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Chapter 1

Introduction

This thesis deals with the automatic extraction of information from audio material. More
specifically, it is a review of the most important techniques of digital signal processing and
pattern recognition that find application in the automatic extraction of categorical audio
content descriptors. From a slightly different perspective, the problem domain is automatic
recognition - i.e., segmentation and classification - of sounds. This study also provides
an overview of the different practical applications in which such information extraction
has been useful as well as a discussion of the ways in which the algorithms are typically
combined in these applications.

Digitally stored multimedia material is currently a rapidly growing resource due to the
ongoing technological advancement in data storage, communications and computing. In
only recent years, it has become widely possible to transfer long audio and video files via
the internet with an acceptable delay. The storage capacities of portable multimedia devices
and personal computers have been rapidly increasing. The amount of available digital mul-
timedia information is beginning to overwhelm the capacity of humans to manage and orga-
nize it. Thus, computerized solutions for automatic organization of the multimedia material
are an attractive approach to access the content efficiently. Because of this, information
retrieval is an important field of application for automatic audio recognition. Besides audio
material, the indexing and retrieval of (audiovisual) video material also benefits from audio
recognition. The MPEG-7 standard supports multimedia content analysis and retrieval by
specifying an interface for content description by attaching metadata to multimedia content.
The analysis methods introduced in this study are applicable in this context.

Besides retrieval applications, another important type of recognition application for audio
is automatic transcription. It refers to using computer-aided methods for transcription -
i.e., generating a sequence of class labels - in order to save human labor; examples include
speech dictation and music transcription applications. While information retrieval uses

1



CHAPTER 1. INTRODUCTION 2

automatic recognition results as content descriptors to accomplish the search, transcription
can directly use the recognition results as output.

Automatic audio recognition is also central in some user interfaces and surveillance ap-
plications. It is also frequently useful in application areas such as coding, enhancement and
synthesis.

The methods discussed in this thesis should be regarded as general building blocks of
audio recognition systems. They may find use as components of solutions in a wide array
of specific applications. To mention only a few examples, such applications include:

• Audio content analysis to locate speech and music segments in broadcast audio

• Speech-to-text dictation transcription (by automatic speech recognition)

• Search of a specific speech file based on query words (by automatic speech recogni-
tion)

• Query by humming to retrieve a piece of music based on its melody

• Automatic chord transcription of a piece of music

• Real-time audio surveillance

Many of the techniques used in these problems have originally been developed for au-
tomatic speech recognition (ASR), for which an impressive amount of research efforts has
been invested over decades. To cover ASR comprehensively would be largely out of the
scope of this thesis, as this very challenging problem entails important aspects other than
just pattern recognition of audio signals. The domain knowledge used in designing ASR
systems necessarily includes various aspects of speech communication and linguistics, as
well as the mechanisms humans use for understanding and decoding speech. However, the
basic techniques of the acoustic modeling part of ASR, such as the auditory feature extrac-
tion methods and the hidden Markov models, are central from the perspective of other audio
recognition applications as well. Many music-specific recognition applications also involve
a fair amount of domain knowledge related, for example, to the theory of music. It would
likewise be beyond the scope to go in too deeply into domain specifics in music analysis.

The main focus of the study is on the recognition of content classes that are clearly domi-
nant in a mono signal when they appear, i.e., not too severely corrupted by interfering sound
sources. However, simple methods for increasing robustness against stationary or slowly
changing background noise are included in the discussion on signal processing. The prob-
lem of separating competing, nonstationary sound sources such as different speakers in a
complex auditory scene - essentially the “cocktail-party” problem - belongs to a related field



CHAPTER 1. INTRODUCTION 3

of research often referred to as computational auditory scene analysis (CASA) [27]. While
this study reviews some of the auditory foundations of CASA and presents algorithms that
can find use in sound source separation, it is not intended to cover these areas of research.
In particular, multichannel analysis methods are outside the scope of this thesis.

Mathematical formulas given for the signal processing and pattern recognition methods,
while for the most part sufficient for computer implementation, are primarily intended to
illustrate a “basic form” and the principle of each method rather than to represent the com-
putationally most efficient implementation.

Human auditory perception is reviewed in Chapter 2, because the modeling of auditory
perception allows more efficient signal representations and classification methods for audio
recognition. The most common signal processing techniques used in preprocessing and
feature extraction are discussed in Chapter 3. The acoustic features are given as input to
pattern recognition methods discussed in Chapter 4. Chapter 5 contains a survey of some
published audio classification systems that can be considered representative of different
application domains and of different approaches to solve the recognition problem. Chapter
6 summarizes the main findings and presents the author’s conclusions.

1.1 On Pattern Recognition

Pattern recognition is one of the central themes in this thesis. For the present purpose and
scope, a pattern is informally defined as any combination of observable qualities (features)
that serves either as a model for replication or an exemplar thereof, i.e., is not just an
“uninteresting” random combination of such qualities. What is “interesting” is determined
by the kind of pattern classes or categories considered; every pattern has an associated class
of which the pattern is an exemplar.

Pattern recognition can be informally defined to mean the combined act of 1) detecting
the presence of patterns in data (pattern segmentation) and 2) identifying the class which
each detected pattern represents (pattern classification) 1. In other words, pattern recogni-
tion answers two questions: where are there patterns in the set of observed data and which
are the class labels of those patterns. Segmentation answers the where question and classi-
fication answers the which question.

A distinction is made between supervised and unsupervised pattern recognition. Unsu-
pervised pattern recognition creates the pattern class specifications directly from the data
“on the fly”, identifies single-class segments and assigns them to the generated classes. In

1In case the data has already been segmented such that each observation is a single pattern which can be
considered to be uniquely associated with a single class segment, pattern recognition is equivalent to pattern
classification.
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supervised pattern recognition, the pattern class specifications are already known and the
problem is to segment and classify the observations so as to label each observation with the
identity of some such predefined class.

The canonical pattern recognition system consists of three modules: preprocessing of
measurement data, extraction of features from the preprocessed data and the recognition of
patterns in the multidimensional space spanned by the feature variables (feature space) [28]
[120]. These modules and their roles in audio signal recognition applications are discussed
more fully below.

Figure 1.1: A general diagram of a supervised audio content recognition system.

Figure 1.1 shows a diagram of a supervised audio classification/recognition system. The
system is first trained in the training phase, shown in the upper half of the diagram. The
actual use of the system is called the recognition phase, shown in the lower half of the
diagram. In unsupervised recognition, there is no separate training phase nor labeled train-
ing data. Instead, the training and recognition phase are equivalent in unsupervised pattern
recognition, as the pattern class descriptions themselves are formed in the same process in
which their presence in the data is detected. When “training” is mentioned below, it should
be taken to refer generally to the process used to define the pattern classes, whether in the
training phase of supervised pattern recognition or in the course of unsupervised pattern
recognition.
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Preprocessing is a set of operations performed on a “raw” digital signal. Preprocessing
does not change the essential representation of the data, only some of its qualities. Such
operations may include, for example, sampling rate conversion, filtering by a constant pre-
emphasis filter, as well as enhancement operations.

Feature extraction is used to convert the digital signal into a sequence of acoustic fea-
ture vectors. This requires the feature extraction module to segment the digital signal in
time into successive blocks such that each segment block can be associated with a single
pattern class (while any “true” class segment can be represented by more than one feature
vector; this is called oversegmentation). Feature vectors are typically computed from signal
blocks of constant length short enough to make the “single class” assumption valid; the
feature vectors are sampled using a constant interval (often in the order of milliseconds). In
this case, oversegmentation is drastic and the task of segmentation is essentially left to the
recognition module.

Feature extraction may also begin by explicit segmentation of the signal into presumable
single-class segments, after which one segmental feature vector is produced to describe
each segment. These segmental feature vectors are sampled nonuniformly in time. In this
case, the recognition module can concentrate more on pattern classification, although some
oversegmentation may still be present and additional smoothing of the class decisions may
have to be performed in order to eliminate suspiciously short (and potentially erroneously
labeled) class segments.

Feature extraction has the important task of reducing the dimensionality of the data in
order to avoid the effects of the curse of dimensionality [28] which is an ubiquitous problem
in pattern recognition. The curse of dimensionality refers to the fact that the more high
dimensional is the feature space in which the recognition module must try to model pattern
class boundaries, the more training data is required. The amount of required training data
grows linearly as a function of unit volume in the feature space and thus exponentially as
a function of the number of features [120]. If the curse of dimensionality would not have
to be dealt with, feature extraction might not be necessary as patterns could be identified
directly from the (preprocessed) digital signals.

Feature selection is an important issue which must be addressed in designing the feature
extraction module. It refers to deciding which features to include in the feature vector rep-
resentation. Often, the features are selected using a combination of domain knowledge and
experimentation. Objective methods for feature selection exist and can be applied to a basic
set of features selected by the domain expert [44]. Because of the curse of dimensionality,
it is important to limit the number of features to those that help in the classification. The
way to accomplish this is not to simply aim for minimal correlation among the features,
however, because in such process important class-discriminatory information will typically
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be lost. While it is true that in a pair of two features with a correlation coefficient of unity,
the other feature is completely redundant, it is not true that high correlation between two
features automatically renders one of them useless. As stated in [44], very high variable
correlation or anti-correlation does not mean absence of variable complementarity in terms
of pattern class discrimination. In fact, since in reality it is hard to come by features that
are truly orthogonal and at the same time helpful in separating the desired pattern classes,
it is actually likely that a feature that is highly correlated with another feature having good
class discrimination power is itself also a good discriminant between the same classes -
maybe offering some additional useful information. Moreover, it is stated in [44] that a
variable that is completely useless by itself can provide a significant performance improve-
ment when taken with others. This could not happen either if the variables were required to
be completely orthogonal.

When the patterns belonging to different classes form distinct, well-separated clusters in
the feature space defined by the selected features, pattern recognition is easy. For example,
if the classes form a clear clustering in a one-dimensional space spanned by a single feature,
classification reduces to simple thresholding of the feature value. On the other hand, if the
classes are badly overlapping in the feature space, it is often very hard to come by with
a classification solution that will separate them. Firstly, this highlights the importance of
generating enough good features. The class discriminatory information that is lost in the
feature representation must be substituted by prior knowledge in the pattern classification
stage, if the classes are to be separated. Secondly, if a clustering structure is desired in order
to make pattern recognition easier, the features should be carefully selected because includ-
ing irrelevant features is likely to destroy simple clustering structures that could have been
found with a more compact set of good features [68]. All the discussed factors make feature
selection necessarily a compromise between information preservation and parsimony.

Pattern classification could be conceptually viewed as regression of the feature vectors
on a binary vector with as many elements as there are classes in the classification prob-
lem. Each element in this binary vector is 1 if the feature vector pattern belongs to the
corresponding class and 0 otherwise. In fact, many classifier structures do contain separate
regression modules for each class that regress the feature vectors on a continuous-valued
variable (which can be probabilities, for example). The outputs of these regressors are then
compared to achieve the class decision (corresponding to the binary vector). On the other
hand, the continuous-valued regression outputs can be viewed as features themselves. From
yet another viewpoint, the binary vector itself could be viewed as a feature vector fed to a
completely trivial pattern classifier (which just determines the location of the value 1 in the
binary vector), or it could act as a feature vector for a higher-level recognizer dealing with
different classes. As Duda et al [28] point out, there are no particular theoretical reasons
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for making a strict division of processing steps into feature extraction and classification.
The purpose of both tasks is to extract information. In complex solutions with several pro-
cessing stages, it may be hard to draw a single boundary between the feature extraction and
classification stages, as this division depends on the perspective.

1.2 Terminology and Notation

To make the discussion easier to follow, certain conventions have been adopted for both
terminology and notation, with an attempt to follow these guidelines whenever possible.
Table 1.1 lists and defines some of the recurring terminology. Table 1.2 lists mathematical
symbols used throughout to refer to specific things, together with the meanings.
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Table 1.1: Glossary of central pattern recognition terminology as used in this study.
time series a time signal; a discretely sampled sequence of scalar or vector observations

(e.g., a digital audio signal or a sequence of feature vectors computed thereof)
segmentation the act or outcome of dividing a body of data into smaller segments

spatially or temporally
... of a time series temporal segmentation of a time series

classification the act or outcome of assigning segments of data into categories *)
supervised cl. classification with predefined categories
unsupervised cl. classification without predefined categories

pattern recognition the combined act of segmentation and classification **)
unsupervised p. r. the combined act of segmentation and unsupervised classification

transcription (supervised) time series pattern recognition whose main purpose is to produce
a class label sequence that somehow describes the time series

training a procedure for setting the parameters of models used in
supervised pattern recognition

training data data used for setting the model parameters during training
testing the act of evaluating a pattern recognition system
test data data used in the evaluation; in general, a test data set should be

completely disjoint from the training data set
change detection time series segmentation that is independent of any classification and

is related to changes in the short-time statistics of the signal
template a model of the time evolution of feature vectors in a feature vector sequence
smoothing the act of eliminating abrupt changes in a continuous feature

or in an inferred sequence of class labels

*) note that the classification of observations always produces a segmentation, if one does not exist
**) segmentation may be performed independently and used to constrain the classification
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Table 1.2: Some constant notation used in this thesis
N number of observations or signal samples
Fs the sampling frequency of a digital audio signal
d dimensionality of feature vectors in pattern recognition
K the number of points in a discrete Fourier transform

or the number of clusters in unsupervised classification
L the number of retained spectral or cepstral samples
J the number of components in a mixture data model
M the number of classes in pattern recognition
p order of an autoregressive model

sn a digital audio signal (nth sample)
S(z) the z transform of sn

Sk a discrete Fourier transform of sn

ck a cepstrum
cn a truncated cepstral vector cn = (cn,1 . . . cn,L)T

xn a feature vector with d features xn = (xn,1 . . . xn,d)T

X a set or sequence of feature vectors, X = {x1,x2, . . . ,xN}
Xn2

n1
a sequence of feature vectors, Xn2

n1
= {xn1 ,xn1+1, . . . ,xn2}

ω1, . . . , ωM sound class identifiers
λ a data model; especially a model of a probability density function
qn the identity of the mixture component that generated the nth observation,

qn ∈ {1, . . . , J}
un(k) a classification where un(k) = 1 if xn represents class ωk or

a clustering where un(k) = 1 if xn belongs to the kth cluster
yn a class/cluster labeling with yn = argmaxk un,k

µ the mean vector of a multivariate Gaussian distribution
Σ the covariance matrix of a multivariate Gaussian distribution
θk cluster prototype of the kth cluster in a cluster model
bi(x) the probability distribution associated with component i of a

mixture model or a hidden Markov model



Chapter 2

Auditory Perception

The human auditory system consists of two fundamentally different processing regions: the
peripheral and the neural region. Auditory processing begins in the periphery, i.e., the ear,
and continues on the neural level from the cochlea (in the inner ear) through several nuclei
until the auditory cortex. There is also feedback from the higher neural stages back to lower
level nuclei and to the cochlea.

The two main approaches to modeling auditory perception, or parts thereof, are the phys-
iological and the psychoacoustical approach. Models of the former kind are derived from
explicit physiological and anatomical knowledge, while the latter approach produces func-
tional models derived from subjective listening tests. The anatomy and physiology of the
auditory periphery is rather well known, making detailed physiological auditory models
possible. Due to lack of knowledge of the details of neural auditory processing, the prin-
cipal method of modeling the behavior of the higher stages is psychoacoustics. Due to
their relative simplicity, psychoacoustical models are also frequently used for modeling the
periphery.

The psychoacoustical approach involves partial modeling of human perception. At higher
psychoacoustical levels, the perception of sounds can be divided into different compo-
nents: loudness, pitch, timbre and subjective duration [132] [105]. Of these three, fairly
good physical correlates can be found, in the properties of physical sounds, for loudness
(sound intensity), pitch (fundamental frequency) and subjective duration (true duration).
Timbre, however, is a collective name for other perceptual aspects for which no simple
one-dimensional physical correlate can be found [132] [17] [66].

10
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2.1 Peripheral Auditory Processing

Several important psychoacoustical phenomena have their origins in the auditory periphery.
These include the hearing threshold in quiet, the loudness sensation, the frequency masking
phenomenon and the nonuniform frequency resolution of hearing (modeled by, e.g., the
concept of critical bands). Anatomically, the auditory periphery can be partitioned into
the outer ear, the middle ear, and the inner ear (which includes the cochlea). Significant
nonlinear signal processing occurs already in the periphery, mostly in the cochlea. Figures
2.1 and 2.2 show a drawing and a simplified diagram, respectively, of the peripheral auditory
system.

Figure 2.1: The structure of the peripheral auditory system [66].

The outer ear consists of the pinna and the ear canal and is separated from the middle
ear by the eardrum. The pinna is relevant for localization of sound on the front-back axis;
by its asymmetric shape, it makes the ear more sensitive to sounds coming from in front
of the listener than to those coming from behind and thus causes these directions to be
perceived differently. The ear canal can be approximated as a simple acoustic tube open at
one end (pinna) and closed at the other (eardrum). The canal in an adult is between 2 and
3 cm in length and about 0.7 cm in width [90]. Acting as a quarter-wavelength resonator, it
amplifies energy in the range around 4 kHz [132].

The eardrum marks the beginning of the middle ear, an air-filled cavity of about 6 cm3
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the outer ear the middle ear the inner ear

basilar membrane

pinna

ear canal

eardrum

Eustachian tube

malleus stapes

incus

oval window

auditory nerve

Figure 2.2: A simplified diagram of the human ear (after [66]). The cochlear part has been
drawn straight instead of coiled.

in volume that contains the ossicular bones: malleus (hammer), incus (anvil), and stapes
(stirrup). Their function in the hearing mechanism is to linearly transmit eardrum vibra-
tions to the oval window membrane of the inner ear while also doing an acoustic impedance
transformation. The liquid medium in the inner ear has about 4000 times higher an acoustic
impedance than the air medium in the outer ear. The transformation is based primarily on
the large area difference between the eardrum (about 65 mm2) and the stapes (about 3 mm2

[66]), but secondarily also on the lever action of the ossicular bones. The impedance match
is almost perfect in frequencies around 1 kHz [132]. The middle ear filter contributes, to-
gether with the resonance of the ear canal and shadowing and reflection due to the head
and the shoulders, to make the human hearing particularly sensitive to frequencies between
approximately 1 kHz and 5 kHz. Collectively, these mechanical filtering effects are re-
flected in two important frequency-dependent psychoacoustical phenomena: the absolute
threshold of hearing in quiet and the equal loudness sensation. The absolute threshold of
hearing refers to the lowest sound pressure level (SPL) in which a tone is audible at each
frequency. A functional approximation of the threshold for pure tones in quiet as a function
of frequency, pertaining to young listeners with acute hearing [92], is given by [119]

LTH(f) = 3.64
(

f

1 kHz

)−0.8

− 6.5e−0.6(f/(1 kHz)−3.3)2 + 10−3

(
f

1 kHz

)4

dB SPL

(2.1)
The equal loudness level contours for pure tones are specified in the standard ISO-226

[1]. These contours give, for each frequency of a tone and for the loudness level associated
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with each contour, the SPL at which the tone should be heard in order to sound equally
loud as a 1000 Hz tone heard at the SPL equal to the loudness level. Figure 2.3 shows the
hearing threshold according to Eq. 2.1 and the equal loudness contours for eight loudness
levels according to [1], implemented in [118].
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Figure 2.3: Psychoacoustical models of the absolute threshold of hearing [119] and the
equal loudness level contours (for eight loudness levels between 20 and 90 dB) [1] [118].

The cochlea, located in the inner ear, is a coiled tube that forms two and a half turns
[132]. It is filled with two different fluids and consists of three channels (or scalae) which
run together from the base to the apex. Sound waves enter the cochlea from the middle ear
via the oval window, causing vibrations of the fluid called perilymph located in the scala
vestibuli. These vibrations are transferred through the very thin and light Reissner’s mem-
brane to the fluid called endolymph located in the scala media. The vibratory motion is
transmitted through the endolymph to the basilar membrane, along which it proceeds as
traveling waves of vertical displacement of the membrane. A traveling wave begins with
small amplitude near the oval window, grows slowly, reaches its maximum at a certain lo-
cation and then rapidly dies out in the direction of the apex. The basilar membrane varies
gradually in width and density along its length of approximately 32 mm [132]. In the be-
ginning (near the oval window and the round window) it is narrow and stiff but near the
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apex it is compliant and massive. Each location on the basilar membrane responds differ-
ently to sounds in different frequencies. High frequency traveling waves in the inner ear
resonate near the beginning of the basilar membrane, while low frequencies travel across
the membrane and resonate in the apex end. The inner ear thus performs frequency separa-
tion based on resonance location on the basilar membrane. The resolution of this spectrum
analysis is best at low frequencies. This nonuniform frequency resolution is reflected in
psychoacoustical scales, such as the Bark (critical band), ERB and mel scales [66].

On the basilar membrane lies the organ of Corti which contains about 30000 sensory
hair cells, arranged in several rows along the length of the cochlea and the basilar mem-
brane. Basilar membrane vibration in some location causes the affected hair cells to send
electrical impulses up the neural fibers of the auditory nerve. By measuring the electrical
signals traveling in these fibers, it has been found that the voltage spikes corresponding to
stimulation of the hair cells are closely correlated with the mechanical vibration pattern on
the basilar membrane up to frequencies of about 4 or 5 kHz [105]. The spreading effect,
which manifests itself in this excitation pattern of the basilar membrane, gives rise to the
psychoacoustical phenomenon of frequency masking. The excitation pattern also has a clear
connection to the loudness perception [132].

A classical and fundamental concept in the study of hearing and sound perception is that
of a critical band related to the frequency resolution of hearing. A critical band defines a
frequency range in psychoacoustic experiments for which perception abruptly changes as
a narrowband sound stimulus is modified to have frequency components beyond the band.
When two competing sound signals pass energy through a critical-band filter, the sound with
higher energy within the critical band dominates the perception and masks the other sound.
Critical bandwidths can be measured by various slightly different psychoacoustic tests [66]
[90]. Below 500 Hz, critical bandwidth is roughly constant at about 100 Hz. For higher
frequencies, it increases proportional to the center frequency (roughly logarithmically above
1 kHz) reaching bandwidths of 700 Hz when the center frequency is near 4 kHz. An analytic
expression for mapping the frequency f into critical-band rate z, or the Bark scale, is [90]

v = 13tan−1(0.76f/kHz) + 3.5tan−1(f/(7.5kHz))2 (2.2)

Another, less precise approximation for the Bark scale is [66]

v = 7ln
(
f/650Hz +

√
1 + (f/650Hz)2

)
(2.3)

with inverse [66] [108]

f/Hz = 650 sinh(v/7). (2.4)
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Of practical importance is also the mel scale, which can be approximated by [66]

B(f) = 2595 log10(1 + f/700) (2.5)

The inverse of the mel scale is thus given by

B−1(b) = 700(10b/2595 − 1) (2.6)

Both mappings, the Bark scale and the mel scale, are shown graphically in Figure 2.4.
The frequency resolution of these auditory scales is obviously nonuniform; dv/df and
db/df are much greater, meaning better frequency resolution, at low frequencies than at
higher frequencies.

