dependent
- Alter frequency resolution with frequencywarped filters (WIIR)
- Resonance frequencies are changed with ONE parameter
- Listening tests confirm

((10))

• Possible but not straightforward

CHANGING THE PERCEIVED SIZE II

- Musically two concepts
- I) Stepwise: change after a measure of a riff Original \rightarrow Smaller 4Original \rightarrow Larger 4
- II) Continuos: resembles the phaser-effect

Electric guitar with a truly

flexible and time-variant body 4

Master's Thesis Presentation

(((-)))

Henri Penttinen

DISCUSSION & FUTURE WORK

- Anechoic vs. reverberant conditions
- Directional hearing
- Measurement setups and microphones
- Acoustic feedback during live performance
- Model for string finger/nail/plectrum interaction
- Only for guitars ?

((1))

CONCLUSIONS

- The response of a guitar body can be modeled and applied for pickup signals
 - Improve the response of an acoustic guitar & make the electric guitar sound more like an acoustic guitar
- Improve the sound quality in live performance situations
 - -No need to switch between guitars (electric guitar)
- The perceived size of a body can be altered
- Sound effects that run in real-time