1 5 10
FREQUENCY (KHZ)

1 5 10
FREQUENCY (KHZ)

Figure 2.4: The Bark scale (solid line) and the mel scale as a function of frequency, with
the mel scale mapping scaled so that one Bark corresponds to 120 mel (dashed line) and
150 mel (dotted line). The frequency axis is linear in the left panel and logarithmic in the
right panel.

The spreading of excitation on the basilar membrane can be modeled by first estimating
the power spectrum of the sound signal, converting it to a critical band power spectrum and
convolving the result with a spreading function. Johnston [64] used this approach in his
model for frequency masking. One popular model for the spreading of excitation across
critical bands applies to intermediate SPLs. It is given by [108]

10 log10B(v) = 15.81 + 7.5(v + 0.474)− 17.5
√

1 + (v + 0.474)2dB. (2.7)

Another possible spreading function model, that depends on the narrowband masker level
and center frequency, is given by [119]
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10 log10B(v) =

{
27v v ≤ 0

(−24− 0.23kHz/fc + 0.2Lc/dB) v v > 0
(2.8)

In Eq. 2.8, fc is the masker center frequency and Lc is the masker level. Figure 2.5 shows
spreading functions according to Eqs. 2.7 and Eq. 2.8, the latter with three different values
for SPL and a masker center frequency of 1 kHz. The SPL-dependent curves display the
phenomenon known as upward spread of masking [85]; the spreading of excitation towards
higher frequencies increases particularly strongly with increasing SPL. Thus, although the
increase of the level of a narrowband masker will increase masking both below and above
the center frequency of the masker, the higher frequencies will be masked more and more
in proportion to the lower frequencies as the sound level increases.
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Figure 2.5: Excitation spreading function for intermediate SPL according to Eq. 2.7 (solid
line) and for SPL levels 40 dB, 70 dB and 100 dB, with a center frequency of 1 kHz,
according to Eq. 2.8 (dashed line).

The excitation pattern on the basilar membrane (a kind of an auditory spectrum) can be
modeled as follows [66]:

1. Estimate the power spectral density P̂ (f) of a signal using some power spectrum
estimation method (such as the periodogram method; see Section 3.3.1).

2. Map the power spectral density onto the Bark scale using the formula

P ′(v) = P (f(v))
df

dv
, (2.9)
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where f(v) is the conversion function from the Bark scale to the frequency/Hertz
scale, e.g. Eq. 2.4, and df/dv is its first derivative that represents the change in
spectral density caused by the mapping.

3. Compute the Bark scale excitation pattern by convolving the Bark scale power spec-
tral density with a spreading function, e.g. the one given by Eq. 2.7:

E(v) = P ′(v) ? B(v) (2.10)

From this representation, it is possible to further compute the loudness of a steady-state
sound as follows [66]:

1. Compute the loudness density or specific loudness [132] by

L′(v) = cE(v)0.23, (2.11)

where c is a constant intended to be chosen such that a 40 dB SPL tone at 1 kHz will
correspond to 1 sone (the unit of loudness).

2. Compute the loudness by integrating the loudness density over the whole range of
hearing (24 Bark):

L =
∫ 24Bark

0
L′(v)dv (2.12)

To obtain a more accurate estimate of the excitation pattern or loudness, weighting by a
suitable equal loudness function can be applied to any intermediate representation.

Using largely the same computational steps as when computing an estimate of the loud-
ness, it is also possible to model a perceptual quality called sharpness [132]. Sharpness,
which has been found to be an important component of the timbre perception, is a sensation
which human listeners can consider separately. It is possible for listeners to subjectively
compare the sharpness of one sound with the sharpness of another. A model for sharpness
is obtained using the loudness density as

S = 0.11

∫ 24Bark
0 L′(v)g(v)vdv∫ 24Bark

0 L′(v)dv
, (2.13)

where the weighting function g(v) stays constant at unity up to about 16 Bark, after
which it starts to rise nonlinearly with an increasing slope, reaching a value of four at 24
Bark [132].
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The loudness model discussed above applies to steady-state sounds. At the onset of
such a sound, however, the full loudness is not perceived instantly. Instead, the loudness
reaches its maximum value at about 200 ms after the onset of the sound. This phenomenon
seems to reflect some kind of integration process and is known as temporal integration of
loudness. From the two kinds of integration associated with loudness - spectral integration
modeled by Eq. 2.12 and temporal integration - spectral integration of excitation is thought
to precede temporal integration, so that the latter takes place in more central areas of the
auditory system [132].

Besides temporal integration, another important temporal effect is post-stimulus masking
or postmasking (also known as forward masking). It refers to increased masking threshold
after the end of a masking sound (a masker). Its main properties can be summarized as
follows [85] [63]:

1. The amount of postmasking in dB is a decreasing linear function of
log(∆t), where ∆t is the time delay between the current time and the end of the
masker.

2. The rate of recovery from postmasking is greater for higher masker levels, so that
regardless of the initial amount of forward masking, the masking will decay to zero
after 100-200 ms.

3. The growth of masking for postmasking, i.e., the rate at which the amount of mask-
ing increases with increasing masker level at a certain delay, is less than unity, so
that increments in masker level do not produce equal increments in the amount of
postmasking.

4. The amount of postmasking increases with increasing masker duration for durations
up to at least 20 ms, possibly even up to 200 ms.

The physiological mechanisms underlying postmasking are not clear. It could be ex-
plained in terms of residual neural activity or, for small intervals, by the response decay of
the basilar membrane [85].

Pre-stimulus masking (also known as backward masking) refers to increased masking
threshold before the start of a masker. However, in comparison to postmasking, premasking
is much shorter in effect and greatly affected by training of the test subjects, so that practiced
subjects often show little or no premasking [85].
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Figure 2.6: A simplified illustration of the principal nuclei and fiber pathways of the central
auditory system. Only pathways from the right ear are shown. Neurons are illustrated with
small open circles, while synaptic connections are displayed as small filled circles. From
[86].

2.2 Neural Auditory Processing

Higher, neural stages of the auditory pathway ascend from the hair cells of the cochlea
to the auditory cortex. Figure 2.6, taken from the book by Morgan and Scofield [86],
shows a simplified illustration of the neural auditory pathway, starting from the cochlea.
Compared to peripheral auditory processing, neural auditory processing is rather poorly
understood. A concise overview of the neural auditory pathway in mammals is included in
[86]; [85] discusses the existing knowledge of the human auditory system in more detail. In
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general, higher level nuclei tend to generate progressively more sophisticated and longer-
term representations of the auditory sensation while also acting as relay stations for lower-
level representations produced by the periphery and the lower neural stages. Tonotopic
or cochleotopic [85] organization, where the neurons are organized by their characteristic
frequencies so as to preserve the innervation pattern of the basilar membrane, is found
throughout the mammalian auditory system [86].

The auditory nerve communicates hair cell outputs from the cochlea to the cochlear nu-
cleus, which contains neurons with different time responses: primarylike, onset, chopper,
pauser and buildup. Many different kinds of abstractions of the original stimulus are gen-
erated already in specialized regions of the cochlear nucleus. The initial site of bilateral
representation of the acoustic environment is found in the superior olivary complex, known
to play a key role in the localization of sound sources. The inferior colliculus receives bi-
lateral input from the superior olivary complexes and contralateral input directly from the
cochlear nuchleus; the exact role of the inferior colliculus is not known, but it has been pro-
posed that it is specialized for the representation of pitch and for localizing sound sources
which consist of complex temporal variations. The cells of the inferior colliculus display
modulation frequency selectivity; they phase-lock to amplitude modulations of the stimu-
lus1. The final waystation on the way to the auditory cortex is the medial geniculate nucleus
(MGN). Like the cells in the inferior colliculus, cells in the MGN also phase-lock to am-
plitude modulation, albeit with poorer temporal resolution (lower modulation frequencies
being represented). Descending input from the cortex may also play an important role in
the MGN. It has been suggested that in addition to its role as a relay station for an auditory
pathway conveying all the information necessary to characterize acoustic events, the MGN
is also involved in a second pathway that allows the auditory cortex to selectively label
stimuli with perceptual qualities; it would thus play an essential role in the perception of
the acoustic environment.

Psychoacoustically, high-level auditory processing is manifested by phenomena covered
by Bregman in his book Auditory Scene Analysis [17]. According to Bregman, the audi-
tory system organizes incoming auditory evidence (mostly mutually exclusively) into sep-
arate perceptual representations termed auditory streams. Distinct auditory streams tend
to present distinct environmental sounds. The mechanisms of the formation of auditory
streams appear to be rather well described by analogies to the grouping principles of Gestalt
psychology, which was evolved by a group of German psychologists in the early 20th cen-
tury to explain the organization of perception. According to Gestalt theory, this organization

1This responsiveness to long-term temporal variations is important for speech communication, among other
things; reflecting the syllabic and phonetic temporal structure of speech, the modulation spectrum of speech is
dominated by components between 2 and 8 Hz [54] [41].
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is governed by a competition of the “forces of attraction” between sensory elements. The
perceptual result of this competition is the formation of patterns (Gestalt in German) in our
experience as a consequence of the net effect of all the said forces (instead of our experi-
encing any kind of simple “summation” of the properties of the individual elements taken
in isolation). According to the Gestalt psychologists, it was impossible to perceive sensory
elements without their forming an organized whole; they argued that the tendency to form
such patterns was innate and an automatic tendency of the brain tissue [17].

While the grouping principles were originally meant to be common to different sense
modalities [17], they are most often encountered in describing visual perception. Auditory
analogies to the Gestalt grouping principles presented by Bregman include:

• Principle of proximity: the closer visual elements in a set are to one another, the
more strongly we tend to group them perceptually. In auditory perception, proxim-
ity of sound elements in time and/or frequency favors their being grouped into the
same auditory stream; i.e., time and frequency are auditory correlates of the spatial
dimensions in vision.

• Principle of similarity: visual elements with similar quality tend to be grouped to-
gether. In audition, sounds with similar timbre are more likely to be grouped into
the same stream. Although timbre is necessarily a multidimensional quality whose
best characterization may be some kind of auditory spectrum, brightness 2, which
is “roughly speaking ... the balance of high and low partials in the spectrum” and
“very much like the frequency that is at the mean of the distribution” [17], has been
identified as one very probable physical constituent of the timbre perception.

• Principle of closure: a mechanism of completing evidence with gaps in it, created by
partial occlusion. In audition, completing evidence from a sound temporarily masked
by another sound to infer its continuation during the masked segments.

• Principle of common fate: visual elements moving together are perceived as a group.
In audition, this refers to the grouping of different parts of the spectrum that change
in the same way at the same time. The said change in the spectral components can
be frequency modulation (common change in the center frequencies) or amplitude
modulation (common change in the amplitudes of the components).

According to Bregman, the Gestalt grouping principles can be viewed as a kind of heuris-
tics that combine their effects, much like voting, to aid the auditory system in decomposing
a mixture of sound into separate perceptual entities corresponding to different real-world

2Brightness appears to be very closely related to sharpness [132] discussed in Section 2.1.
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events. Bregman divides auditory grouping in auditory stream formation into sequential
(temporal) and simultaneous (spectral) grouping. He also argues that there are two ways of
acquiring skills for auditory stream segregation: “primitive segregation” mechanisms are
innate, while ”schema-based segregation” is based on schemas that are learned. Schema-
based segregation probably involves the learned control of attention.

Considering the principle of similarity and the role of the different dimensions of timbre,
brightness appears to be important for stream segregation. According to Bregman, it is un-
clear whether any of the possibly more elaborate acoustic dimensions related to the timbre
perception are used in primitive segregation at all [17].

In reviewing the research on human speech recognition performed by Fletcher and his
colleagues, Allen [4] presents certain conclusions that are in line with Bregman’s findings.
In particular, compared to across-frequency processing (spectral templates), which is cen-
tral in most automatic speech recognition systems, human recognition of speech is claimed
to rely more on across-time processing, with only local coupling across frequency. This
statement is reminiscent of auditory stream formation by the principle of proximity in time
and frequency.



Chapter 3

Signal Processing for Audio Analysis

Figure 3.1: The data flow of a typical acoustic feature extractor.

Automatic recognition and classification of audio content is a pattern recognition prob-
lem. The solutions thus generally contain implementations of the three main modules of
a canonical pattern recognition system [28]: 1) preprocessing, 2) feature extraction and
3) recognition (see Figure 1.1). This chapter focuses on the signal processing techniques
commonly employed in the preprocessing and feature extraction modules, while the next

23
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chapter discusses pattern recognition methods that are applicable in the recognition module.
Figure 3.1 shows the general data flow diagram of audio preprocessing and feature ex-

traction. The digital audio signal, sampled at some sampling frequency Fs, is converted
into a sequence of feature vectors via the processing stages shown in the figure.

3.1 Approaches to Short-Time Processing

Short-time processing is typically based on dividing the signal into frames, i.e., signal seg-
ments of short constant length spaced at equal time intervals. Let us denote the size of the
frame (in signal samples) by N , so that the length of the frame in time is N/Fs seconds.
Also, let us denote by M the amount of samples by which corresponding points of two suc-
cessive frames differ. This quantity, sometimes called the shift interval or the step size, is
typically smaller than the frame size N . With the frame size N given, the information con-
tained jointly in N and M can equivalently be expressed by replacing M with one of two
alternative framing parameters, namely frame overlap or frame rate. The overlap N −M

specifies the amount of samples that two successive frames have in common. The frame
rate Fs/M specifies the number of frames per second.

Each frame of N samples is typically windowed using some window function wn which
is nonzero only when 1 ≤ n ≤ N . If s′m denotes the complete signal, a windowed frame
starting at the mth sample is given by

sn,m =

{
s′n+m−1wn 1 ≤ n ≤ N

0 otherwise
(3.1)

For notational convenience, the subscript m will later be omitted whenever discussing
analyses that only have to deal with a single frame of data. The window function wn

can be, for example, a rectangular window or a Hamming window. The choice of the
window function has an effect on the short-time features computed from the windowed
frames [102]. In practice, some processing methods, such as the discrete Fourier transform
and the autocorrelation method of linear prediction, benefit from using a frame window
function whose edges taper close to zero (e.g., the Hamming or Hann window), so as to
avoid strong discontinuities at the edges of the frames [102].

Frame-based processing has two distinct applications within the scope of this study: au-
dio enhancement and feature extraction. In audio enhancement, the recorded signal rn is
considered to be corrupted according to a certain corruption model and the goal is to ex-
tract the desired audio sn from the corrupted signal rn. This is typically performed by
dividing the signal into sufficiently short frames, transforming each frame into a spectral
representation and processing each frame spectrally. Optionally, the processed spectral rep-
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resentations can be transformed back into the time domain and combined using overlap
add resynthesis [102]. The resynthesis is not necessary, however, if the goal is to extract
information only from the magnitude spectrum. Two basic methods of audio enhancement,
applicable in the spectral domain, are briefly discussed in Section 3.2.

In feature extraction, the goal is to transform the signal s′n into a sequence of feature vec-
tors. In this case, each frame sn,m is typically associated with one feature vector. The fea-
ture vector is usually computed primarily from the associated frame, but may also contain
information from neighboring frames (long-term processing, see Section 3.6). Alternatives
to frame-based feature extraction include sampling the outputs of a time-domain filterbank,
such as an auditory spectrum analyzer, at specific time instants (e.g. at every M samples)
as well as sampling the coefficients of adaptive filters (especially linear predictive filters) in
a similar fashion. However, the frame-based approach, in which the signal is assumed to be
locally stationary within each frame, is the most prevalent. In frame-based processing, vari-
ous short-time features can be computed from the short frame sn,m; these will be discussed
in Sections 3.3-3.7.

3.2 Signal Preprocessing and Enhancement

Before a digital audio signal is subjected to automatic classification methods, it is often
preprocessed in some manner in order to make the classification task easier. Preprocess-
ing may include simple DSP operations such as sampling rate conversion. It is important
to choose the correct sampling rate (a practical upper bound being, of course, the original
recording rate). Too high a sampling rate may place unnecessarily high requirements on the
feature extraction module, as a large portion of the information it receives is irrelevant for
the goals of the automatic classification. Too low a sampling rate will make the antialias-
ing cutoff frequency so low as to discard useful information from the higher frequencies.
Signal preprocessing may also include filtering with a fixed pre-emphasis filter; in speech
applications, it is typical to use a first-order high-pass FIR filter of the form [90]

Hpre(z) = 1− αz−1, (3.2)

where α < 1, to emphasize the higher frequency formants in speech.
The preprocessing stage may also contain enhancement operations which attempt to re-

move certain types of distortion from the signal. The distortion may be acoustic (envi-
ronmental) noise or channel noise. If the noise is additive and mostly stationary, so that
its statistics can be reliably estimated during a segment known to contain just the noise,
two well-known methods for signal enhancement are applicable: spectral subtraction and
Wiener filtering.
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Spectral subtraction [14] is a straightforward method for signal enhancement. The basic
assumption is that the desired clean signal sn has been corrupted by additive noise vn:

rn = sn + vn (3.3)

Taking z transforms [89] of both sides gives

R(z) = S(z) + V (z) (3.4)

The basic idea of spectral subtraction is to estimate S(z) (and thus sn) so that the mag-
nitude of the estimator is given by

|Ŝ(z)| = |R(z)| −N(z) (3.5)

where N(z) is an averaged magnitude spectrum of the noise V (z),

N(z) = E{|V (z)|}, (3.6)

which is to be estimated from segments known to contain only background noise. The
phase of the estimator Ŝ(z) is given directly by the phase of R(z).

If the problem is cast as that of filtering rn to obtain ŝn, i.e., as Ŝ(z) = H(z)R(z), a
filter H(z) that realizes the above specifications is given by [14]

H(z) = 1− N(z)
|R(z)|

. (3.7)

There may be cases whereN(z) > |R(z)| at some frequency. Such noisy frequencies are
usually assumed to be unrecoverable; it is therefore desirable to ensure that the subtraction
result stays nonnegative. This can be accomplished to using half-wave rectified filtering
Ŝ(z) = Hr(z)R(z), where [14]

Hr(z) =
H(z) + |H(z)|

2
(3.8)

Random residual spikes that remain in non-active temporal and spectral regions after
subtraction give rise to tonal noise, which can be reduced by certain methods [14].

The basic principles of magnitude spectral subtraction have been described above; an-
other alternative is power spectral subtraction, in which case the magnitude spectra in Eq.
3.5 are replaced by power spectra; see [57] for details.

Wiener filtering is another approach to noise removal. It minimizes the mean squared
error of the filtered target signal [51]. The noncausal Wiener filter is obtained using power
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spectra of the desired signal and the noise. Such a filter is given by [57]

H(z) =
|S(z)|2

|S(z)|2 + |V (z)|2
. (3.9)

Unfortunately, this filter can not be realized unless the power spectra of both the desired
signal sn and the noise vn are known; at the same time, in recognition applications, wanting
a better estimate of the magnitude or power spectrum of the signal sn is often the reason
for performing enhancement filtering in the first place. However, Eq. 3.9 has applications
in cases where reasonably accurate estimates of these quantities can be generated by some
means.

3.3 Representations of the Short-Time Magnitude Spectrum

Very often, feature vectors in speech/audio classification are based on the short-time mag-
nitude spectrum. This is well justified by the way in which the auditory periphery works in
humans and other mammals; the basilar membrane of the inner ear is a kind of a spectrum
analyzer, albeit with a frequency-dependent frequency resolution. This section reviews
tools of spectral modeling that are central from the perspective of speech/audio recogni-
tion: the discrete Fourier transform (DFT), linear predictive coding (LP) and the cepstral
representation of the magnitude spectrum.

3.3.1 Discrete Fourier Transform (DFT)

Fourier or spectral analysis is an important mathematical tool. The continuous Fourier
transform of a continuous signal h(t) and the corresponding inverse transform are given by

H(f) =
∫ ∞

−∞
h(t)e2πiftdt

h(t) =
∫ ∞

−∞
H(f)e−2πiftdf (3.10)

(3.11)

where t generally denotes time and f cycles per unit time, i.e., frequency 1.
For discretely sampled sequences of finite lengthN , indexed from 0 toN−1, the discrete

Fourier transform (DFT) is given by

Hk =
N−1∑
n=0

hne
2πink/N , 0 ≤ k ≤ K − 1, (3.12)

1However, t may be replaced by, e.g., some position coordinate, in which case f is the number of cycles per
unit length.
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and is related to the continuous Fourier transform as H(f = k/(K∆t)) ≈ Hk∆t, where
∆t is the sampling interval of the discrete sequence hn [99]. The inverse DFT (IDFT) of a
K-point DFT sequence is given by

hn =
1
K

K−1∑
k=0

Hke
−2πink/K (3.13)

A DFT of lengthK can be said to be symmetric (even) ifHk = HK−k and antisymmetric
(odd) if Hk = −HK−k. Similarly, a sequence of length N is symmetric if hn = hN−n and
antisymmetric if hn = −hN−n. Some properties of the DFT (which are similar to those of
the continuous Fourier transform) include [89] [99]:

1. The DFT/IDFT of a real sequence is conjugate symmetric.

2. The DFT/IDFT of a symmetric sequence is symmetric.

3. The DFT/IDFT of an antisymmetric sequence is antisymmetric.

4. The DFT/IDFT of a real and symmetric sequence is real and symmetric (follows from
properties 1 and 2).

5. The magnitude spectrum of a real sequence is symmetric (follows from property 1).

The periodogram is a simple estimate of the power spectrum 2 of the random process
that produces the observed signal hn. It is given by [49]

P̂ (f = k/K) =
1
K
|Hk|2, (3.14)

where Hk is the K-point DFT of hn.
The fast Fourier transform (FFT) algorithms are computationally efficient algorithms for

computing the DFT. Their time complexity is generallyO(N logN), instead ofO(N2) that
results from using Eqs. 3.12 and 3.13 directly [89] [99].

3.3.2 Linear Prediction

Linear prediction (LP), or linear predictive coding (LPC), is a widely used method for
parametrizing the short-time magnitude spectrum of an audio signal frame as an all-pole
synthesis filter having the z-domain transfer function

H(z) =
G

1−
∑p

k=1 akz−k
=

G

A(z)
(3.15)

2The power spectrum (or power spectral density) P (f) of a wide-sense stationary random process is defined
as the discrete-time Fourier transform of the autocorrelation sequence [49].
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or, equivalently, as an autoregressive (AR) process having the time-domain difference
equation

sn =
p∑

k=1

aksn−k +Gun, (3.16)

where un is the excitation signal fed to the synthesis filter [78] [79] [102]. In these
equations, the {ak} are known as the predictor coefficients, p is the prediction order and G
is the gain factor of the filter model. The FIR filter A(z) in Eq. 3.15 is known as the inverse
filter or prediction error filter.

In speech and audio coding, LP can be used to model the broad spectral shape with
|H(z)|, while the fine detail of the magnitude spectrum as well as the phase information
are coded using other means. The most natural application of LP is in speech coding. LP
has a direct connection to the source-filter model of speech production [33] if the order p is
chosen such that the LP filter depicts the vocal tract filter while the excitation signal un plays
the role of the voiced or unvoiced source. All-pole models are particularly well suited for
modeling speech signals; an all-pole model can be viewed as a digital filter representation
of a lossless acoustic tube model, that is a simplified physical model of the vocal tract [79].
Two poles are needed to model one spectral peak, such as a formant. Thus, if the goal is to
model the magnitude spectrum envelope, two poles should be allocated for each expected
spectrum envelope peak within the signal band. Speech has, on the average, one formant
per kHz of the signal band (0 to Fs/2). In addition, a few poles are needed for modeling
the excitation source and lip radiation. Thus, a rule of thumb is to choose the prediction
order for speech as p = Fs/kHz + 3 or 4 [102]. However, by using a larger value of p,
LP can model any signal with a chosen level of accuracy. Besides coding and enhancement
applications, LP is also frequently applied in feature extraction in automatic recognition
problems.

When p latest signal samples are known, the model of Eq. 3.16 can be used to form a
prediction ŝn of the next sample:

ŝn =
p∑

k=1

aksn−k (3.17)

The prediction error or residual en is the difference between the actually observed speech
samples sn and the model-based predictions ŝn, according to Eq. 3.17:

en = sn − ŝn = sn −
p∑

k=1

aksn−k (3.18)

From Eq. 3.18 it can be seen that en is the signal obtained by filtering sn with the inverse
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filter A(z). Comparison of equations 3.16 and 3.18 shows that if the model is correct, then
en = Gun.

In the following, speech signal is treated as deterministic and the method of least squares
is applied for solving the model parameters ak. On the basis of Eq. 3.18, the total squared
prediction error E (with a predictor of order p) can be calculated from

E =
∑

n

e2n =
∑

n

(sn −
p∑

k=1

aksn−k)2 (3.19)

which is minimized with respect to the model parameters by setting

∂E

∂ai
= 0, 1 ≤ i ≤ p (3.20)

Expanding the square in Eq. 3.19 and setting the partial derivatives to zero as in Eq. 3.20
leads to a set of equations known as the normal equations [78]:

p∑
k=1

ak

∑
n

sn−ksn−i =
∑

n

snsn−i, 1 ≤ i ≤ p (3.21)

These p equations in p unknowns can be solved to obtain the predictor coefficients ak,
1 ≤ k ≤ p, that minimize E. The minimum value for the total squared prediction error can
be shown to be [102]

Ep =
∑

n

e2n =
∑

n

s2n −
p∑

k=1

ak

∑
n

snsn−k (3.22)

while a goodness of fit error measure, assuming values between 0 and 1, is the normalized
residual energy: [78]

V =
Ep∑
n s

2
n

=
∑

n e
2
n∑

n s
2
n

. (3.23)

The range of summation over n in equations 3.19-3.23 was left unspecified. The choice
of the range of summation leads to the two basic methods of linear prediction: the autocor-
relation method and the covariance method.

In the autocorrelation method, the error in Eq. 3.19 is theoretically minimized over an
infinite interval,−∞ ≤ n ≤ ∞. In practice - given that any realistic signal frame is of finite
length - the autocorrelation method presumes that the signal sn has already been windowed
using a window function that is nonzero only during the frame of interest, according to Eq.
3.1. Moreover, to avoid large prediction errors near the boundaries of the frame, the window
function wn should taper gradually towards zero near the boundaries. This makes smooth



CHAPTER 3. SIGNAL PROCESSING FOR AUDIO ANALYSIS 31

pulse-like window functions such as the Hamming window suitable for the autocorrelation
method. Since sn is zero outside the analysis frame, equations 3.21 and 3.22 reduce to

p∑
k=1

akR(i− k) = R(i), 1 ≤ i ≤ p (3.24)

and

Ep = R(0)−
p∑

k=1

akR(k) (3.25)

where

R(i) =
N−1∑
n=0

snsn−i =
N−1∑
n=i

snsn−i (3.26)

is the short-time autocorrelation function for the windowed signal. Taking into account
the fact that R(i) is an even function, R(i) = R(−i), equations 3.24 can be expressed in
matrix form as



R(0) R(1) R(2) . . . R(p− 1)
R(1) R(0) R(1) . . . R(p− 2)
R(2) R(1) R(0) . . . R(p− 3)

...
...

...
. . .

...
R(p− 1) R(p− 2) R(p− 3) . . . R(0)





a1

a2

a3

...
ap


=



R(1)
R(2)
R(3)

...
R(p)


or in a shorter form as

Ra = r (3.27)

The autocorrelation matrix R is a Toeplitz matrix: all elements along any diagonal are
equal. It is also a symmetric matrix. Moreover, p − 1 of the right hand side elements are
also found in the matrix on the left hand side. This special structure allows for an efficient
solution algorithm known as Levinson-Durbin recursion [102].

In the covariance method, the error in Eq. 3.19 is minimized only over a finite interval,
p ≤ n ≤ N − 1. It is assumed that the signal is available over the interval 0 ≤ n ≤ N − 1.
Eqs. 3.21 and 3.22 reduce to

p∑
k=1

akϕik = ϕi0, 1 ≤ i ≤ p (3.28)
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and

Ep = ϕ00 +
p∑

k=1

akϕ0k (3.29)

where

ϕij =
N−1∑
n=p

sn−isn−j (3.30)

are correlation-like values calculated from the data within the signal frame. In matrix
form, equations 3.28 can be written as


ϕ11 ϕ12 ϕ13 . . . ϕ1p

ϕ21 ϕ22 ϕ23 . . . ϕ2p

ϕ31 ϕ32 ϕ33 . . . ϕ3p

. . . . . . . . . . . . . . .

ϕp1 ϕp2 ϕp3 . . . ϕpp




a1

a2

a3

. . .

ap

 =


ϕ10

ϕ20

ϕ30

. . .

ϕp0


or more concisely as

Ca = ϕ (3.31)

Also the covariance method matrix is symmetric, since ϕij = ϕji, but it is not Toeplitz
and the right-hand-side terms do not appear on the left hand side. Thus, Levinson-Durbin re-
cursion cannot be applied. The covariance method equations can be solved using Cholesky
decomposition [102].

Block estimation methods, such as the autocorrelation method and the covariance method,
solve the coefficient vector a (Eqs. 3.27 and 3.31) directly by assuming the signal to be sta-
tionary within each estimation frame. The coefficient vector can also be estimated in an
adaptive fashion such that the coefficients of an adaptive filter are updated with each in-
coming sample and the coefficient values are stored at the chosen interval. For example, the
gradient adaptive lattice (GAL) algorithm [42] [49], which involves an adaptive FIR lattice
filter, can be employed for adaptive LP analysis. The simple LMS algorithm [124] can also
be used for adaptive LP analysis [49], although its accuracy for speech signals is typically
not as good as that of the aforementioned methods.

Using the LP direct form coefficient representation ai, 1 ≤ i ≤ p, as features in pat-
tern recognition requires the use of special distance measures [60]. There are, however,
various alternative ways of representing the LP information for which the distance compu-
tation is simpler. Reflection coefficients [57], also known as partial correlation (PARCOR)
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coefficients [102], are essentially parameters of the lattice form of the LP filter. They can
be computed directly or as a by-product of the Levinson-Durbin recursion for autocorrela-
tion LP analysis. The log area ratios can be formed from the reflection coefficients by the
formula [102]

gi = log
(

1− ki

1 + ki

)
(3.32)

The line spectral frequencies (LSFs), also known as the line spectral pair (LSP) represen-
tation [116], are another way to represent an all-pole model. First, the all-pole polynomial
A(z) is used to generate the symmetric polynomial

P (z) = A(z) + z−(p+1)A(z−1) (3.33)

and the antisymmetric polynomial

Q(z) = A(z)− z−p(+1)A(z−1). (3.34)

The LSF representation is now derived from computing the roots of the polynomials
P (z) and Q(z). A fundamental property of LSFs is that as long as the roots due to P (z)
and Q(z) interlace on the unit circle, the corresponding all-pole model is stable. This is a
very useful property in coding, which is the primary application area of LSFs. However,
LSFs have also been employed as features in classification applications, e.g. in speaker
segmentation [76].

The autocorrelation coefficients are computed in the first stage of the autocorrelation
method of LP. It is possible to recover the p + 1 first coefficients of the autocorrelation
function from the LP filter model and they can be used as an alternative representation for
the LP filter, containing equivalent information. The LP filter can also be represented in the
form of a cepstrum, discussed in the following section.

3.3.3 Cepstral Representations

Cepstral analysis refers to a group of homomorphic signal processing methods [89] that is
frequently useful in decomposing convoluted signal components, provided that these com-
ponents have sufficiently different spectra. For discrete-time sequences, the real cepstrum
can be defined as

DFT ({log (|IDFT({sn})|)}) (3.35)

where DFT({xn}) and IDFT({xn}) denote the discrete Fourier transform and the in-
verse discrete Fourier transform operations, respectively, performed on some sequence
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{xn}. From the selected properties of Fourier transforms listed in Section 3.3.1, it can
be seen that the real cepstrum is real-valued and symmetric 3.

Consider two time domain signals, say sn and hn, that have been convoluted in the
observed signal rn = sn ? hn. The goal of the analysis is to find the magnitude spectrum
|Sk| of sn. Applying the convolution theorem [89], the magnitude spectrum of the observed
signal is

|Rk| = |Sk||Hk| (3.36)

where |Hk| is the magnitude spectrum of hn. Now take the logarithm (of any base) of
both sides. This gives

log |Rk| = log |Sk|+ log |Hk| (3.37)

In the logarithmic magnitude spectrum of rn, the undesired component appears as an
additive component instead of a convolved component. However, the two components still
cannot be separated without an estimate of |Hk|. Suppose, however, that it is known from
experience that the logarithmic magnitude spectrum |Hk| of the convolved component will
always be very different from |Sk|, such that the other changes much more rapidly with
frequency than the other. Now taking the (inverse) discrete Fourier transform results in

IDFT ({log |Rk|}) = IDFT ({log |Sk|}) + IDFT ({log |Hk|}) (3.38)

in which the components due to the two signals, sn and hn, are still additive because the
IDFT is a linear operation. The two components that were originally convolved in the time
domain are now additive and inhabit different “quefrency” (a term for the cepstral domain
“frequency”) ranges. Note that the choice of the IDFT instead of DFT only affects the
scaling, not the shape, of the real cepstrum. To see this, consider the following: 1) because
the logarithmic magnitude spectrum is real and symmetric, its DFT or IDFT will be real
(and symmetric); 2) if DFT/IDFT is real, it is known that the phase inversion between Eqs.
3.12 and 3.13 has been canceled out in the summation and does not affect the transform;
3) thus, the only practical difference between using Eq. 3.12 or 3.13 in computing the real
cepstrum can be the scaling coefficient 1/K in 3.13.

A frequent application of the cepstrum is in speech processing, in the separation of the
excitation source from the vocal tract filter, according to the source-filter model of speech
production [33]. The cepstrum is particularly suited for this task, because the spectrum of
the glottal excitation of voiced speech is very different from the vocal tract filter response.

3However, the name “real cepstrum” does not refer to the fact that it is real-valued. The real cepstrum and
the complex cepstrum differ in whether the real or complex logarithm is used [89].
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Consider again the two signals that are now separated in the cepstral domain. The ulti-
mate goal is to extract information pertaining to the magnitude spectrum |Sk| that varies at a
certain rate (for example, |Sk| may correspond to the magnitude spectral envelope and vary
more slowly than |Hk|). Because the cepstrum is a Fourier transform of the logarithmic
magnitude spectrum, the convolution theorem allows bandpass filtering of the logarithmic
magnitude spectrum to be performed in the cepstral domain using multiplication (window-
ing) by the bandpass transfer function. This operation is frequently called liftering (a play
on filtering). In the ideal case when the liftering operation manages to completely separate
the cepstra of the two signals, the logarithmic magnitude spectrum log |Sk| can be recov-
ered by DFT if desired (and the magnitude spectrum by further exponentiation). Low-time
liftering refers to a “low pass” type operation in which the aim is to separate the spectral
envelope.

In feature extraction for recognition applications, it is often wisest to stay in the cepstral
domain after the liftering. It can namely be shown that the Euclidean distance between two
cepstra, that have been liftered using a rectangular low-time window and truncated to the
length of the window L, lower bounds the root mean square (rms) log spectral distance,
which in turn is known to be a relevant distance measure between audio signals [40]. When
L is increased, i.e., more cepstral coefficients are included, the cepstral Euclidean distance
approaches the rms log spectral distance from below. The fact that the simple Euclidean
distance is meaningful for computing distances between cepstral vectors has consequences
for audio pattern recognition: as will be seen in Chapter 4, the Euclidean distance often
significantly reduces the number of parameters that have to be estimated for the models,
thus alleviating the curse of dimensionality. Because of this desirable property, the cep-
strum is often used simply as a feature vector representation for magnitude spectral models
computed by other means, such as LP analysis. Conversion from the LP filter coefficients
to cepstral coefficients can be accomplished by the recursive formula [79]:

c0 = log(G) (3.39)

cn = 1
2

(
an +

∑n−1
m=1

(
m
n

)
cman−m

)
, 1 ≤ n ≤ p (3.40)

3.4 Perceptual Features

The term ’perceptual feature’ is used in the present context to refer to features that take
into account more aspects of human auditory perception than a standard logarithmic mag-
nitude spectrum (or its equivalent representation, such as the real cepstrum). It should be
noted that already the logarithmic magnitude spectrum is a perceptually motivated repre-
sentation for the following reasons: as reflected by the psychoacoustical phenomenon of
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intensity-loudness compression, the “amplitude response” of the peripheral auditory sys-
tem is roughly logarithmic; the inner ear is known to perform spectral analysis; and the
hearing has been found to be rather insensitive to the phase spectrum of the signal (mean-
ing that the magnitude spectrum is more important). In making feature representations even
more like the representations generated by the peripheral auditory system, the next step is
usually the incorporation of the nonuniform frequency resolution of the cochlea.

3.4.1 Auditory Filterbanks

Auditory filterbanks refer to filterbanks, implemented in either the time domain or the fre-
quency domain, that implement the nonuniform frequency resolution of the inner ear. While
sophisticated time-domain filter models exist that attempt to duplicate the physiology of the
inner ear, for practical applications in automatic sound classification it often suffices to
have simple functional models whose output somewhat resembles the true auditory spec-
trum. Mel-scale filterbanks are one such approach which has shown success, although they
are most often used in the form of the mel frequency cepstrum, discussed in the next section.

In the frequency domain, one can construct a triangular mel-filterbank with M filters,
such as the one whose transfer functions are shown in Figure 3.2, as follows. Denote the
lowest and highest frequency of the filterbank by fl and fh, respectively. Let Fs be the
sampling frequency and let L be the DFT index corresponding to the Nyquist frequency
Fs/2. Determine the frequency boundaries of the filter transfer functions so that they are
uniformly spaced on the mel scale [57]:

f(m) =
(
L

Fs

)
B−1(B(fl) +m

B(fh)−B(fl)
M + 1

, 0 ≤ m ≤M + 1, (3.41)

where the mel scale function B and its inverse transform function B−1 are given by Eqs.
2.5 and 2.6, respectively.

The transfer functions of the type shown in Figure 3.2 are given by [57],

Hm,k =


0 k < f(m− 1)

(k−f(m−1))
(f(m)−f(m−1)) f(m− 1) ≤ k ≤ f(m)

(f(m+1)−k)
(f(m+1)−f(m)) f(m) ≤ k ≤ f(m+ 1)

0 k > f(m+ 1)

(3.42)

Using these filters, logarithmic mel-filterbank energies for a signal frame whose DFT is
Sk are given by

Em = log

(
L−1∑
k=0

|Sk|2Hm,k

)
(3.43)
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Figure 3.2: Triangular magnitude responses of filters for mel-scale auditory filterbank anal-
ysis.

3.4.2 Mel Frequency Cepstral Coefficients

The mel frequency cepstral coefficients (MFCC) representation [23] is, by far, the most
popular method of feature extraction in ASR. The first three stages of MFCC computation
are 1) estimation of the short-time magnitude spectrum; 2) computation of mel-filterbank
energies using triangular bandpass filters in the frequency domain; 3) taking the logarithm
of each filterbank output. These steps were discussed in the previous section in the context
of mel-filterbank analysis. The final step in computing the MFCC representation is 4) dis-
crete cosine transformation (DCT) of the logarithmic filtered energies. The DCT-II discrete
cosine transform for M mel-filterbank outputs is given by [57]

ci =

√
2
M

M∑
j=1

Em cos
(
πi

M
(j − 0.5)

)
(3.44)

The MFCC is essentially a variation of the real cepstrum, in which the logarithmic mag-
nitude spectrum is substituted by logarithmic energies from an auditory filterbank. Another
modification is the use of DCT-II in place of IDFT to convert the logarithmic spectral rep-
resentation to a cepstral representation.

The four processing stages are illustrated in Figure 3.3.
Basic MFCC computation uses the DFT in the first step for magnitude spectrum estima-

tion (essentially equivalent to the periodogram method of power spectrum estimation). In
order to enhance the robustness of MFCC features in the presence of environmental noise,
linear prediction (LP) and minimum variance distortionless response (MVDR) spectrum
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Figure 3.3: Data flow diagram of MFCC computation.

estimation methods have been proposed as alternatives to DFT [24] [26].

3.4.3 Other Perceptual Representations

A popular auditory spectral feature extraction technique is perceptual linear prediction
(PLP) proposed by Hermansky [53]. It consists of weighting auditory filterbank outputs
by an equal loudness curve, simulating the intensity-loudness compression of the weighted
filter outputs by taking the cubic root (power 0.33), transforming the auditory power spec-
trum into an autocorrelation sequence by IDFT and finally estimating an LP model using the
conventional autocorrelation method. The basic LP-to-cepstrum conversion formulas (Eqs.
3.39-3.40) can be used to convert the PLP representation to a cepstrum. With auditory
frequency warping, fewer LP or cepstral coefficients are needed to represent the spectrum
while still containing roughly the same information in a perceptual sense.

Other auditory feature vector representations can be obtained by, for example, the en-
semble interval histogram method [100], frequency-warped linear prediction [58] and per-
ceptual MVDR-based cepstral analysis [26].

3.5 Specialized Short-Time Features

Previous sections have introduced vector representations of either the short-time magnitude
spectrum or an auditory version of the magnitude spectrum. Besides these representations,
various individual features exist that measure some quality of the signal. They may be com-
puted in different domains: e.g., time domain, frequency domain, autocorrelation domain
or cepstral domain. On the other hand, they represent different perceptual aspects; most of
the features can be roughly categorized into one of three categories - loudness features, tim-
bre features and pitch features. This section introduces some common, easily computable
short-time features that depict loudness or certain aspects of timbre. In general, loudness
features tend to be simpler to compute than timbre or pitch features and can provide a fairly
accurate characterization of the loudness perception. Also some dimensions of the timbre
perception can be easily modeled. However, a more generally adequate characterization of
the timbre probably requires using auditory spectral feature vectors. As for pitch, estima-
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tion of the pitch period/fundamental frequency is a challenging problem for which many
schemes have been developed [56]. No general-purpose solution, that would be reliable for
a broad class of sounds, exists [66] [130]. However, apart from music melody recognition,
explicit estimation of a single pitch is not very central in audio recognition applications,
although it can be helpful [130].

It should be noted that scaling coefficients in the formulas are frequently unimportant in
an automatic classification setting. As long as the same finite, non-zero scaling coefficient
is used in training and in recognition for all the feature observations, its value does not
normally affect the classification. Thus, two alternative formulas appearing in different
literary sources and purporting to produce the same feature can be considered equivalent
from the pattern classification perspective if they differ only in scaling (e.g., in whether or
not to divide by the number of observations). In the present work, however, an attempt has
been made to correctly include the scaling coefficients so that the features correspond to
their common names.

The short-time energy STE is defined as the energy in a signal frame. It is given by [102]

STE =
N∑

n=1

s2n (3.45)

Computing short-time average energy instead of the total energy, by applying a scaling
coefficient 1/N , would limit the magnitude of the feature and make energies computed with
different frame sizes N comparable in magnitude. Usually, however, this is unimportant as
only one frame size N is used.

The logarithmic short-time energy LGSTE is some logarithm (typically natural or base
10) of STE.

In addition to the full-band energies STE and LGSTE, any number of filtered energies,
either pure or logarithmic, can be defined as energies of the outputs of different (typically
bandpass) filters. Energy ratios are (usually logarithmic) ratios of some band energy to ei-
ther some other band energy or the full-band energy [112]. They can be used to characterize
selected aspects of the distribution of energy in the spectrum.

Loudness computed by the perceptual loudness model discussed in Chapter 2 can also be
used as a feature [80]; it will be denoted by LOUD.

The autocorrelation function is given by

R(i) =
N∑

n=i+1

snsn−i (3.46)

such that R(0) is equal to the STE. Normalized autocorrelation coefficients are given by
r(i) = R(i)/R(0). In particular, the unit-lag normalized autocorrelation coefficient r(1),
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denoted by AC1, has often been used as a speech feature [6] [112] [96].
The zero crossing rate [102] is an extremely popular short-time feature that depicts the

concentration of energy in the spectrum. It is defined as the average-per-sample number of
times the signal changes sign (crosses zero) within the frame:

ZCR =
1

N − 1

N∑
n=2

I (sign(sn−1) 6= sign(sn)) (3.47)

The zero crossing rate can be viewed as a measure of the dominant frequency in the signal
[69]. It assumes low values for signals with a predominantly low frequency content (such
as voiced speech) and high values for noisy signals (such as unvoiced speech).

A less well known descendant of the zero crossing rate is a measure developed by Paulus
[93], known by the name gradient index [61]:

GIN =
∑N−1

n=2 ∆ψ(n)|sn − sn−1|√∑N
n=1 s

2
n

, (3.48)

where

∆ψ(n) =
|ψ(n)− ψ(n− 1)|

2
(3.49)

and

ψ(n) =
sn − sn−1

|sn − sn−1|
. (3.50)

Like the zero crossing rate, the gradient index has been found to contain information
about broad classes of speech sounds (such as vowel, fricative, etc.) and has been utilized
in artificial bandwidth extension of telephone speech [61].

The spectral centroid is defined as the “center of gravity” of the magnitude spectrum, i.e.,
the frequency which divides the magnitude spectrum into two portions of approximately
equal “mass”:

SCENT =
∑L

k=1 k|Sk|∑L
k=1 |Sk|

(3.51)

The spectral centroid is commonly regarded as a good measure of the perceptual quality
of brightness (e.g. [126]), which in turn is an important constituent of the perception of
timbre [17].

The spectral flatness [79] is the ratio of the geometric mean of the magnitude spectrum
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to its arithmetic mean. It can be computed as

SFLAT =
exp

(
(1/L)

∑L
k=1 log(|Sk|+ ε)

)
ε+ (1/L)

∑L
k=1 |Sk|

(3.52)

where the arbitrary small positive value ε is added in the numerator to prevent taking
a logarithm of zero and in the denominator to prevent division by zero. Spectral flatness
assumes values between 0 and 1, with low values for sounds with highly shaped spectra and
high values for sounds with flat spectra (such as white noise or a unit impulse train [78]).

The normalized residual energy of linear prediction (LPNRE), given by Eq. 3.23, has
also been used as a short-time feature for speech [6] [96]. It takes on low values for signal
segments that are well predictable by the all-pole model (such as vowel-like speech sounds)
and high values for segments that are hard to predict (such as noisy fricatives and rapid
transients).

Many pitch estimation methods are based on first preprocessing the signal in order to
emphasize the fundamental frequency components and to suppress other information, after
which the pitch period is found as the autocorrelation lag (within allowed range) corre-
sponding to the maximum peak in the short-time autocorrelation function of the processed
signal [102]. A prewhitening operation by LP inverse filtering (that is, analyzing the au-
tocorrelation function of the LP residual) is one possibility. The real cepstrum is related
to the autocorrelation function 4 and can also be utilized for pitch estimation in a similar
fashion as the autocorrelation function. Tolonen and Karjalainen [121] proposed a com-
putationally efficient multiple pitch analysis method in which the signal is prewhitened by
frequency-warped LP and divided into two channels (below and above 1000 Hz), a general-
ized autocorrelation is computed separately for the low-channel signal and for the envelope
of the high channel signal, the two autocorrelation functions are summed and finally the
summary autocorrelation function is enhanced by pruning unnecessary peaks.

Figure 3.4 illustrates the shapes of the time contours of selected short-time features dur-
ing six different sound segments. The features have been computed from 20 ms windows
with a 10 ms shift interval. Each sound sample is five seconds long and sampled at 16 kHz.
It is apparent from the figure that these sound classes can hardly be reliably separated by
direct thresholding of the short-time features. However, if a longer time segment is ana-
lyzed at a time, the short-time feature waveforms can look very different for different types
of sound. This observation is one motivation for long-term feature analysis discussed in
Section 3.6.

Figure 3.5 shows an absolute-valued correlation matrix of the ten features illustrated
4The autocorrelation function is the IDFT of the power spectrum, while the real cepstrum is the IDFT of the

logarithmic magnitude spectrum.
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Figure 3.4: Examples of the time evolution of ten short-time acoustic features during six
samples containing different types of sound. The features are short-time energy (STE), log-
arithmic short-time energy (LGSTE), loudness (LOUD), zero crossing rate (ZCR), gradient
index (GIN), unit-lag normalized autocorrelation (AC1), spectral centroid (SCENT), sharp-
ness (SHARP), spectral flatness (SFLAT) and LP normalized residual energy (LPNRE).
The features have been computed from frames of 20 ms with 10 ms frame shift. Descrip-
tions of the sound samples: Speech1 is English speech by a male speaker. Speech2 is a
female speaker speaking the same sentences. Music1 is a loud segment from a rock song.
Music2 is violin music. Car is the sound of a car starting engine and driving off. Bark is
barking of a dog. The length of each sample is five seconds and the sampling rate is 16 kHz.
Prior to feature computation, the maximum amplitude of each of the six sound segments
was made equal. The vertical axis is the same in each plot of the same feature.

in Figure 3.4, estimated over the same six sound segments. Dark squares indicate high
correlation or anti-correlation between two features while light squares indicate lack of



CHAPTER 3. SIGNAL PROCESSING FOR AUDIO ANALYSIS 43

STE LGSTE LOUD ZCR GIN AC1 SCENT SHARP SFLAT LPNRE

STE

LGSTE

LOUD

ZCR

GIN

AC1

SCENT

SHARP

SFLAT

LPNRE

Figure 3.5: The absolute-valued correlation coefficient matrix of ten short-time acoustic
features estimated over the six sound samples of Figure 3.4. Lighter areas indicate a cor-
relation close to zero (orthogonality) and darker areas indicate high correlation (correlation
coefficient close to 1) or anti-correlation (correlation coefficient close to -1).

correlation (orthogonality) between two features. Three groups of features can be identified
based on correlation/anti-correlation. In terms of perceptual attributes, the features STE,
LGSTE and LOUD seem to form a group of “loudness features”, while ZCR, GIN, AC1,
SCENT and SHARP seem to be associated with the timbral aspect of sharpness (modeled
by the feature SHARP) [132] or brightness [17] (commonly associated with the spectral
centroid SCENT). The two remaining features SFLAT and LPNRE form a group of their
own while being more similar to the brightness features than to the loudness features.

3.6 Long-Term Processing

Considering the important role of the inner ear as a spectrum analyzer, it is natural that
many of the features that have been found to be useful in the classification of audio have an
interpretation related to the short-time auditory spectrum. However, as discussed in Chapter
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2, it is known that the higher neural stages of the auditory pathway generate longer-term
representations of the sound that are modulation frequency selective. Considering human
perception in general, relative changes in the stimulus are often more relevant than the ab-
solute values of the stimulus [86]. Temporal changes of the stimulus at certain rates appear
to dominate the auditory perception. For speech communication, spectral components that
change at a rate close to 4 Hz appear to carry the perceptually most relevant information
[54]. This is close to the typical syllabic rate in speech. Long-term features based on 4 Hz
modulation energies have been successful in separating speech and music [107]. More gen-
erally, modulation band energy features can be efficient representations in discriminating
among different sound classes. From Figure 3.4, it is apparent that in many cases, the same
short-time feature computed from two different types of sound displays very different power
spectrum, when the spectra of the feature waveforms are estimated from whole segments
(for example by DFT). Bandpass energies of the modulation of different short-time features
have been used with success as long-term features for both general audio classification and
musical genre classification in [80].

On a shorter time scale, simple measure of the instantaneous change in the spectrum is the
spectral flux, which is defined in [107] as the 2-norm of the difference (i.e., the Euclidean
distance) of two successive magnitude spectra Sn and Sn−1:

SFLUX = ‖Sn − Sn−1‖ (3.53)

The so called delta features, denoted here by ∆n and ∆∆n, are commonly computed for
feature xn using linear regression on an integer variable as [36]

∆n =
∑W

θ=−W θxn+θ∑W
θ=−W θ2

∆∆n =
∑W

θ=−W θ∆n+θ∑W
θ=−W θ2

(3.54)

where the parameter W determines the width of the window used in computing the re-
gression coefficients. Usually the deltas are computed for cepstral features and logarithmic
frame energies and then supplemented to the feature vector, i.e., they are usually not used
in isolation but together with the original features from which they have been computed.

In the field of ASR, feature postprocessing techniques have been developed to reduce
the effects of very slowly or occasionally varying channel and environment conditions in
the short-time spectrum-based features, while retaining the relevant modulation frequen-
cies. The most notable methods of this kind include RASTA filtering and cepstral mean
subtraction.
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RASTA filtering is part of the RASTA-PLP speech analysis technique proposed by Her-
mansky [55]. An IIR temporal filter with the transfer function

H(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(3.55)

is applied to the feature vectors across frames. In the original RASTA technique [55],
filters such as Eq. 3.55 are applied to logarithmic critical-band spectra.

Cepstral mean subtraction refers to the subtraction of a long-term average cepstrum from
cepstral feature vectors [5] [57]:

ĉn = cn −
1
N

N∑
i=1

ci (3.56)

This operation makes the resulting feature vectors invariant to changes in the long-term
average that is subtracted. Thus, it serves to increase robustness against stationary or slowly
changing background noise.

In feature extraction for the recognition of broad sound classes with high variability (such
as speech in general, music in general, speech of a specific speaker, music from a specific
genre or some class of environmental sounds), longer segments of successive short-time fea-
tures are often considered. The longer analysis window, whose length is typically between
0.5 and 5 seconds, can be called a texture window [122]. Statistics like the sample mean
and the sample variance of the short-time feature values are frequently used as the final
features to characterize audio textures over the texture window frame. Moreover, the AR(1)
prediction coefficient of some short-time feature xn can be computed using least squares
estimation as follows [47]. Consider the AR(1) model xn = c + φxn−1 + un, where c is
a constant intercept term, φ is the AR(1) coefficient and un is Gaussian white noise. For a
sample of N values within the texture window (x1, . . . , xN ), this can be written in matrix
form as x = Zβ + u, where x = [x2 . . . xN ]′, β = [c φ]′, u = [u2 . . . uN ]′

and

Z =


1 x1

...
...

1 xN−1


The least squares solution for β is given by [47]

β̂ = (Z ′Z)−1Z ′x. (3.57)

From β̂ , the estimate of φ can be extracted and functions as a measure of the self-
similarity of the variable with short lags, or as an inverse measure of the rate of change.
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The AR(1) coefficient defined and estimated as above is invariant to changes in the constant
DC level of xn. For zero-mean sequences, the estimated AR(1) coefficient is approximately
equivalent to the unit delay normalized autocorrelation coefficient. Thus, an equivalent fea-
ture can also be computed by subtracting the mean and computing the normalized unit delay
autocorrelation.

Specially tailored long-term statistics are also frequently used as features, such as the
number of frames for which the short-time feature exceeds a certain threshold dependent
on the mean of the short-time feature. In [76], the high zero crossing rate ratio (HZCRR)
was defined as the ratio of the number of frames (within a 1 s window) whose zero crossing
rate is above 1.5 times the average zero crossing rate for the same window (denoted ZCR),
i.e.,

HZCRR =
1

2N

N∑
n=1

I
(
ZCRn > 1.5ZCR

)
, (3.58)

where N is the number of frames within the one-second window, ZCRn is the zero
crossing rate of the nth frame within the window and and ZCR is the mean of the ZCR
feature over the N frames.

Because HZCRR picks up the skewed distribution of the zero crossing rate during speech
segments, it was proposed in [76] as one feature for detecting the presence of speech. A
related ZCR-based statistic for detecting a skewed distribution due to speech activity was
also used in [106].

As another example of specialized long-time features, the low short-time energy ratio
feature reacts to the fact that speech contains relatively large amounts of silence (due to
pauses and the closure portions of the stop consonants) [76]:

LSTER =
1

2N

N∑
n=1

I
(
STEn < 0.5STE

)
(3.59)

3.7 Music-Specific Features

Different music applications may require musical signal recognition or transcription in
terms of chords, key and genre, among other things. Besides instrumentation, which is
well reflected in timbral features, music is also characterized by its rhythmic structure and
harmonic content [122]. The short-time features discussed so far have been mostly timbral
or loudness features. Such features are inadequate for representing rhythm, pitch or har-
mony. The conventional short-time analysis frame of roughly 20 milliseconds is too short
to capture rhythmic structure, while timbral features such as the MFCCs lose pitch infor-
mation and are thus not suited for representing the harmonic information in the spectrum.
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To capture the harmonic content in music, chroma-based feature vectors are often used.
A typical approach is to map each frequency into a pitch class (corresponding to one of the
twelve semitones), irrespective of octave, and by summation of a magnitude spectral repre-
sentation over each pitch class (i.e., over different octaves) to form a chroma vector whose
each element corresponds to one pitch class. In one such approach proposed by Bartsch and
Wakefield [10], pitch class averages are computed from the logarithmic magnitude of the
DFT. In another similar feature extraction method [110], originally proposed by Fujishima
[35], squared DFT magnitudes are averaged over each pitch class. Variations of chroma-
based representations have been used, e.g., in structural music analysis [10], musical genre
identification [122], chord segmentation [110], chord transcription and mid-level represen-
tations [12] and musical scene analysis [72]. Multiple pitch analysis methods can also be
useful in generating harmonic features for music [72] [122].

In automatic musical genre identification and similar applications, the rhythm plays an
important role. Many of the long-term features introduced in Section 3.6 capture rhythm
information to an extent. However, several more sophisticated feature extraction methods
for characterizing rhythmic content have also been developed specifically for music signals
[72]. A prominent approach is to compute a beat histogram. One implementation of beat
histogram feature extraction has been used by Tzanetakis and Cook [122] in musical genre
classification. First, the signal is divided into octave frequency bands by discrete wavelet
transform, after which an enhanced autocorrelation is computed for the sum of the time
domain envelopes computed separately for each band. Multiple autocorrelation peaks from
the appropriate beat range are picked and their values added to the beat histogram. The
periods and amplitudes of peaks in beat histograms can be used as rhythmic features [122].

3.8 Vector Quantization

After short-time and long-time processing in Figure 3.1, a representation of the audio signal
as a sequence of feature vectors {xn} is obtained. In the general audio classification system
depicted in Figure 1.1, feature extraction is followed by pattern recognition. Sometimes it is
more desirable to apply pattern recognition methods to sequences of discrete nominal sym-
bols instead of sequences of continuous-valued vectors. This is where vector quantization
(VQ) [38] comes into play. A complete vector quantizer is specified by

• a decision rule that partitions the d-dimensional feature space into J nonoverlapping
regions

• a codebook {θ1, . . . ,θJ} containing one codeword, or reproduction vector, for each
region
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Vector quantization uses the decision rule to replace each continuous-valued vector by
a symbol, essentially an element of the set {1, . . . , J}, corresponding to the region in the
data space to which the vector belongs. As VQ has its primary applications in coding and
compression, an important aspect of VQ is that it is possible to reproduce the continuous-
valued data - with some loss of precision - from the encoded discrete-valued data. This is
accomplished by replacing the VQ symbols with corresponding codebook entries.

In some VQ approaches, the two components of VQ - the decision rule and the codebook
- are very closely related and may share the same parameters. In others, they may have
an entirely different parametrization. In the context of feature extraction for audio classifi-
cation, reproduction is not usually important and it often suffices to have just the decision
rule component of VQ. A simple method called k-means and its variant LBG, which can be
used to construct VQ decision rules (and codebooks) by means of unsupervised learning,
are discussed in Chapter 4.



Chapter 4

Pattern Recognition Methods

This chapter reviews some of the most central pattern recognition methods that find appli-
cation in automatic classification of audio content. In supervised classification, emphasis
is given to Bayesian classification methods, including Gaussian, Gaussian mixture model
(GMM) and hidden Markov model (HMM) classifiers. Besides the wide popularity of
Gaussian and GMM classifiers in general supervised pattern recognition, this emphasis can
be justified by the importance of HMMs in time series recognition applications, by the close
connection between GMMs and HMMs and by the applicability of both GMMs and HMMs
to unsupervised segmentation and classification of a time series. Nearest neighbor classi-
fiers (the kNN rule) and dynamic time warping (DTW) are also discussed in some detail, as
the former is a conceptually simple general-purpose supervised classification method and
the latter is an alternative to HMMs in measuring the similarity of time series segments.
Other popular supervised classification methods, which are usually interchangeable with
GMMs and nearest neighbor classifiers, are briefly introduced with references to the liter-
ature. In unsupervised classification, some of the most central clustering algorithms and
HMM learning receive a detailed treatment. An example of the separation of speech and
music by unsupervised classification methods is presented. Finally, methods of explicit
segmentation are discussed.

4.1 Supervised Pattern Recognition

4.1.1 Bayesian Classification

The present discussion on pattern recognition is based on the following assumptions. Let
X = {x1,x2, . . . ,xN} be a set of (d × 1) feature vectors that are observed; of course,
if N = 1 then X consists of a single feature vector. Let ω be a pattern of some external
categorical variables, i.e., a state of nature [28], that producedX . For example, in automatic

49
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speech recognition, the state of nature ω could consist of category variables whose values
equal to both the statements “a person is speaking in English” and “a person says the word
“cat””. ω would thus define the “cat” class of observations. Automatic classification is
required when ω can not be directly observed completely; the goal is then to infer ω from
the observations X .

After observing the data X , the natural probabilistic approach to recognizing the under-
lying state of nature is to find ω̂ such that

ω̂ = argmax
ω

P (ω|X). (4.1)

Evaluating the conditional discrete probability distribution P (ω|X) is problematic, how-
ever, if X is a continuous-valued random vector (as is typical for low-level feature vectors
derived from physical measurements using sensors such as microphones). A popular solu-
tion is to apply Bayes’ formula:

P (ω|X) =
P (X|ω)P (ω)

P (X)
(4.2)

Substituting this into Eq. 4.1, it is easily seen that the term P (X) in the denominator of
Eq. 4.2, being independent of ω, does not affect the outcome of Eq. 4.1. Thus, Eq. 4.1 can
be rewritten as

ω̂ = argmax
ω

P (X|ω)P (ω). (4.3)

Eq. 4.3 is the principle of Bayesian classification. P (ω) is the prior probability that
nature is in state ω during observation of X , i.e., that X belongs to the class specified by
ω. The distribution P (ω) can be chosen independently according to the problem domain.
For example, the prior distribution can be chosen to be uniform, in which case P (ω) does
not effectively appear in the maximization (Eq. 4.3) at all. The distribution P (X|ω) is
the conditional probability density function (PDF) of X with respect to the state of nature
(or class) ω. If its value at X can be modeled accurately for each class ω, the class can
with high probability be correctly identified using Eq. 4.3. In Bayesian classification, each
state of nature ω is parametrized by a PDF model λω such that the model parameter set λω

is considered to be a sufficient statistic for estimating the state of nature ω. Eq. 4.3 then
becomes

ω̂ = argmax
ω

P (X|λω)P (ω). (4.4)

In practical applications, the posterior probabilities (likelihoods) P (X|λω) of long se-
quences frequently grow so small as to cause numerical problems. To solve this problem,
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logarithmic probabilities are frequently used instead. Eq. 4.4 can be equivalently written as

ω̂ = argmax
λω

(logP (X|λω) + logP (ω)) , (4.5)

Being a monotonic function, the logarithm completely preserves any relative ordering of
PDF values.

Gaussian and Minimum Distance Classification

The normal density, or Gaussian density, is very often used in pattern classification. Its
popularity can be justified by the Central Limit Theorem, which states that, under vari-
ous conditions, a random variable that is the sum of independent random variables will be
distributed approximately normally [28] [47].

The univariate normal density is given by

p(x|µ, σ) =
1

σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

(4.6)

The multivariate Gaussian density in d dimensions is given by

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x − µ)′Σ−1(x − µ)

)
(4.7)

where µ is the (d×1) mean vector and Σ is the (d×d) covariance matrix. The univariate
Gaussian density is a special case of Eq. 4.7 in which d = 1. For d > 1, two forms of
the covariance matrix are commonly used: a full covariance matrix can have any element
nonzero, while in a diagonal covariance matrix only the variance parameters on the main
diagonal are nonzero and the rest of the covariance parameters are zero.

A Gaussian classifier, based on the Bayesian principle, uses a Gaussian distribution
parametrized as λω = {µω,Σω} as the PDF model for each class ω. Figure 4.1 illus-
trates the PDFs of two classes in the one-dimensional case. As there is notable overlap in
the PDFs, the expected classification error rate is greater than zero. Using Eq. 4.4 with
equal priors, the classification boundary would be placed as shown by the dashed line in
Figure 4.1. Integrating the total area of the shaded regions gives the minimum attainable
asymptotic error rate (for these particular classes and class PDFs), also known as the Bayes
error rate. The Bayes error is a measure of the “best possible” classification error rate using
the particular features and no additional information. It can be calculated if the class PDFs
are known.

A Gaussian classifier uses Eq. 4.7 to modelP (X|ω) asP (X|λω) =
∏N

n=1 p(xn|µω,Σω).
Because this is a product of a large number of probabilities (in the range (0, 1)), direct com-
putation of the likelihood quickly leads to numerical underflow even with a relatively small
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Figure 4.1: Univariate normal probability density functions (PDFs) of two classes. The
vertical dashed line shows the optimal class decision boundary with equal priors. The
shaded regions indicate the areas of classification error with the optimal decision boundary.

number of observations N . Thus, the log likelihood is a better practical measure; The log
likelihood for observation sequence X with Gaussian PDF λω is given by

logP (X|λω) =
N∑

n=1

log p(xn|λω) = N logC − 1
2

N∑
n=1

(xn − µω)′Σ−1
ω (xn − µω) (4.8)

where the constant (with respect to X) term C is given by

C =
1

(2π)d/2|Σω|1/2
(4.9)

and its logarithm by

logC = −d
2

log(2π)− 1
2

log(|Σω|) (4.10)

Multivariate Gaussian classification in its most general form now proceeds by substitut-
ing Eq. 4.8 into Eq. 4.5.

When the class prior probabilities are assumed equal, so that the value of Eq. 4.5 is com-
pletely determined by the likelihood in Eq. 4.8, there are certain special cases of Gaussian
classification worth considering. Let us consider the case in which each class shares a com-
mon global covariance matrix Σ, such that the term N logC becomes equal for all classes
in Eq. 4.8. This being the case, also the constant factor (1/2) of the second term on the
right hand side of Eq. 4.8 becomes unimportant in view of the maximization in Eq. 4.5.
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Maximizing the value of Eq. 4.8 with respect to λ now becomes equivalent to minimizing

D =
N∑

n=1

(xn − µω)′Σ−1(xn − µω) (4.11)

For a single observation (N = 1), minimization of Eq. 4.11 is equivalent to minimizing
the square of the Mahalanobis distance [120]. The Mahalanobis distance is given by

dM (x,µ,Σ) =
√

(x − µ)′Σ−1(x − µ) (4.12)

and because it is always nonnegative, minimization of Eq. 4.11 with N = 1 is also
equivalent to minimizing the Mahalanobis distance itself. This motivates the use of mini-
mum distance classifiers, which decide for each test vector the class of the reference pattern
that is closest in terms of the chosen distance measure. Minimum Mahalanobis distance
classification has been shown above to be equivalent to Gaussian (Bayesian) classification
using equal class priors and a global covariance matrix. This kind of classifier supports
class distributions with shapes like arbitrarily oriented hyperellipsoids, as manifested by
the diagonally oriented point cloud shown in Figure 4.2. It should be noted that when mul-
tiple vector observations are classified simultaneously (under the assumption that they all
belong to the same class) using Gaussian classification, equivalent distance-based classi-
fication requires the use of a sum of squared Mahalanobis distances as the quantity to be
minimized (Eq. 4.11).

Figure 4.2: Point clouds obtained by sampling two Gaussian densities. The ellipsoidal
cluster originates from a density with a full covariance matrix. The circular (spherical)
cluster originates from a density with a diagonal, equal-variance covariance matrix of the
form σI .
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Now consider further constraints on the global covariance matrix: if it is made diagonal,
the Mahalanobis weighting matrix is diagonal consisting of the inverses of the feature vari-
ances on the main diagonal. Such a distance is known as the weighted Euclidean distance.
The minimum weighted Euclidean distance classifier is also commonly known as the Naive-
Bayes classifier [28]. This classifier structure supports hyperellipsoidal class distributions
whose axes align with the feature axes.

Finally, the minimum Euclidean distance condition follows, as another special case of
the Mahalanobis distance, by assuming equal variances for each of the d features such that
Σ = σI , where I is the (d×d) identity matrix. Minimum Euclidean distance classification
of a single observation thus corresponds to Gaussian classification assuming equal priors, a
global diagonal covariance matrix and equal variance for each feature. The class distribu-
tions are thus implicitly assumed to be compact (as opposed to elongated) and spherical,
according to the shape of diagonal-covariance, equal-variance Gaussian distributions (such
as the circular point cloud shown in Figure 4.2). Such a classifier is rather simplistic, but
should work well if a feature representation is found such that the desired classes form fairly
distinct and compact clusters in the feature space.

Classification using GMMs

A unimodal multivariate distribution, such as the multivariate Gaussian distribution, is fre-
quently an inadequate model for representing probability distributions with complex shapes.
The situation can be helped by instead using a mixture of such distributions. A Gaussian
Mixture Model (GMM) with J mixture components is given by

p(x|λ) =
J∑

j=1

pjbj(x) (4.13)

where each component distribution

bj(x) =
1

(2π)d/2|Σj |1/2
exp

(
−1

2
(x − µj)

′Σ−1
j (x − µj)

)
(4.14)

is a multivariate Gaussian distribution parametrized by a (d × 1) mean vector µj and a
(d × d) covariance matrix Σj . The pj are the mixture weights, or component priors. Such
a mixture model can approximate distributions with arbitrarily complex shapes, provided
that the number of mixture components J is sufficiently large [104].

An important consideration in specifying a GMM is its covariance structure. The follow-
ing definitions can be used to characterize covariance [104]: if a GMM has nodal covariance
it means that every component has its own covariance matrix, grand covariance refers to a
common covariance matrix shared by all components of the same GMM, and global covari-
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ance refers to a single covariance matrix used in all contexts. In addition, each covariance
matrix can be either full or diagonal.

In Bayesian classification, the observation PDF corresponding to each class (state of
nature) ωi is modeled by a GMM λi = {p1, . . . , pJ ,µ1, . . . ,µJ ,Σ1, . . . ,ΣJ}. According
to Eq. 4.4, classification of a set of feature vectors X thus requires computation of the
quantities P (X|λi). For any GMM λ, this likelihood is given by

P (X|λ) =
N∏

n=1

p(xn|λ), (4.15)

where p(xn|λ) is given by Eq. 4.13. The formula for the log likelihood of a data set X
is thus

logP (X|λ) =
N∑

n=1

log
J∑

i=1

pibi(xn) (4.16)

The details of training GMMs are given in Section 4.2.

Time Series Segmentation and Classification using HMMs

Figure 4.3: A diagram of an ergodic HMM with three states.

Hidden Markov models (HMMs) [101] are a class of stochastic models for (vector or
scalar) time series. In applications involving supervised segmentation and classification
of a multivariate time series, HMMs are frequently employed in a Bayesian supervised
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classification framework. The most prominent such application area is automatic speech
recognition (ASR), where HMM-based Bayesian classification is currently the prevalent
technology.

In the Bayesian classification framework, the problem is to find the labeling (symbol
sequence) Ŵ = {ω1, ω2, . . . , ωN}, that is most likely to have produced the observed feature
vector sequence X = {x1,x2, . . . ,xN} [62]:

Ŵ = arg max
W

P (W |X) (4.17)

Applying Bayes’ formula, we have

Ŵ = arg max
W

P (W )P (X|W )
P (X)

(4.18)

Again, P (X) has no effect on the maximization in Eq. 4.18 and we have

Ŵ = arg max
W

P (W )P (X|W ) (4.19)

In ASR terminology, P (W ) corresponds to the language model while P (X|W ) is the
acoustic model. HMMs are frequently used in acoustic modeling to model the PDFP (X|W ).

An HMM can be thought to consist of the hidden layer and the observation layer. In
the hidden layer, the model has a discrete-time state process qn governed by the rules of a
first-order Markov chain (hence the name hidden Markov model). At any time instant n, the
state process is in one of K states; however, the state qn is not directly observable. Instead,
the observation layer presents the time series xn, where each observation xn is assumed to
have been drawn from a state-specific probability distribution p(xn|qn = i,Xn−1

1 ), which
can be continuous or discrete, depending on the type of the HMM.

To summarize, an HMM with K states has three main elements:

• The state transition probabilities, which can be expressed as a (K × K) transition
probability matrix A = (aij), where each element is given by

aij = P (qn+1 = j|qn = i), 1 ≤ i, j ≤ K,

i.e., the conditional probability of a transition to state j at the next time instant, given
that the model is currently in state i.

• The initial state probability distribution, which can be expressed in vector form as
π = [π1 π2 . . . πK ], where

πi = P (q1 = i), 1 ≤ i ≤ K,
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i.e., the probability that the model is in state i at the initial time instant n = 1.

• The state-specific observation probability distributions bi(xn) = p(xn|qn = i,Xn−1
1 ),

which may have various forms. For example, these distributions can be discrete dis-
tributions of vector quantization indices, continuous Gaussian distributions, Gaussian
mixtures or vector autoregressive Gaussian models (see Section 4.2.3). The parame-
ter sets of these distributions will be denoted by Bi, such that each parameter set Bi

parametrizes the probability distribution bi(xn).

Thus, the HMM is parametrized by the parameter set λ = {π,A, B1, . . . , BK}. Figure
4.3 illustrates an HMM with three states. The HMM represented in the figure is called
ergodic on the condition that each aij > 0, meaning that every transition between two
states (including self-transitions) is possible. Another commonly employed type of HMM
is a left-to-right model, where transitions are possible only in one “direction”. One way to
convert the HMM in Figure 4.3 to a left-to-right model would be to enforce the condition
aij = 0, i > j. Left-to-right models are best suited to modeling short time series segments
of certain temporal structure, such as words or phonemes, whereas ergodic models are
convenient for modeling class sequences in arbitrarily long signals (although an ergodic
model can be used for both purposes).

In practice, the training of HMMs is an important issue. Because HMM training can
also be used for unsupervised classification, this discussion is postponed until Section 4.2.
For now, let us consider an HMM λ whose parameters have been previously set - by some
training procedure - to reasonable values for modeling the desired PDF of a vector time
series.

As a practical application, consider a simple example of isolated segment recognition
(e.g. isolated word recognition), where it is known beforehand that the feature vector se-
quence X corresponds to a single class segment, and hence a single class symbol, so that
W = {ω1} in Eq. 4.19. If each possible class label ω is associated with an HMM λω, the
classification problem becomes equivalent to determining which model λω1 gives the high-
est probability P (ω1)P (X|λω1). This requires the computation of the probability P (X|λ)
for a given HMM λ, a central problem in dealing with HMMs. The most common algorithm
for computing this quantity is known as the forward algorithm. It makes use of a variable

αn(i) = P (Xn
1 , qn = i|λ), 1 ≤ i ≤ K (4.20)

i.e., the joint probability of the observation sequence until time n and the hidden state at
time n given the hidden Markov model λ. The algorithm proceeds as follows [101]:

1. α1(i) = πibi(x1), 1 ≤ i ≤ K
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2. For n = 1 to N − 1:

αn+1(j) =
(∑K

i=1 αn(i)aij

)
bj(xn+1), 1 ≤ j ≤ K

3. P (X|λ) =
∑K

i=1 αN (i)

In practice, to avoid numerical underflow, the forward prodedure requires intermediate
scaling of the forward variable, as discussed in [101].

An alternative to the forward computation has been presented by Hamilton in the field of
econometrics [47] [45]. It uses the intermediate quantities γn+1|n(i) = P (qn+1 = i|Xn

1 , λ)
and γn|n(i) = P (qn = i|Xn

1 , λ). The algorithm proceeds as follows:

1. γ1|0(i) = πi, , 1 ≤ i ≤ K

2. For n = 1 to N :

P (xn|Xn−1
1 , λ) =

∑K
i=1

(
γn|n−1(i)bi(xn)

)
γn|n(i) = γn|n−1(i)bi(xn)PK

k=1(γn|n−1(k)bk(xn)) , 1 ≤ i ≤ K

γn+1|n(j) =
∑K

i=1

(
aijγn|n(i)

)
, 1 ≤ j ≤ K

By the chain rule of probabilities, P (X|λ) is given by

P (X|λ) =
N∏

n=1

P (xn|Xn−1
1 , λ) (4.21)

Thus, the desired likelihood is obtained as a product of values computed on the first line
of the main loop in the above algorithm. Again, however, to avoid numerical underflow, it
is better to instead compute the log likelihood as the sum of the logarithms of these values:

L(X,λ) = logP (X|λ) =
N∑

n=1

logP (xn|Xn−1
1 , λ) (4.22)

The ability to evaluate P (X|λ) is sufficient for automatic classification on the condition
thatX is known to represent a single class, i.e., that the input has been somehow segmented
beforehand. An ASR example of such a task is isolated word recognition, in which each
input is assumed to be a single word (perhaps the words have been segmented apart from
each other by an endpoint detector [57] [65]). If this is not the case and W in Eq. 4.19 is a
sequence of class symbols, such as in continuous speech recognition, the HMM recognizer
must also take care of the segmentation. Such a recognizer uses a composite HMM network
where either individual states or smaller sub-HMMs (such as word HMMs) correspond to
the different classes. The recognition problem becomes that of finding an optimal decod-
ing of the input feature vectors to a sequence of HMM states (or a sequence of groups of
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states corresponding to different sub-HMMs). This is equivalent to finding the maximum
likelihood path through a trellis of HMM states 1. A path through a trellis is a function,
defined for each discrete time instant, that tells us the identity of the HMM state occupied
at each time instant. Such a path can be denoted as QN

1 = {q1, q2, . . . , qN}, where each
qn ∈ {1, . . . ,K}. For a composite HMM consisting of more than one sub-HMM, the ob-
servation labeling QN

1 in terms of individual states can be easily converted into another
labeling expressed in terms of the sub-HMM identities occupied at each time instant.

For the above explained purpose, the well-known Viterbi algorithm, an implementation
of the dynamic programming optimization principle, is usually used [101]. This algorithm
makes use of the quantity δn(i) = max

Qn−1
1

P (Qn−1
1 , qn = i,Xn

1 |λ).

1. δ1(i) = πibi(x1), 1 ≤ i ≤ K

ψ(i) = 0, 1 ≤ i ≤ K

2. For n = 2 to N:

δn(j) = max
1≤i≤K

(δn−1(i)aij) bj(xn), 1 ≤ j ≤ K

ψn(j) = argmax
1≤i≤K

(δn−1(i)aij) , 1 ≤ j ≤ K

3. P ∗ = max
1≤i≤K

(δN (i))

q∗N = argmax
1≤i≤N

(δN (i))

4. For n = N-1 to 1:

q∗n = ψn+1(q∗n+1)

In the first loop, for each pair of observation xn and HMM state j, corresponding to
a node (n, j) in the trellis, the Viterbi algorithm finds the maximum likelihood δn(j) ac-
cording to the best partial path {q1, q2, . . . , qn = j} (constrained to contain node (n, j)).
It also keeps track of the predecessor node along the said path (in ψn(j)). After termina-
tion, the maximum joint likelihood along the best path, P ∗ = max

QN
1

P (QN
1 , X|λ), is known.

Lastly, the backtracking loop finds out the maximum likelihood path {q∗1, q∗2, . . . , q∗N} =
argmaxQN

1
P (QN

1 , X|λ) = argmaxQN
1
P (QN

1 |X,λ) itself, using the stored predecessor
node information.

The Viterbi algorithm finds the maximum likelihood state sequence that best explains
the observations X . It is sometimes more desirable to evaluate the likelihoods of the states

1A trellis is a two-dimensional point grid where the other (usually visualized as the horizontal) axis is the
discrete time of the observations and the other axis is the HMM state identity.
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individually at each time instant; importantly, such quantities are useful in the automatic
training of HMM parameters by the EM algorithm (see Section 4.2.3). For this purpose,
the forward algorithm is followed by the backward computation which uses the backward
variable βn(i) = P (XN

n+1|qn = i, λ) [101]:

1. βN (i) = 1, 1 ≤ i ≤ K

2. For n = N-1 to 1:

βn(i) =
∑K

j=1 aijbj(xn+1)βn+1(j)

The individual state occupancy posterior probabilities are now given by [101]

γn(i) = P (qn = i|X,λ) =
αn(i)βn(i)∑K

j=1 αn(j)βn(j)
. (4.23)

The posterior probabilities of state transitions are given by

ξn(i, j) = P (qn = i, qn+1 = j|X,λ) =
αn(i)aijbj(xn+1)βn+1(j)∑K

i=1

∑K
j=1 αn(i)aijbj(xn+1)βn+1(j)

. (4.24)

An alternative method for the computation of the likelihoodsP (qn = i|X,λ),1 ≤ i ≤ K,
proposed by Kim [70] [47], is applicable after first running Hamilton’s algorithm:

1. γN (i) = γN |N (i), 1 ≤ i ≤ K

2. For n = N-1 to 1:

γn(i) = γn|n(i)
∑K

j=1

(
aij

γn+1(j)
γn+1|n(j)

)
, 1 ≤ i ≤ K

The desired probabilities are now given by the γn(i). To obtain the probabilities corre-
sponding to the ξn(i, j), without having to modify the above algorithm, one could use for
example the approximation

ξn(i, j) ≈ γn(i)γn+1(j) (4.25)

in which the state variables at two successive times, qn and qn+1, are assumed condition-
ally independent given the knowledge of both X and λ. This assumption can be expressed
as P (qn+1 = j|qn = i,X, λ) ≈ P (qn+1 = j|X,λ) = γn+1(j). The intuitive idea be-
hind this approximation is that X and λ should contain sufficient information for reliably
estimating qn+1, so that even additional knowledge of qn does not particularly affect the
posterior probability distribution of qn+1. Whether this is a valid argument may depend on
whether the goal is indeed to infer the values of the hidden state variable qn, which might be
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the case in, e.g., unsupervised classification but requires that the observation distributions
in the feature space are sufficiently separable among different HMM states. Alternatively,
the HMM may have been designed for just modeling a probability density function of a
time series. In the latter case, only the HMM likelihood has been considered to be of inter-
est and the specific state inferences may be unreliable or meaningless from a classification
perspective.

4.1.2 Nearest Neighbor Classification

A difficulty in Bayesian classification is that it requires reliable estimates λω of the class
PDFs to evaluate P (X|ω) ≈ P (X|λω) for Eq. 4.3. Several alternative pattern classification
methods exist that do not require explicit PDF modeling. One popular alternative is the
k-nearest-neighbor (kNN) rule, which is a conceptually simple, yet powerful, supervised
classification method. The procedure is the following:

1. Training: Select a training set of N patterns and store their parameters as well as the
associated class labels

2. Classification: For each test vector x, find the k nearest training patterns (irrespective
of category label) using the chosen distance measure

3. Determine the class label that appears most often in the set of the k nearest training
patterns and assign it to the test vector x

To avoid ties, the value of k should not be a multiple of the number of classes M [120].
When k = 1, the resulting kNN classifier is sometimes termed the nearest-neighbor

(NN) classifier. For this kind of classifier, it can be shown [28] that the classification error
probability PNN is bounded by

PB ≤ PNN ≤ PB

(
2− M

M − 1
PB

)
≤ 2PB (4.26)

where PB is the optimal Bayesian error probability.
In a two-class problem (M = 2), it can be shown for the general kNN classifier that

PB ≤ PkNN ≤ PB +
1√
ke
, (4.27)

suggesting that the performance of kNN tends to the optimal Bayes error as k → ∞
[120].

An intuitive understanding of why kNN classification works can be gained by consider-
ing the fact that the k nearest neighbor training patterns are contained, in the metric space



CHAPTER 4. PATTERN RECOGNITION METHODS 62

defined by the used distance metric (e.g., the Euclidean distance), within a hypersphere of
radius r, where r is the distance between the test vector x and the kth nearest training pat-
tern. As the number of training patterns N is increased, the space becomes more crowded
and the expected value of r decreases, i.e., the hypersphere becomes smaller. With a suffi-
ciently large training set, r becomes small enough so that the PDFs of all classes can well
be approximated to be constant within the hypersphere. When k samples are drawn from
within such a hypersphere, the majority of these k samples are expected to belong to the
category whose PDF within the hypersphere is dominant compared to the other categories.
Moreover, the larger the number of samples k drawn from within the hypersphere, the more
likely it is that the correct category (the one with the dominant PDF inside the hypersphere)
is selected by the majority voting. At the same time, of course, the value of k should be
much smaller than N .

The above discussion highlights two important parameters of kNN classification: the size
of the training setN and the value of k. In general, both should be as large as possible (while
k � N ) in order to achieve a performance close to the Bayes error PB . However, the size
of the training set is directly related to the computational and storage complexity of the kNN
algorithm, as every training pattern must be memorized and the nearest k patterns must be
found for each test vector. These factors limit the size of the training set. Efficient search
algorithms have been developed to limit the computational burden, while optimal methods
for selecting the training patterns have been developed to limit the storage requirements.
Some references for these methods are listed in [120].

Dynamic Time Warping

Dynamic time warping (DTW) is a method for computing a meaningful, time-aligned dis-
tance between two templates that are sequences of feature vectors and can depict temporal
events. Time alignment is needed because the duration and temporal organization of units
belonging to each event may vary. DTW is a special case of dynamic programming and
thus related to the Viterbi algorithm which achieves a similar goal of time alignment with
HMMs.

DTW as such is well suited to isolated word recognition (IWR) and similar applications
in which both the training and testing data has either been readily segmented into events,
or can be easily segmented apart by automatic methods. The latter case is true in IWR
when the words are spoken separately, with clear pauses between the words. Connected
word recognition (for, e.g., digit strings with a known number of digits) can be achieved via
DTW by incorporating level building [87]. DTW was widely researched in ASR prior to the
advent of HMMs. Because HMMs are much better suited to continuous speech recognition,
the central research topic of modern ASR, HMM methods have since succeeded DTW-
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based templates as the dominant method of acoustic modeling in ASR. The relatively simple
DTW continues, however, to be a useful classification method in recognition tasks in which
the segmentation can be performed by other means.

The idea of DTW is to align two templates, a test template X = {x1, . . . ,xNT
} consist-

ing of NT feature vectors and a reference template Y = {y1, . . . ,yNR
} consisting of NR

feature vectors, by warping their time axes in order to synchronize similar units in the tem-
plates. To accomplish the warping, template matching is cast as a dynamic programming
optimization problem where one finds the minimum cost path through a two-dimensional
grid of NT ×NR nodes. Each node (i, j) corresponds to a pair of feature vectors (xi,yj)
and has associated node cost d(xi,yj). The total cost, and the DTW distance, is the sum of
the node costs along the best path:

D(X,Y ) =
K∑

k=1

d(xI(k),yJ(k)) (4.28)

In Eq. 4.28, the summation is along the length of the optimum path found by DTW, I(k)
is the mapping from the path index to the test template index and J(k) is the mapping from
the path index to the reference template index. The node cost is a distance between two
feature vectors and is computed according to the chosen distance measure. The choice of
this distance measure depends on the type of feature vectors used; the squared Euclidean
distance may, in general, be the most appropriate choice 2.

In the most conventional constrained endpoints version of DTW, the path is required to
start from grid node (1, 1) and end in node (NT , NR) [90]. The local continuity constraints
are an essential part of DTW that determine which transitions are allowed in moving from
one node to another. In the following, the local continuity constraints are specified by
defining a set-valued function c(j), 1 ≤ j ≤ NR, such that transitions from node (i− 1, k)
to node (i, j) are only possible if k ∈ c(j). A fairly general constrained endpoints DTW
algorithm can now be stated as follows [57]:

1. Initialization: set D(1, 1) = d(x1,y1), B(1, 1) = 1 and D(1, j) = ∞, 2 ≤ j ≤ NR.

2. For i = 2 to NT :

D(i, j) = min
k∈c(j)

(D(i− 1, k) + d(xi,yj)), 1 ≤ j ≤ NR

B(i, j) = argmin
k∈c(j)

(D(i− 1, k) + d(xi,yj)), 1 ≤ j ≤ NR

2The sum of squared Euclidean distances reflects the negative log likelihood of a probabilistic template that
consists of spherical Gaussian PDF models; see Section 4.1.1.
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After running the algorithm, the DTW distance between the two templates is given by
D(NT , NR). The storing of the B(i, j) values is optional, as their only purpose is to make
backtracking possible in order to find the warping path, if required. It should be noted that
the above algorithm can not handle the type of local continuity constraints according to
which one test template vector could be matched with two or more different reference tem-
plate vectors. However, many sets of local continuity constraints presented in the literature
do not allow such transitions [100].

The training templates are typically clustered [100] to limit computation in the recogni-
tion phase. This involves computing pairwise DTW distances between all training templates
corresponding to the same class. For each class, some number of clusters are generated and
one reference template is chosen from each cluster. The representative template for each
cluster is chosen, e.g, as the one with the minimum average distance between it and every
other template in the same cluster [100]. During the recognition phase, the representative
templates are used in some variation of nearest neighbor classification.

4.1.3 Other Forms of Supervised Pattern Recognition

Artificial Neural Networks

Artificial neural networks (ANNs) [50] [86] [120] [28] are a simplification of real, biologi-
cal neural networks. They can perform signal processing and pattern recognition tasks and
can be used for both regression and classification. Here, they are briefly discussed from the
pattern classification perspective.

The fundamental processing element of an ANN is the cell, whose function resembles
that of a real neuron: it must integrate input from other cells and communicate the inte-
grated signal (cell activity). The physiological analogue to ANN cell activity is the fir-
ing rate of a real neuron. The activity of cell i can be expressed as F (x,wi, zi), where
x = [x1 . . . xM ]′ is the vector of inputs from M other cells of the network, wi =
[w1 . . . wM ] is the set of weights characterizing the strengths of synaptic connections,
and zi is an intrinsic threshold that determines the range of values for which the cell will be
driven from low to high activity [86]. The activity F (x,wi, zi) can be decomposed into two
parts: A scalar quantity di which is a measure of dissimilarity of the pattern of input activity
x to the set of weights wi connecting cell i to M other cells in the network, and the activa-
tion function F (di − zi). For example, the dissimilarity measure can be based on an inner
product measure di = wixi or the Euclidean distance measure di = ‖w′ − xi‖. Common
activation functions include the linear, threshold linear, step, sigmoid, and Gaussian acti-
vation functions. Unlike the threshold linear and step activation functions, the Gaussian
and sigmoid functions are differentiable. This permits gradient descent type learning algo-
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rithms. These nonlinear activation functions are preferred over linear ones (which are also
differentiable) because ANNs with nonlinear activation functions are able to compute more
complex mappings than ANNs with linear activation functions.

The simplest neural network is the perceptron, which is a binary classifier consisting
of one ANN cell only. Two fundamental learning algorithms exist for the perceptron. The
perceptron learning rule assumes linearly separable classes and performs poorly when class
regions overlap or share a nonlinear boundary. The LMS algorithm, originally introduced
in [124], is quite similar to the perceptron rule but tries to minimize the mean squared error
instead of the number of misclassifications. It allows the perceptron to converge to a stable
state even when the class regions are not linearly separable. For more complex network
topologies, the main categories are [86]:

• recurrent; arbitrary connections between cells in different layers are allowed, en-
abling feedback loops

• non-recurrent; recurrent connectivity (feedback) is not permitted, i.e. information
propagates only in the “forward” direction (from the input towards the output)

• feedforward; a special type of non-recurrent networks where recurrent connectivity is
not permitted and forward connectivity is permitted only between neighboring layers

In general, supervised learning in ANNs follows these general steps:

1. a stimulus pattern is presented at the ANN input

2. a desired “target” response pattern is presented at the ANN output

3. if the response pattern of the network does not match the target response pattern,
the network is corrected by modifying the network weights (the ωi’s) to reduce the
difference between the observed and target patterns

Multilayer perceptrons (MLPs) are (usually feedforward) networks that map the input
pattern (obtained from the previous layer) to a new space at each layer. In classification,
the goal is to have an eventual representation in which the classes are separable by linear
decision boundaries. Using this approach, MLPs can model complex class regions and
nonlinear decision boundaries in the original feature space. Different learning algorithms
give rise to subtypes of MLPs. The backward error propagation (backpropagation) MLP
network is one of the most widely used nonlinear ANN classifiers.
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Support Vector Machines

Support vector machines (SVMs) [19] [120] [28] are fundamentally binary classifiers, but
any number of classes can be accommodated by combining binary SVM classifiers. The
principle of SVM classification can be described by first considering linearly separable
classes, i.e., two classes which can be perfectly separated using a linear hyperplane as a
decision boundary. SVM training is based on the idea of maximizing the margin between
any decision boundary and the closest observations at each side of the hyperplane, i.e., the
goal is to maximize the distance from the closest class representative points to the decision
boundary. These representatives are called support vectors. The optimization problem of
designing a maximum margin hyperplane can be solved using Lagrange multipliers.

In the general case in which the classes are not separable even with a nonlinear decision
boundary, the nonlinear SVM classifier effectively maps the feature vectors into a higher-
dimensional space in which linear separation of the training set is possible. The margin
is then maximized in the higher-dimensional space during the training procedure. Maxi-
mization of the margin in SVM training aims for improved generalization performance of
the classifier when presented with previously unseen data. The specifics of SVM-based
classification can be found, for example, in [19].

Decision trees

A decision tree [18] [28] [120] is a hierarchical classification scheme in which each test
pattern is subjected to a sequence of questions, each of which corresponds to a node in
the tree. The first question corresponds to the root node of the tree, usually displayed at
the top of a tree graph visualization. The answer to each question determines the branch
along which the sequence of questions proceeds. Upon reaching a leaf node, the test pattern
receives the category label associated with the leaf node that was reached.

Every non-leaf node is said to perform a split of the feature vectors, as some population
of feature vectors is effectively split into different sub-populations going down different
branches. In the simplest form, the questions may be of the form, “is feature xi ≤ α?”
where α is some threshold value. Such a decision tree is said to be binary, as there are only
two possible answers to each question. Furthermore, since the questions involve only one
feature at a time, a tree classifier of this kind will produce decision boundaries that consist
of portions perpendicular to the feature axes. CART (Classification and Regression Trees)
is a systematic methodology for training decision trees, described in the book by Breiman
et al [18].
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Heuristic rule-based systems

Many practical classifiers are not based on any theory of pattern recognition, but are instead
constructed manually based on knowledge and intuition. They are based on explicit, heuris-
tic rules and are often hierarchical in nature. Some of these rule-based systems are like
decision trees. The rule-based systems are important in practice as they provide a natural
way of incorporating expert knowledge into the classification method. Their construction
can be guided by expert knowledge and refined by experimentation and visual analysis of
the features.

4.2 Unsupervised Classification

In the present work, a distinction is made between the concepts of unsupervised classifica-
tion and clustering. The former is used as a general term for classification without the help
of labeled training data. The latter is a special case of the former and means organizing
patterns into groups or clusters based solely on their interrelations, i.e., similarities and dif-
ferences between the patterns. This distinction is important when dealing with vector time
series data. Ordinary clustering algorithms deal with the data as simply a set of observations
and do not consider their temporal order. At the same time, there exist other unsupervised
classification methods that do take the temporal order into account, thus considering the
data as a sequence of observations instead.

Applications of ordinary cluster analysis in time series recognition typically occur after
an explicit segmentation algorithm has detected segment boundaries, and the feature vectors
for clustering have been computed from complete segments 3. Some clustering algorithms
can also be used for generating vector quantization (VQ) codebooks. In the latter case of
data modeling, the mean squared error (MSE) is a relevant performance measure, given by

MSE =
1
N

N∑
n=1

‖xn − θyn‖2. (4.29)

where θi is the codeword for the ith VQ codebook entry and yn is the labeling of ob-
servations with VQ codewords. MSE measures the accuracy with which the actual data
vectors can be reproduced using the obtained VQ codebook, i.e. the data modeling per-
formance. In the context of cluster analysis, if a ground truth class labeling is available,
another performance measure can be used. It could be called minimum misclassification

3Change detection algorithms applicable to such explicit segmentation are introduced in Section 4.3.
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rate (MMR) and is given by

MMR = 1− 1
N

K∑
i=1

(
max

j

N∑
n=1

I(yn = i and zn = j)

)
, (4.30)

where yn is the clustering result, zn is an underlying “true” reference labeling, and I()
is an indicator function that assumes a value of 1 if the inside statement is true and a value
of 0 otherwise. MMR assigns each found cluster to the true class with which it agrees
most often and thus describes the agreement between the unsupervised classification and
the ground truth classification. This simple measure, in effect, measures the impurity of the
found clusters in terms of the true classes. It is appropriate for cases in which the number of
automatically found classes is greater than or equal to the number of true reference classes.

The two arguably most popular families of clustering algorithms are hierarchical clus-
tering and clustering based on iterative function optimization. A brief review of the most
important methods belonging to these families is followed by discussion on model initial-
ization for the iterative optimization methods. Next, the attention is turned to direct unsu-
pervised classification of a time series based on HMM modeling. In the end of this section,
the unsupervised methods are applied to speech/music discrimination.

4.2.1 Hierarchical Clustering

Instead of producing a single partition of the data, hierarchical clustering algorithms al-
ways produce a hierarchy of nested clusterings. Hierarchical clustering solutions can be
visualized by a tree graph known as a dendrogram such as the one shown in Figure 4.4.
The vertical axis in this graph corresponds, in general, to a measure of distance between
two clusters. The joining of two clusters in the dendrogram graph is indicated at the cor-
responding threshold level. Cutting the dendrogram at any level results in some clustering
solution.

There are two main approaches to constructing hierarchical clusterings. The agglom-
erative method starts with each observation in its own cluster (at the leaf branches of the
dendrogram) and proceeds to successively merge clusters according to some criterion. The
divisive method starts with all the observations in one cluster (at the root of the dendrogram)
and proceeds to successively split the clusters. This brief presentation will consider only
the agglomerative algorithms, as they are more popular in practice.

In principle, the general hierarchical agglomerative clustering scheme proceeds as fol-
lows [120]:

1. Initially put each observation into its own cluster (start at the leaf branches of the
dendrogram).
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Figure 4.4: An example of a threshold dendrogram for a dataset of eight observations.

2. Among all possible pairs of clusters at the present level of the dendrogram, choose
the one that minimizes a certain cluster dissimilarity function.

3. Go one level up the dendrogram.

4. For the current level of the dendrogram, produce a clustering which is equivalent to
the clustering of the previous level with the exception that the two clusters for which
the dissimilarity in step 2 was minimized are replaced by their union.

5. If all observations are not yet in the same cluster, go to 2. Otherwise, exit.

There are several variations of the hierarchical agglomerative scheme, which differ by the
cluster dissimilarity criterion used in step 2 to determine which clusters to merge at each
level. These cluster dissimilarities are computed by considering pairwise distances be-
tween observations belonging to different clusters. Because of this, hierarchical clustering
is begun by computing a pairwise distance (triangular) matrix between all the observations,
where the observation distance may be any distance measure that is considered relevant for
the type of feature vectors used.

Two popular alternatives for the cluster dissimilarity criterion are single linkage and com-
plete linkage. For merging, the former chooses the two clusters with smallest minimum
distance between a pair of observations, while the latter chooses the two clusters with the
smallest maximum pairwise distance. Because using single linkage, two clusters can be
merged if they have just one pair of points close to each other, single linkage tends to pro-
duce elongated, chain-like clusters [120]. Complete linkage behaves differently; because it
requires relative closeness of every pair of points in two clusters for the two clusters to be
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merged, it produces compact clusters [120].

4.2.2 Iterative Optimization Clustering

Certain learning algorithms are based on the optimization of some cost function in order to
learn a cluster-based model for the data. This makes them suitable to data modeling (vector
quantizer design or PDF model estimation) as well as cluster analysis. Most often, the
optimization is either a direct application of or an analogous procedure to the EM algorithm
(from expectation/maximization). EM is a general principle that can be used to estimate
PDF models from incomplete data in a maximum likelihood fashion [25]. “Incomplete
data” means that not all relevant variables are observable, making closed form parameter
estimation impossible. Although named “EM algorithm”, it is not any specific algorithm but
actually a class of algorithms based on the same principle. EM is an iterative hill-climbing
optimization procedure whose each iteration increases the likelihood of the observed data
(by updating the model parameters) until converging to a local maximum of the likelihood
function. Whether the reached local maximum is also the global maximum, depends on the
initialization of the model parameters.

Each iteration of EM estimation consists of two steps: the expectation (E) step and the
maximization (M) step. During the E step, the current model is used to infer probability
distributions for the unobserved variables. During the M step, these distributions are used in
updating the current model parameters. Estimation procedures for both GMMs and HMMs
are well-known applications of the EM principle. In addition, the very popular k-means
algorithm and its variants can be considered EM-style classification algorithms [15].

K-means

K-means, also known as the isodata algorithm [120] [28], is an iterative algorithm appli-
cable to both cluster analysis and VQ codebook generation. Define the variables un(i),
1 ≤ n ≤ N , 1 ≤ i ≤ K, as un(i) = 1 if observation vector n belongs to cluster i and
un(i) = 0 otherwise. In addition, define K cluster mean vectors (cluster prototypes) θi,
1 ≤ i ≤ K. The algorithm makes use of a vector distance measure d, which is usually
the Euclidean distance. This way, k-means produces compact, spherical clusters [120]. The
k-means algorithm proceeds as follows:

1. Either: initialize the θi and start from step 2 or initialize the un(i) and start from step
3.
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2. Update cluster assignment:

un(i) =

{
1 ifi = argminj d(xn,θj), 1 ≤ n ≤ N, 1 ≤ i ≤ K

0 otherwise

3. Recompute cluster means:

θi =
∑N

n=1 un(i)xn∑N
n=1 un(i)

, 1 ≤ i ≤ K

4. If convergence criterion is met or a specified number of iterations has been run, exit.
Otherwise, go to step 2.

Step 2 assigns each observation to its closest prototype, thus reforming the clusters. Step
3 recomputes the prototypes as the mean vectors of each cluster. These steps are iterated
until some convergence criterion is met. A sure convergence criterion for k-means is that
any un(i) does not change between two iterations, in other words, that the assignment of
points to clusters has not changed. If this is the case, the prototypes can not change either,
because they are simply the mean vectors of the clusters. As a consequence, neither the
hitherto obtained clustering solution

yn = argmax
i

un(i), 1 ≤ n ≤ N, (4.31)

nor the hitherto obtained VQ data model {θ1, . . . ,θK} can change anymore, regardless
of the number of iterations computed.

K-means using the Euclidean distance is essentially a hill-climbing algorithm that can be
shown to converge on a local minimum of the mean squared error (MSE) as defined in Eq.
4.29 [120] [15].

Whether the local optimum of the MSE is also the global optimum depends on the initial-
ization of the parameters {θi} in step 1 of the algorithm. In a later section, the initialization
issue will be discussed jointly for two related algorithms: k-means and its probabilistic
equivalent, EM re-estimation of a GMM.

Learning GMM parameters by the EM algorithm

The EM re-estimation of a GMM can be viewed as a probabilistic version of k-means,
although k-means does not use mixture weights or covariance matrices. The analogy is
visible in the descriptions of the two algorithms given in this and the previous section.

Denote by qn ∈ {1, . . . , J} the identity of the mixture component that has produced
observation xn. In the E step of the EM algorithm for GMM learning, the quantities
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γn(i) = P (qn = i|xn, λ) are computed for 1 ≤ n ≤ N , 1 ≤ i ≤ J . These are used
in the M step in updating the model parameters. The EM re-estimation is accomplished by
the following algorithm:

1. Either: initialize λ and start from step 2 or initialize the γn(i) and start from step 3.

2. E step:

γn(i) =
pibi(xn)∑K

j=1 pjbj(xn)
, 1 ≤ n ≤ N, 1 ≤ i ≤ J

3. M step: Re-estimate mixture weights:

pi =
1
N

N∑
n=1

γn(i), 1 ≤ i ≤ J

Re-estimate component mean vectors:

µi =
∑N

n=1 γn(i)xn∑N
n=1 γn(i)

, 1 ≤ i ≤ J

For each component i, compute the weighted residual matrix

W i =
[
(x1 − µi)

√
γ1(i) (x2 − µi)

√
γ2(i) . . . (xN − µi)

√
γN (i)

]
(4.32)

Re-estimate nodal covariance matrices:

Σi =
W iW i

′∑N
n=1 γn(i)

, 1 ≤ i ≤ J (4.33)

or a grand covariance matrix:

Σ =
∑J

i=1 W iW i
′

N
(4.34)

In the case of diagonal covariance, only the variance parameters need to be re-
estimated and the above matrix equations can be simplified.

4. If convergence criterion is met or a specified number of iterations has been run, exit.
Otherwise, go to step 2.

For example, the convergence criterion could be one that compares some difference mea-
sure between parameter sets of two successive iterations to a threshold. GMM training can
be used for clustering. In the mixture decomposition clustering scheme [120], the observa-
tions are assigned to clusters based on the quantities γn(i).
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Initialization of parameters

The initialization of the parameters is a relevant issue in iterative EM-style optimization,
as the initial values determine the local optimum of the cost/likelihood function that will
be reached. For data modeling purposes (PDF modeling or vector quantization), EM-style
algorithms often produce an usable solution with almost any “sensible” initialization [127]
[104]. In cluster analysis, the initialization may be more important. When clustering data by
estimating the parameters of a cluster model consisting of compact Gaussian-like clusters,
the initialization may be particularly important if the data distribution does not quite corre-
spond to the assumptions of the cluster model (compactness and normality of the individual
clusters) or when the clusters are not well separated. In such a case, different initializations
can lead the re-estimation to converge on very different clustering solutions. Several pop-
ular initialization approaches have been used with the k-means algorithm. Because GMM
learning can be viewed as just a probabilistic, soft-threshold version of k-means, most of
the initialization methods are applicable to GMM learning also. Although a GMM has
additional parameters to initialize compared to the VQ model estimated by k-means, the
initialization of the mean vectors is frequently more important than the initialization of
the GMM mixture weights and covariances. The weights can be initialized uniformly as
pi = 1/J , while most reasonably small non-zero covariance values typically work well in
initialization.

Fisher’s Iris dataset [34] will be used to illustrate the properties of different clustering
methods. Figure 4.5 shows two dimensions of this originally four-dimensional dataset, i.e.,
the measured petal length and petal width of 150 flowers belonging to three different species
of the genus Iris. The ground truth class labeling of the two-dimensional observations
represented by the points is indicated by using three different markers.
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Figure 4.5: The petal length and petal width dimensions of Fisher’s Iris dataset.

Arguably the most typical way of initializing the cluster centers in k-means is random
selection. It is performed by choosing a set ofK prototypes {θ1, . . . ,θK} at random among
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the training vectors X .
Another approach to random initialization is random labeling using a randomized ob-

servation labeling yn ∈ {1, . . . ,K}, 1 ≤ n ≤ N . The cluster labels un(k) are randomly
initialized so that, for all n, un(k) = 1 when k = yn and un(k) = 0 otherwise.

With large datasets (which may be encountered in audio pattern clustering), an ini-
tial point refinement solution has been proposed which consists of first clustering several
smaller random sub-samples of the data and then clustering the sub-sample cluster mean
vectors to obtain refined initial points for k-means [16].

The binary split LBG algorithm [73] is a popular method for generating VQ codebooks.
It is based on k-means iteration, but instead of requiring initial values for the cluster mean
vectors, it generates them by successive splitting of the cluster prototypes. The algorithm
can be stated as follows:

1. Set K = 1 and compute the mean of all training vectors

θ1 =
1
N

N∑
n=1

xn

2. Split each of the existingK codewords by replacing the current codebook [θ1 . . . θK ]
with a new codebook [θ1 + ε θ1− ε . . . θK + ε θK − ε], where ε

is a small perturbation vector.

3. Replace K by 2K.

4. Use the splitted codebook as an initialization to k-means iteration.

5. If K is less than the desired number of vectors J , go back to step 2. Otherwise, exit.

Figure 4.6 shows the application of LBG to the Iris data.
If randomized initialization or the LBG do not produce satisfactory results, there are

alternative methods based on different heuristics. For example, Katsavounidis, Jay Kuo
and Zhang [67] proposed the following algorithm for initializing k-means iteration in VQ
codebook generation, when J codewords are required:

1. Choose the vector with the maximum Euclidean norm as the first codeword:

θ1 = argmax
xn

‖xn‖

2. For i = 2 to J :
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(b) K = 2.
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(c) K = 4.
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(d) K = 8.

Figure 4.6: Application of the LBG clustering method for clustering two-dimensional Iris
data.

Choose the vector with the maximum distance from the current codebook as the new
prototype:

θi = argmax
xn

‖xn − argmin
θj ,1≤j≤i−1

(‖xn − θj‖) ‖

This algorithm, which has been referred to as the KKZ algorithm in some previous work
[3] [52], produces initial cluster centers near the boundaries of the sample data distribution.
Figure 4.7 a) illustrates the initialization provided by this algorithm for the Iris data. Figure
4.7 b) shows the clustering result after k-means convergence.

Yet another alternative to initializing the mean vectors of mixture/cluster/VQ models is
a method based on iterative elimination of the cluster prototypes, previously applied to
clustering speech sounds [97]. The algorithm will be referred to as ICCR (iterative cluster
centroid reduction) in the sequel. This algorithm uses a parameter α ∈ (0, 1) to control
the amount of approximation permitted when discarding, at each iteration, the prototypes
associated with the least populated clusters:

1. Choose K initial cluster prototypes {θ1, . . . ,θK} so that they approximately cover
most of the feature space inhabited by the training data X . Initialize cluster assign-
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(a) Cluster initialization.
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(b) K-means result.

Figure 4.7: Application of the KKZ method to initialize k-means clustering of two-
dimensional Iris data.

ment un(k) = 0 for 1 ≤ n ≤ N , 1 ≤ k ≤ K. Initialize cluster order s(k) = k,
1 ≤ k ≤ K.

2. Set Kp = K.

3. For points that do not belong to any of the K clusters, i.e.,
∑K

k=1 un(k) = 0, assign
them to the cluster with the nearest prototype:

un( argmin
k∈{1,...,K}

d(xn,θs(k))) = 1

4. Update s(i) to be the descending sort indexing of cluster point counts Sk =
∑N

n=1 un(k),
such that {Ss(1), Ss(2), . . . , Ss(K)} is a sequence sorted in descending order.

5. Replace K by finding lowest K such that

1
N

K∑
i=1

N∑
n=1

un(s(i)) ≥ α

6. For all k such that K + 1 ≤ k ≤ Kp, set un(s(k)) = 0.

7. if K = Kp, exit. Otherwise, go to step 2.

The parameter α can be used to control the maximum number of clusters and their min-
imum size, because the iteration will not stop as long as the size of the smallest remaining
cluster is less than b(1 − α)Nc + 1, where b. . .c denotes rounding towards negative infin-
ity. This property follows directly from the elimination condition in step 5, as any smaller
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cluster would be eliminated before convergence. With this lower bound for the size of the
final clusters, it follows that an upper bound for the number of final clusters is

Mmax =
⌊

N

b1− α+ (1/N)c

⌋
. (4.35)

To see this, consider the extreme case in which all the final clusters are of the same
minimal size. The number of clusters in this case is given by dividing N by the cluster size,
and non-integer values should be rounded downward if the cluster size is not a factor of N .

During the iteration, surviving prototypes can never lose points assigned to them; they
can only gain points by inheriting them from eliminated prototypes. One consequence of
this is that, using parameter α to reduce clusters, a prototype whose cluster size exceeds
(1− α)N can no longer be eliminated.

If it is necessary to be able to directly choose the number of clusters, it is possible to
replace step 5 with simply K = max(K − 1, J), where J is the desired number of clusters
given as a parameter to the method (in place of the approximation level α). However, a
better solution may be to first iterate the algorithm until convergence with the α parameter
having a high enough value so that after convergence,K > J . Then, step 5 of the algorithm
can be modified as mentioned and the iteration can continue from step 2. This procedure
produces the desired number of clusters.

Automatic selection of the number of clusters can be approached by using the above
modification (reducing one cluster at a time) with parameter J = 1 (or the minimum al-
lowed number of final clusters). If, at each iteration after step 5, the number of points
belonging to the newly eliminated cluster,

∑N
n=1 un(s(Kp)), is plotted against the number

of remaining clusters before elimination,Kp, a monotonically decreasing curve is obtained.
A reasonable number of clusters can be automatically chosen by locating a turning point of
this curve. Automatic selection of the number of clusters using similar turning-point criteria
is a common approach in pattern recognition [120].

The initial prototypes in step 1 can be generated by simple random selection among the
data vectors, or they can be the points defined by a conceptual hypergrid in d dimensions;
the latter approach was adopted in [97] and will be used in the present work also. Denote
the resolution of the grid, or number of point hyperplanes along each dimension, by R. As
the number of the points in the grid is Rd, it is not wise to try to construct the grid explicitly
when dealing with high-dimensional data or even large R. Instead, the following approach
is suggested:

1. Compute grid node interval for each dimension (xn,i is the ith element of xn):

ri = (max
n

(xn,i)−min
n

(xn,i))/(R− 1), 1 ≤ i ≤ d
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2. Generate a set of nonnegative integer coordinate vectors:

zn =
[
INT

(
xn,1 −mink(xk,1)

r1

)
. . . INT

(
xn,d −mink(xk,d)

rd

)]
where INT (. . .) denotes rounding to the nearest integer.

3. Generate a set Z = {z′1, . . . ,z′K} in which the integer vectors zn appear uniquely,
without duplicates.

4. Form prototypes from the integer vectors z′i by inverting the transformation done in
step 2.

Let it be noted that by further counting the points associated with each prototype, the
described grid approximation algorithm can be used to construct a multidimensional his-
togram of the feature data.

Figure 4.8 illustrates cluster approximation by the ICCR method. The initial prototypes
are found using a grid with resolution R = 10; the result is shown in Figure 4.8 a). The
parameter α = 0.90 is used in the iteration. After the algorithm converges, i.e., no more
prototypes can be eliminated using the parameter α, six prototypes and clusters remain as
shown in Figure 4.8 b). The algorithm now switches to eliminating one prototype at a time
until three prototypes remain. The end result is shown in Figure 4.8 c). By using these
prototypes to initialize k-means, the clustering solution of Figure 4.8 d) is obtained.

In addition to the described cluster initialization methods, several others have been pro-
posed [21] [3] [68] and evaluated [95] [52] in the literature.

4.2.3 Parameter Learning for HMMs

This section reviews a form of the EM / Baum-Welch re-estimation for continuous observa-
tion densities. The re-estimation principle has been originally developed by Baum and his
colleagues [11] and later extended (e.g., [74]). For the simpler case of discrete observation
distributions, the details can be found in the tutorial [101].

Gaussian Vector Autoregressive HMMs

In this section, the estimation formulas for a quite general class of continuous observation
density HMMs are discussed. Here, each state-specific observation density is modeled as a
Gaussian vector autoregressive (VAR) process [47] [77] such as

xn = µ +
p∑

i=1

Φixn−i + en (4.36)
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(a) Initial grid prototypes and clustering.
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(b) Convergence with parameter α = 0.9.
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(c) Convergence with parameter J = 3.
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(d) K-means result.

Figure 4.8: A sequence of clusterings in the application of the ICCR algorithm to approxi-
mate two-dimensional Iris data and the result of the subsequent k-means clustering initial-
ized with the ICCR result.

where the xn are (d× 1) observation vectors, µ is the (d× 1) constant intercept vector,
p is the order of the vector autoregression, the Φi are (d× d) VAR coefficient matrices and
en is multivariate Gaussian white noise with zero mean. Eq. 4.36 can be written in a more
compact matrix notation

xn = Bzn + en (4.37)

where

B = [µ Φ1 . . . Φp], (4.38)

and

zn = [1 xn−1
′ . . . xn−p

′]′ (4.39)

This representation allows several special types of observation densities in HMMs: a
Gaussian density (with mean µ) when p = 0; a univariate AR(p) model when d = 1 and
p > 0; and a true VAR(p) model when d > 1 and p > 0. However, an important type
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of continuous observation density not yet covered by this form is the mixture density, for
example, a Gaussian mixture model to parametrize the observation density associated with
each state. As will be shown in the end of this section, the “M step” of the EM estimation
can be easily modified to accommodate mixture densities.

The parameters of a vector autoregressive model in Eq. 4.37 can be estimated by ordinary
least squares in the following way [77]. Let the data vectors be arranged as columns in a
(d×N) matrix

X = [x1 x2 . . . xN ] . (4.40)

Assuming that p pre-sample vectors {x−p+1, . . . ,x0} are available, form another
((dp+ 1)×N) matrix

Z = [z1 z2 . . . zN ] (4.41)

The maximum likelihood estimator for the VAR parameter matrix, which is also the least
squares estimator [47], is [77]

B̂ = XZ ′(ZZ ′)−1 (4.42)

The maximum likelihood estimator for the covariance matrix of the white noise en is
given by [47] [77]

Σ̂ =
1
N

(X − B̂Z)(X − B̂Z)′ (4.43)

A Gaussian VAR HMM is completely parametrized by λ = {π,A, B1, . . . , BK}, where
each state distributionBi is eitherBi = (Bi,Σi) (state-specific covariance matrices for the
noise en) or Bi = (Bi,Σ) (a shared covariance matrix for the noise en). π and A denote
the initial state probability vector and the state transition probability matrix, respectively.
The EM estimation for such a model proceeds as follows:

1. Either: initialize λ and start from step 2 or initialize the γn(i) as well as ξn(i, j) and
start from step 3.

2. E step:

Re-estimate γn(i) for 1 ≤ n ≤ N and 1 ≤ i ≤ K using either the forward-backward
procedure or the successive application of Hamilton’s and Kim’s algorithms, as ex-
plained in Section 4.1.1. Estimate ξn(i, j) for 1 ≤ n ≤ N , 1 ≤ i ≤ K, 1 ≤ j ≤ K

using either Eq. 4.24 or Eq. 4.25.
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3. M step:

Re-estimate the initial state prior probabilities for π = [π1 . . . πK ]:

πi = γ1(i), 1 ≤ i ≤ K (4.44)

Re-estimate the state transition probabilities for A = (aij):

aij =
∑N−1

n=1 ξn(i, j)∑N−1
n=1 γn(i)

, 1 ≤ i, j ≤ K (4.45)

For each state i, form weighted observation matrices, in which the observation vectors
are weighted by the square roots of the state probabilities γn(i) [46]:

Xi =
[
x1

√
γ1(i) x2

√
γ2(i) . . . xN

√
γN (i)

]
(4.46)

and

Zi =
[
z1

√
γ1(i) z2

√
γ2(i) . . . zN

√
γN (i)

]
(4.47)

Re-estimate the state specific VAR coefficient matrices:

Bi = XiZi
′(ZiZi

′)−1, 1 ≤ i ≤ K (4.48)

Re-estimate the state specific covariance matrices:

Σ̂i =
(Xi −BiZi)(Xi −BiZi)′∑N

n=1 γn(i)
, 1 ≤ i ≤ K, (4.49)

or a shared covariance matrix:

Σ̂ =
∑K

i=1(Xi −BiZi)(Xi −BiZi)′

N
(4.50)

4. If the convergence criterion is met or a specified number of iterations has been run,
exit. Otherwise, go to step 2.

An HMM with K states and J mixture components per state can be realized by a HMM
with KJ states, in which each state corresponds to a mixture component of one of the K
“virtual” states. For notational convenience, one could decide that the mixture components
of themth virtual state are presented by the true states (m−1)J+1, (m−1)J+2, . . . ,mJ .
The true HMM states can be made to act like mixture components with a simple modifi-
cation of Eq. 4.45 in the M step of the EM estimation algorithm given above. What is



CHAPTER 4. PATTERN RECOGNITION METHODS 82

required is that within each set of J true states acting as mixture components of the same
virtual state, the state transition probabilities should be made independent of the source
state, i.e., aij = akj if true states i and k are components of the same virtual state. This
makes these transition probabilities behave like mixture weights in that the true state pro-
cess is essentially i.i.d. (within the subset of true states that belongs to the same virtual state)
and the ordering of the true state sequence is not meaningful. The described modification
can be accomplished by replacing Eq. 4.45 by

aij =

∑mJ
k=(m−1)J+1

∑N−1
n=1 ξn(k, j)∑mJ

k=(m−1)J+1

∑N−1
n=1 γn(k)

, (m− 1)J + 1 ≤ i ≤ mJ (4.51)

When J = 1, Eq. 4.51 reduces to Eq. 4.45.
The arguably most popular form of continuous density HMMs, the Gaussian mixture

HMM, is obtained by using the specifications given above with p = 0 and with the substi-
tution of Eq. 4.51 in the re-estimation algorithm.

Initialization issues

HMMs are generally found to be not particularly sensitive to the initial values of the state
transition probabilities A or the initial state probabilities π , as long as they form reason-
able probability distributions [101]. Care must be taken, however, not to initialize any state
probability parameter to zero, because such parameter would stay zero through the course
of the iteration. With discrete VQ observation distributions, the initialization of the discrete
VQ symbol distributions is usually not a critical issue either [101]. With continuous obser-
vation distributions, however, the initialization is more important. The initialization of the
distribution parameters in continuous density HMMs can be assisted by k-means or some
other suitable clustering algorithm (which in turn may use some intelligent initialization
procedure).

On a higher level, the simultaneous training of multiple HMMs can be incorporated in an
iterative resegmentation scheme that uses a segmentation of the training data in terms of the
different HMMs. Iterative resegmentation of HMMs, used for unsupervised classification
in [71] [125], consists of the following steps:

1. Either use an initial segmentation and start from step 2 or use initial HMMs and start
from step 3.

2. Train each HMM on the data associated with it in the current segmentation.

3. Segment the audio using Viterbi decoding with a composite HMM constructed from
the current HMMs.
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4. If convergence criterion is not satisfied, go back to step 2. Otherwise, exit.

Importantly, the iterative resegmentation training algorithm can start with an initial seg-
mentation, without giving specific initial values for the HMM observation distribution pa-
rameters. The above algorithm also supports supervised embedded training of multiple
HMMs, if the composite HMM network in step 3 is constructed according to a known
training label sequence [128] [62].

4.2.4 Application to Speech/Music Discrimination

This section describes an experiment in which unsupervised learning was applied to audio
feature data with the goal of separating speech and music from each other.

The audio material contained the following parts, sampled at 16 kHz:

1. S1: 160 utterances from the TIMIT database of American English [37], comprising
ten utterances from one female and one male speaker from each of the eight dialect
regions

2. M1: A heavy metal song performed live (Iron Maiden: Fear of the Dark)

3. M2: A slow rock ballad (Metallica: Nothing Else Matters)

4. M3: A pop song (Texas: Summer Son)

5. M4: Classical violin music (The Four Seasons by Vivaldi, Concerto 1 - Spring)

6. S2: A list of 25 Finnish words read aloud in turn by eight native Finnish speakers,
four male and four female

The total length of the music material (M1-M4) was 21 minutes and 30 seconds. The
length of the TIMIT speech material S1 was 7 minutes and 59 seconds and the length of
the Finnish speech material S2 was 3 minutes and 51 seconds. Each of these three parts of
the test material was separately normalized so as to have equivalent average (per sample)
energy. This was done in order to eliminate the change of the recognition being assisted by
signal energy, which is a rather arbitrary property of “found” audio signals but can still be,
on the average, greater for music signals than for speech signals 4.

The feature extraction phase used a long-term feature frame of one second which was
shifted with one second shift interval (zero overlap). Within each one-second segment,
logarithmic short-time energy (LGSTE), loudness (LOUD) and gradient index (GIN) (see

4Nevertheless, measures of signal energy were not included in the feature set. Instead, dynamic long-time
features of short-time measurements were used.
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Section 3.5) were computed from short-time analysis frames of 20 milliseconds, shifted
with a 10 millisecond shift interval at a time. The variance of the gradient index and the
AR(1) prediction coefficients of LGSTE and LOUD were included in the feature vector
representation. This procedure resulted in a data set with N = 1999 observations and
d = 3 features. Figure 4.9 shows the two-dimensional scatter plots for each pair of features,
plotted with different markers for speech and music.
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Figure 4.9: Scatter plots for three features, with speech and music categories denoted by
different markers.

Mixture decomposition of a GMM with eight components and nodal, diagonal covariance
was used to cluster the three-dimensional feature vectors. Before EM re-estimation, the
mean vectors of the GMM components were initialized by three different methods: LBG
(J = 8), KKZ (J = 8) and ICCR (α = 0.95,J = 8). The same experiment was repeated
by replacing the GMM with a HMM having eight states and the observation density of
each state being a multivariate normal distribution with diagonal covariance. In HMM re-
estimation, the sounds were presented in the given order.

The performance was measured by computing the minimum misclassification rate (MMR)
as defined in Eq. 4.30. Table 4.1 shows the results. It can be observed that different ini-
tialization methods do have an effect on the final class separation. Moreover, the temporal
context taken into account by HMM-based unsupervised classification improves the class
separation. To apply these results in automatic supervised classification would require that
the eight clusters could somehow be automatically mapped into the two classes in an opti-
mal fashion (the MMR statistic always reports the “best case” misclassification rate). Figure
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Table 4.1: Minimum misclassification rate (MMR), or the best-case misclassification per-
centage of one second frames, using GMM and HMM unsupervised classification with
three different initialization methods for the mean vectors of the Gaussian component dis-
tributions.

Initialization GMM, J = 8 HMM,K = 8
method MMR % MMR %

LBG 7.9 4.8
KKZ 6.9 4.8
ICCR 7.5 4.6
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Figure 4.10: A semiautomatic speech/music classification produced by assigning eight clus-
ters found by GMM unsupervised learning, initialized by the KKZ method, optimally to the
speech and music classes in terms of the known true class labeling.

4.10 shows the class labeling corresponding to Table 4.1, with optimal assignment of the
eight Gaussian components to the two classes, for a GMM initialized by the KKZ method.
Figure 4.11 contains the same visualization for a HMM initialized by the ICCR method. It
is evident that in both cases the two groups of Gaussian component means vectors - those
associated with speech and those associated with music - are linearly separable, and per-
haps better separable in the HMM/ICCR case. This could have positive implications for
the goal of developing an automatic supervised classification method using these mostly
unsupervised methods.
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Figure 4.11: A semiautomatic speech/music classification produced by assigning eight clus-
ters found by HMM unsupervised learning, initialized by the ICCR method, optimally to
the speech and music classes in terms of the known true class labeling.

4.3 Time Series Segmentation

Pattern recognition is easiest when the class of each feature vector can be assumed inde-
pendent of the classes of other feature vectors. Whenever the observations to be recognized
have associated temporal or spatial information, pattern recognition can be viewed as con-
sisting of two phases: segmentation and classification. This is the case in audio and image
classification, if the data has not been previously segmented. Segmentation can be explicit
and followed by classification, or the two phases can be performed simultaneously. Chapter
5 discusses different approaches to the combined task of segmentation and classification.
Explicit segmentation can be performed by using change detection methods, which are usu-
ally either probabilistic or heuristic.

4.3.1 The Bayesian Information Criterion (BIC)

A successful example of probabilistic change detection methods is time series segmentation
based on the Bayesian information criterion (BIC). BIC itself is a general-purpose criterion
for statistical model selection. Given a likelihood L(X,M) for data set X based on model
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M , the Bayesian information criterion is computed as [20]

BIC(M) = logL(X,M)− 1
2
KM log(N) (4.52)

where KM is the number of parameters in the model M and N is the number of ob-
servations in X . Thus, BIC consists of the log likelihood from which a penalty term is
subtracted. The more parameters there are in the model, the greater is the penalty.

In segmenting audio signals using BIC, the segmentation problem is often formulated as
a hypothesis test involving multivariate Gaussian models. According to the null hypothesis
H0, the complete data has been generated by a single multivariate Gaussian distribution
N(µ,Σ), whose parameters are estimated from the data by maximum likelihood. Accord-
ing to hypothesis H1, there occurs a change at point n such that Xn

1 ∼ N(µ1,Σ1) and
XN

n+1 ∼ N(µ2,Σ2). The parameters of these distributions are similarly estimated from
the respective windows. When d is the dimension of the feature space, the numbers of pa-
rameters in models corresponding to hypothesesH0 andH1 are given by d+(1/2)d(d+1)
and 2d + d(d + 1), respectively. The difference of two BIC scores evaluated with change
point candidate n is [2]

dBIC(n) = logL(X,H1)− logL(X,H0)−
1
2
∆KlogN (4.53)

where the unpenalized, logarithmic likelihood ratio is [20]

logL(X,H1)− logL(X,H0) = N log |Σ| −N1 log |Σ1| −N2 log |Σ2| (4.54)

and the difference in the number of parameters in the models corresponding to the two
hypotheses is

∆K = d+
1
2
d(d+ 1). (4.55)

A change is detected at time n when dBIC(n) > 0. An algorithm like the following has
been used in employing BIC in time series segmentation [20] [2]:

1. Initialize a = 1, b = 2.

2. Detect if there is a change point in the interval [a, b] using BIC.

3. If no change was detected, let b = b+1. Otherwise, if a change at i was detected, set
a = i+ 1, b = a+ 1.

4. If b has not reached the end of the time series, go back to step 2. Otherwise, exit.
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In many applications of BIC to audio segmentation, an additional multiplier generally
greater than 1 has been applied on the penalty term in order to improve the results. It has
been pointed out that in such a case, the penalty multiplication factor acts as a built-in
threshold that must be explicitly tuned [2]. A modified version of BIC segmentation [2]
replaces the multivariate Gaussian model associated with H0 by a GMM with two compo-
nents. A log likelihood ratio test is subsequently used for segmentation.

4.3.2 Other Segmentation Methods

A wide variety of explicit segmentation methods can be conceived, all of which are based
on certain assumptions on the behavior of the time series at class segment boundaries and
during steady-state class segments. The BIC method discussed in the previous section is
well justified by probabilistic theory and the assumptions made are quite explicit. This is
not always the case in many “heuristic” segmentation methods. A common approach in
such methods is to slide two adjacent analysis windows across the time series and at each
location, compute a measure of change that somehow describes the difference of the time
series behavior in the two windows. A segment boundary is placed at the boundary between
the two windows if, for example, the computed change measure exceeds a certain threshold.
Perhaps the simplest alternative for the measure of change is a distance between the window
averages of the time series from the two windows (e.g., [130] [8]).

A different approach to segmentation is the convex hull algorithm proposed by Mermel-
stein for syllable-level segmentation of speech [82]. The segmentation is based on thresh-
olding the difference between an instantaneous energy measure and the convex hull of the
time contour of the energy.

Change detection can also be approached by employing the so called CUSUM statistical
test from the field of control engineering, introduced by Page [91] as a sequential detection
method. Consider a sequence zn which is normally negative and for which a change is
detected if its values suddenly tend to be too strongly positive. The cumulative sum of the
first n observations is given by Sn =

∑n
k=1 zk. A change in the process statistics is detected

when

Sn − min
1≤i<n

Si ≥ h (4.56)

or, equivalently, when

S′n = max(S′n−1 + zn, 0) ≥ h, n ≥ 2 (4.57)

where S′1 = z1 and in both formulas h is some detection threshold value. This principle
has been applied - in an off-line, non-sequential fashion - to probabilistic audio segmen-
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tation as an alternative to BIC segmentation [88]. The problem is formulated as that of
determining whether a change in the time series of feature vectors occurs within a given
window of N vector observations. A change is detected if

S′N = max
r∈{1,...,N}

N∑
k=r

Lk ≥ h (4.58)

where Lk is the log likelihood ratio of two multivariate Gaussian models with respect
to the kth observation. The two Gaussian models are obtained by re-estimating a GMM
with two components from the vector sequence, initializing the Gaussian component mean
vectors such that the other is a mean of a few observations in the beginning of the vector
sequence and the other is a mean of a few observations in the end of the vector sequence. Lk

is positive if the kth observation is better explained by the Gaussian component associated
with the beginning of the sequence.



Chapter 5

Applications of Audio Recognition

This chapter discusses both the practical problems, for which automatic audio signal recog-
nition is useful, and the ways in which the techniques introduced in the two previous chap-
ters can be combined to achieve the goals. The practical applications can be roughly divided
into three domains: speech, music and general audio, as listed in the left column in Table
5.1. Speech and music are the two most generally important types of utility signals, which
has justified many applications targeting the extraction of information from these signals.
General audio content analysis may be an outer layer that retrieves segments of speech and
music for further speech- or music-specific analysis, or it can be of interest in itself. The
middle column in Table 5.1 lists some important practical application areas from each of the
three application domains, while the rightmost column lists examples of the more specific
pattern recognition problems that may arise within each domain.

For each audio pattern recognition problem, such as those shown in the right column
of Table 5.1, many alternative combinations of signal processing and pattern classification
techniques are typically viable. The first section of this chapter discusses the general “pat-
terns” that these time series pattern recognition solutions typically follow, while the second
section offers a glimpse on the literature to show how such schemes are typically employed
in the practical applications.

5.1 Basic Recognition Strategies

Despite the high variability in practical applications and in the employed techniques, it
appears that a major part of the published speech or audio pattern recognition solutions
can be at least roughly categorized into one of four categories based on the fundamental
recognition control strategy adopted: change detection, sliding window, template matching
and unsupervised classification. These will be loosely and informally defined below.

90
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Table 5.1: Left column: the major application domains of audio pattern recognition. Middle
column: some central practical application areas from each domain. Right column: specific
audio pattern recognition problems arising in the different application domains.

Practical Pattern
Application application recognition

domain areas problems

transcription isolated word recognition
Speech retrieval connected speech recognition

control continuous speech recognition
keyword spotting

speaker recognition
etc.

transcription chord recognition
Music retrieval key identification

genre identification
artist identification
structural analysis

etc.

General transcription speech/music/background discrimination
audio retrieval speaker recognition

surveillance environmental sound recognition
unsupervised audio classification

etc.

One popular approach to audio segmentation and classification consists of the following
steps: 1) locating segment boundaries explicitly (possibly with moderate oversegmenta-
tion); 2) preparing feature representations for each segment (either short-time feature vector
sequences or one segmental feature vector per segment); 3) applying supervised or unsuper-
vised classification methods on the found segments under the assumption that each segment
belongs to a single class; 4) possible smoothing of the class decisions (e.g., by eliminating
too short class segments). This will be called the change detection strategy in this study,
as explicit change detection (segmentation) in the first stage is a fundamental operation.
Change detection methods were discussed in Section 4.3. The subsequent feature extrac-
tion step is free to produce any type of features; alternatively, this step can be omitted and
the classification step can use the same features that were used for the initial change de-
tection. The classification step can use supervised or unsupervised pattern classification.
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Because applications in the “general audio” domain have to deal with great acoustic vari-
ability and do not necessarily have access to a meaningful set of class definitions, they
must often resort to unsupervised classification of the patterns at least in the early stages
of system development. In this process the class definitions are created and refined. The
change detection approach is conceptually simple and can accommodate both supervised
and unsupervised pattern classification. The majority of recently published pioneering so-
lutions to general audio content analysis use this recognition strategy, e.g.: [20] [129] [130]
[59] [103] [123]. The approach has also been employed in blind phonetic segmentation of
speech, e.g., in [8].

Another approach is to determine a classification window of suitable length and shift it
across the signal representation with some shift interval, which does not exceed the length
of the window. Each location of the window extracts a segment, which is classified in a
supervised fashion. Subsequently, the class decisions must typically be smoothed by elim-
inating too short class segments and perhaps using additional information as well. This
will be called the sliding window strategy. The sliding of the window is a trivial operation;
the classification of the windowed segments can use any supervised pattern classification
technique. The sliding window technique is straightforward and simple to implement. In
the past, it has been adopted in the development of statistical pattern recognition solutions
for audio signals, including voiced/unvoiced/silence classification of speech using a multi-
variate Gaussian classifier [6] and speaker identification using a GMM classifier [104]. It
has also been used in general audio content classification with a rule-based classifier [76].

The third strategy, called template matching, is based on a template that describes the
time evolution of the feature vectors. The template consists of different sub-models for the
observed data (i.e., the feature vectors), each corresponding to an audio class, and some
kind of rules for how the different classes can be sequenced in time. Segmentation and
classification is formulated as an optimization problem of finding the optimal path through
the template. A path through a template is a function of the observation time that gives,
for each observation time instant, the identity of the sub-model that is thought to have
produced the observation at that time. The optimal path is the path that best explains the
observations using some criterion. The optimal path is found by search algorithms, e.g.,
implementations of dynamic programming. Dynamic programming is an optimal search
technique. Also sub-optimal techniques such as A* search or possibly even greedy search
can be used. From Chapter 4, it is readily seen that both dynamic time warping and Viterbi
decoding of hidden Markov models can conform to the above definition if each component
of the respective templates (an example feature vector in DTW, a state-specific observation
probability distribution in a HMM) is taken as a model of an individual class. In the case
of HMMs, it is easy to construct a composite HMM consisting of individual class HMMs,
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then obtain the class labeling as the state path through the composite HMM trellis, and
finally to express the path in terms of the class-specific HMM identities. DTW as such is
less general than the HMM framework and is rarely used as the outmost layer in template
matching. Reasons for this include the strict restrictions that the DTW local constraints
impose on the possible sequence of states as well as the simplistic class model inherent in
DTW. However, level building dynamic programming (LBDP) provides a somewhat more
general dynamic programming framework [87]. The current mainstream ASR solutions to
continuous speech recognition are fundamentally based on template matching with HMM
templates [62] [57] [128].

In the fourth approach, an unsupervised classification is produced for the feature vectors
in some manner. This will be called simply the unsupervised classification approach. In
some simple cases, conventional clustering techniques such as k-means can lead to an ac-
ceptable segmentation/classification, although they do not take the temporal order of the
observations into account. However, in many practical problems, it is necessary to use time
context information in the classification. This means treating the feature vector sequence
as a vector time series, not as a data set consisting of independent observations. HMMs
are an attractive solution for this purpose due to being widely used and well understood.
To perform temporal context-aware unsupervised classification with HMMs, a HMM is
trained on the data being analyzed. The HMM in question may be a small model with a
few states or a large composite HMM network consisting of sub-HMMs. When the goal
is to simultaneously segment and cluster the data for exploratory purposes, the unsuper-
vised classification approach is a natural choice. HMM training by the EM algorithm has
been used for this purpose in, e.g., speaker segmentation [125], acoustic environment seg-
mentation of personal recordings [22] and structural analysis of music [7]. An interesting
question is also the following: can a suitably made “unsupervised” classification produce a
meaningful supervised classification? The current author has experimented with this par-
ticular approach in the problem of voiced/unvoiced/silence segmentation and classification
of speech [96]. Promising results were obtained by initializing HMM state densities to cor-
respond to the three different classes in an exaggerated fashion, then running EM training
and finally decoding the state sequence from the newly trained HMM.

The bottom-up and top-down strategies of information processing are the two basic
choices in implementing audio recognition solutions. They have also been long employed
in the analogous field of machine vision [115]. Interesting parallels can be drawn with
these two general information processing strategies and the listed four audio recognition
strategies. The bottom-up control strategy for image understanding [115] consists of first
preprocessing the image, then performing segmentation, generating descriptions for the
segmented regions (either separately or in conjunction with segmentation) and finally us-
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ing pattern classification techniques to map the detected objects with real objects that are
present in the solution domain. If the region descriptions are generated separately after
segmentation, the above procedure is directly analogous to the change detection approach
for time series data; if the region descriptions are formed in the course of segmentation
(in an unsupervised fashion), the procedure is analogous to the unsupervised classifica-
tion approach. The other main control strategy, the top-down strategy, is model-based and
controlled by prior knowledge, so that the general mechanism of top-down control is hy-
pothesis generation and its testing [115]. This is reminiscent of the sliding window and
template matching approaches to audio recognition, which are fundamentally supervised
classification strategies and utilize previously trained models.

5.2 Applications

In the following sections, audio recognition applications are categorized into three broad
categories: speech, music and general audio. From each category, several applications and
problems are highlighted. Examples from the literature are listed focusing on the signal
processing and pattern recognition methods they use. This is by no means a comprehensive
survey, but rather a representative sample of various practical problems and their solutions,
each of which has as a core component an audio recognition module utilizing familiar signal
processing and pattern recognition techniques.

5.2.1 Speech Applications

In comparison to music recognition applications and especially to general audio recognition
applications, there is a vast amount of literature on automatic speech recognition (ASR).
Even a roughly comprehensive sampling of published work would quickly be outside the
scope of this thesis. Therefore, the number of references in the following discussion will be
rather limited and the attention is focused to presenting a very concise, broad overview of
the field.

The most central speech applications involve ASR. Although ASR is often viewed as
simply the speech-to-text end application from the viewpoint of low-level speech signal
processing, it is an enabling technology and not a full practical application as such. This
distinction is important due to the extreme difficulty of the general unconstrained ASR
problem and the amount by which a more constrained problem domain - with the constraints
dependent on the end application - can alleviate this difficulty. Practical applications, in
which ASR is central, include dictation [57], transcription of recorded speech [9], telephony
applications [57], other control applications and speech user interfaces [57] and various
speech-related search and retrieval applications, e.g., [48].
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A common subdivision of ASR problems from the technological point of view is three-
fold: isolated word recognition (IWR), connected word recognition (CWR) and continuous
speech recognition (CSR). IWR refers to automatic recognition of words spoken in isola-
tion, with pauses in between. IWR as such may find use in simple and constrained control
applications and telephone-based dialog systems. CWR assumes the speech to consist of
continuously spoken strings of the vocabulary words, often with the assumption that each
spoken utterance contains a known number of words. It is a rather specific problem but
may be useful in, e.g., recognizing digit strings such as phone numbers and number codes
in telephony applications. Continuous speech recognition typically has a large vocabulary
and deals with the recognition of “normal” speech. In practice, the speech may still have to
be constrained somehow; in order to achieve acceptable performance with limited training
data, the current state-of-the-art continuous speech recognition systems still have to impose
notable restrictions on the size of the speaker population, speaking style, vocabulary and/or
grammar. Large vocabulary continuous speech recognition (LVCSR) has been applied in
dictation, transcription and retrieval. A subproblem of continuous speech recognition is
keyword spotting, which refers to detecting certain words from a speech signal. Keyword
spotting can have applications in both control and retrieval.

The most common feature representation for any speech or speaker recognition applica-
tion is the MFCC. A very common choice is to compute 13 MFCC coefficients for each
frame, possibly replacing c0 with logarithmic short-time energy containing roughly equiv-
alent information, and to compute the ∆ and ∆∆ features for these coefficients. The 39-
dimensional feature vector is then formed by concatenating the 13 MFCC coefficients (or
log energy and 12 MFCC coefficients) with the ∆’s and the ∆∆’s.

Practical solutions for continuous and connected speech ASR are almost invariably based
on the template matching approach such that the “template” is a large composite HMM con-
sisting of sub-HMMs (e.g., word HMMs), which have been trained in the training phase.
Details of the special considerations of HMM recognizer training in practical CSR applica-
tions can be found in [62] [57] [128]. The structure of the composite HMM and the tran-
sition probabilities between the sub-HMMs are determined by the language model, which
is an important aspect in CSR [62] [57]. Recognition is a problem of searching for the
most likely path through the composite network of trained sub-HMMs. The use of the op-
timal Viterbi search is computationally too heavy in general LVCSR problems; therefore, a
heuristic suboptimal search strategy must be employed. The two main alternatives are the
Viterbi beam search and A* stack decoding [62]. A number of more specialized techniques
have been developed to make the CSR search more efficient [62] [57].

Simple IWR systems, which assume distinct pauses between words (or more generally,
discrete utterances), are often based on a preliminary endpoint detection [57] after which
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a time series pattern recognizer (typically based on DTW or HMMs) evaluates the test
word segment against the reference models. If HMMs are used, each word class may be
sufficiently represented by a single HMM. Once the word boundaries have been discovered
by the endpoint detector, HMM-based Bayesian classification is straightforward. If DTW
is used instead, several DTW templates are typically needed to represent each word class in
kNN-style classification [100].

Some speech analysis methods define broader, less specific phonetic classes than the
typically phoneme- or word-related classes of ASR. They are normally not useful in iso-
lation, but as intermediate analyses in some end application. Such auxiliary applications
include voiced/unvoiced/silence and related classification tasks, for which specialized fea-
tures combined with a Gaussian classifier [6] or a rule-based classifier [112] have been
used, and syllable segmentation, for which the change-detecting convex hull segmentation
method has been proposed by Mermelstein [82]. Phonetic-level blind speech segmenta-
tion methods, using a change detection approach [8] or a pure unsupervised classification
approach such as unsupervised level building dynamic programming [117] [109], generate
segments and classes whose usefulness depends on the end application; acoustic-phonetic
ASR [100] could be such an application.

Besides applications involving ASR or phonetically oriented speech analysis, automatic
recognition of speech signals is involved in speaker recognition applications. Speaker
recognition can be subdivided into speaker identification, in which the goal is to deter-
mine the identity of the speaker among a known set of speakers, and speaker verifica-
tion, in which the goal is to detect a known speaker apart from any impostors. In either
task, the speech can be constrained to be a known phrase (text-dependent) or anything
(text-independent) [104]. Speaker identification can be further subdivided into supervised
speaker identification and unsupervised speaker segmentation. In supervised speaker iden-
tification, Reynolds and Rose [104] achieved good results using sliding window GMM clas-
sification with MFCC features. Kimber and Wilcox [71] used unsupervised HMM training
and resegmentation, with cepstral feature vectors, for the same purpose. For supervised
speaker identification, their initial models were obtained by training an HMM for each
speaker in the population. Unsupervised speaker segmentation, in which no prior train-
ing is available for the speakers, can be used to find single-speaker segments and speaker
changes, for example as an aid to ASR. This task is often handled by a change detection
approach [20] [131] [2] [48], typically employing BIC segmentation with MFCC features,
followed by hierarchical segment clustering which also uses BIC as the segment distance
measure [20] [131]. Also unsupervised classification using HMM learning has been applied
for the purpose of speaker segmentation [125] [71].

In speech coding applications, the problem of voice activity detection (VAD), i.e., speech
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detection, is also handled using pattern recognition methods [13] [114]. In coding appli-
cations, VAD typically has special requirements. First, it must work in real time. Second,
because the goal is to suppress transmission of silent portions in order to conserve band-
width, it is generally a larger error for a VAD algorithm not to detect speech when it is
present than to erroneously detect speech when no speech is present.

5.2.2 Music Applications

In the context of music signals, various different recognition problems have been inves-
tigated. These include different subtasks of music transcription [72], query by humming
[39], identification of the musical genre [122] and audio thumbnailing by identification of
recurring segments [10].

Music transcription refers to the complete process of writing down musical notation
based on an acoustic musical signal [72]. Automatic systems have been developed for
accomplishing different subtasks of music transcription. Chord transcription refers to au-
tomatic segmentation and classification with respect to chords. Sheh and Ellis [110] used
a HMM-based recognizer with chroma-based features for both segmentation (by forced
Viterbi alignment) and transcription. Bello and Pickens [12] employed unsupervised learn-
ing of HMMs on chroma feature vectors of the test data, with HMM parameters initialized
according to musical theoretic knowledge; e.g., the state transition probabilities were ini-
tially made to reflect some very general patterns of chord progression. Key extraction, or
automatic identification of the musical key, has been handled using averaged chroma vec-
tors [94]. Automatic melody transcription is strongly connected with the problem of pitch
tracking. An overview of melody transcription methods can be found in [98].

Automatic identification of musical genres is a relatively novel research problem. With
the number of genre classes ranging from six to twenty, automatic genre classification meth-
ods have achieved correct identification rates of over 60 % [122] [80] [75], while human
performance was between 76 % and 90 % in [75]. Tzanetakis and Cook [122] used Gaus-
sian, GMM and KNN classifiers with a feature vector comprising various long-term features
(depicting timbre, pitch and rhythm content) to classify complete audio files into categories
corresponding to different musical genres. Using a Gaussian classifier structure, McKinney
and Breebaart [80] evaluated four different modulation-based long-term feature vectors in
musical genre recognition and general audio classification.

Retrieval of a specific song based on its melody, as represented by the user, has been
researched by several groups. A popular solution for query presentation is query by hum-
ming. It refers to example-based detection in which the goal is to retrieve from a database
the pieces of music corresponding to the recorded tune hummed by the user. The uncon-
strained form of the sound examples increases the difficulty of the task and these systems
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need to be robust to both poor humming and environmental noise. Because the melody must
be recognized, pitch analysis is central in feature extraction. Many published solutions first
use pitch analysis and note segmentation in extracting a string representation that depicts
the relative changes in pitch between successive notes [39] [81] [111]. This category-valued
feature extraction is performed for both the query and the pieces of music in the database.
For subsequent detection of melodic similarity, approximate string matching techniques
[39] [81] or HMM-based methods [111] can be utilized.

Structural analysis of music may be useful in search and retrieval applications. Auto-
matic identification of certain broad regions of musical pieces, such as the chorus, verse
and different instrumental sections [7] can be helpful in browsing musical audio files and
in audio thumbnailing. Thumbnailing refers to the representation of an audio file with a
representative segment; for example, a song could be represented by its chorus [10]. Typ-
ically, structural analysis is handled using unsupervised learning. Aucouturier and Sandler
[7] used EM training of mixture HMMs to perform unsupervised segmentation and classifi-
cation. Bartsch and Wakefield [10] computed chroma vectors from short frames and located
recurring segments from a similarity matrix created by correlating the chroma vectors oc-
curring at different times in the audio signal.

5.2.3 General Audio Applications

In large-scale audio content analysis, ordinary speech and music may be regarded as just
individual sound classes, like any other type of sound. The accumulation of large bodies
of broadcast and digitally stored audio material, containing various types of sound, calls
for automatic methods to accomplish efficient search and retrieval of desired speech and
music content (e.g., [106] [107]). Automatic sound recognition is also often used as an aid
in the analysis of video content, i.e., using the soundtrack to locate certain video segments
(e.g., [83] [130]). Another field of application deals with personal archiving (transcription
and retrieval) of recordings performed on mobile or wearable equipment (e.g., [22] [32]).
Finally, audio-based surveillance solutions require automatic identification of interesting or
suspicious sound events (e.g., [123] [103]).

Broadcast audio is usually a relatively constrained domain, typically consisting mostly
of speech and music, the two of which are also often the subjects of primary interest in
such content. Thus, speech detection, music detection and speech/music discrimination
are central research problems in the first stage of analyzing audio broadcasts; once speech
and music segments have been identified, the analysis can be continued and refined by
employing speech- or music-specific methods (Sections 5.2.1 and 5.2.2). An early study
on speech/music discrimination was published by Saunders [106]. His approach is based
on using the bimodality of the short-time (16 ms frame and frame shift) zero crossing rate,
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as seen in a larger window of 2.4 seconds, to detect speech segments apart from music.
Another well-known study on speech/music discrimination is that of Scheirer and Slaney
[107], who evaluated various combinations of features, computed from a window of one
second, using different statistical classifiers (minimum Mahalanobis distance, GMM and
kNN classifiers). The choice of the feature set was found to be more important than the
choice of the classifier structure, although the latter did affect the balance between speech
and music detection performance. In general, music was somewhat more difficult to detect
correctly than speech. A 4 Hz modulation energy (computed by separately filtering 40 mel
frequency channels with a 4 Hz bandpass filter and integrating the result) and the variance
of the spectral flux (variance of Eq. 3.53) were found to be among the best features. El-
Maleh et al [30] approached speech/music discrimination using Gaussian classification of
feature vectors based on the LSF representation of LP models.

Content analysis of video material, such as movies and television broadcasts, can also
be helped by analysis of the soundtrack. It has been speculated that, in content parsing
of audiovisual data, the audio content could even play a primary role in comparison to
the image content [130]. Different classification schemes for detecting speech, music and
environmental sounds have been used for random access of video material in e.g. [83] [130]
[76].

Example-based retrieval of general audio has been discussed by Wold et al [126], who
described their system for the retrieval of short sound segments. They used minimum
weighted Euclidean distance classification (minimum Mahalanobis distance with diagonal
covariance), on a feature vector consisting of four perceptually motivated features: log-
arithmic energy (representing loudness), logarithm of a fundamental frequency estimate
(representing pitch), logarithm of the spectral centroid and a measure of bandwidth (the lat-
ter two representing timbre). Guo and Li [43] applied SVM classification to example-based
retrieval of the same segments as in [126]. Their feature representations consists of the
means and standard deviations of different short-time features, computed over the complete
sound files.

In the general case of analyzing unconstrained audio, meaningful or reliable class spec-
ifications may not be available beforehand. Analysis of such recordings can be based on
unsupervised classification whose results are either used as such or corrected by the user.
As one example of such an approach, Misra et al [84] proposed a system that performs
unsupervised detection of acoustic events in a sound scene using a rule-based approach
that emulates the psychoacoustic rules of auditory stream segregation. The final goal is the
resynthesis of a similar sound scene using the detected events. As another example, retrieval
and transcription of personal recordings using wearable equipment is a new and emerging
field of study [22] [31] [32]. A wearable system could record a large portion of the acoustic
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environments which the user visits during the day. Some pioneering work on the subject has
been done. Clarkson and Pentland [22] analyzed audio and video recorded using wearable
equipment in everyday life. Their feature vector consists of both video features and audi-
tory filterbank acoustic features. Using iterative resegmentation for unsupervised learning
of left-to-right HMMs, they arrive at a clustering of acoustic events, each being represented
by a HMM. A further layer of analysis constructs scene HMMs from the likelihoods of
the event HMMs in order to separate acoustic scenes. For a similar problem, but analyzing
only audio signals, Ellis and Lee [31] [32] used the change detection strategy. They used the
means and standard deviations of different short-time features as the feature representation
and applied BIC segmentation, followed by segment clustering using the spectral clustering
method [32].

Audio surveillance is a relatively new field. In [29], a surveillance-related system was
proposed for detecting door slams, glass breaks, human screams, explosions, gun shots
and stationary noises from background noise. Energy-based change detection is followed
by GMM or HMM classification of filterbank energy features. In [103], the application
is surveillance in elevators by detecting certain types of suspicious audio events, such as
banging and non-neutral speech. The method is based on change detection followed by
GMM-based supervised classification using MFCC feature vectors. In [123], audio surveil-
lance is used as part of an audiovisual surveillance system for public transport vehicles.
The audio event detection module focuses on detecting shouting segments so that these de-
tections can be combined with data from video-based surveillance. The method involves
change detection (using a heuristic approach) followed by GMM-based classification of
the detected stationary segments using MFCC/delta-MFCC feature vectors. The use of
audio event detection to supplement video surveillance is also proposed in [113], where
very simple detectors (due to computational requirements of audio sensor networks) based
on thresholding five-second energy and zero crossing rate are used. In [59], experiments
on environmental sound detection and classification in an office environment are reported.
The method is based on change detection by thresholding spectrum-based distances to an
adaptive noise floor. Both unsupervised and supervised classification is applied to seg-
mental feature vectors consisting of ten selected features. The unsupervised approach uses
k-means while the supervised approach uses minimum Euclidean distance classification
with manually selected class centers.



Chapter 6

Conclusions

An audio pattern is a feature vector template associated with a certain “hidden” state of
nature. The state of nature consists of category variables that may, depending on the appli-
cation, define the broad sound type (e.g., speech, music), the identity of the sound source
as well as semantic information associated with the sound content. Audio pattern recogni-
tion refers to the combined task of identification of the temporal locations of audio patterns
(segmentation) and the association of the audio pattern segments with the hidden states
of nature (classification). Below, the main conclusions and observations of this study are
highlighted.

Feature extraction is important. To reliably detect and identify audio patterns, it is im-
portant to limit the size of the acoustic data set via feature extraction. As in all pattern
recognition, the curse of dimensionality causes the required training data set size to grow
exponentially as a function of the number of features in the feature vector. In the limits
imposed by the curse of dimensionality and the available amount of training data, how-
ever, no important class-discriminating features should be excluded from the feature set.
Often, good separation between some given classes can not be achieved by a single feature
but requires a combination of features. The features that discriminate between the same
classes may even be highly correlated and yet greatly supplement each other in terms of
class discrimination [44] - thus, feature orthogonality alone is not a good goal in feature
selection.

Because class separability in the feature space is generally desirable in pattern classi-
fication, and because clustering is about identifying separable classes in an unsupervised
fashion, it is desirable to have some kind of a clustering structure in the feature space so
that a natural clustering of the feature vectors corresponds highly to the ground truth pattern
class labeling. This structure can consist of arbitrarily shaped clusters and does not have to
be obvious to any given clustering algorithm. Intuitively, the better the patterns belonging
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to different classes are separable by unsupervised classification, the less the system must
rely on learning complex class boundaries in the training phase, and the easier the classifi-
cation problem can be expected to become. The desirability of natural clusterings provides
another motivation for careful feature selection, because a clustering structure in some se-
lected feature subspace may not be evident in a higher-dimensional feature space in which
more features are included [68].

Striving to obtain a class-clustering structure in feature extraction leads to another view-
point: almost everything in pattern recognition is actually feature extraction. A complex
feature extractor might indeed produce feature vectors that form a very distinct class-
clustering structure, so that the actual pattern classification of these feature vectors is a triv-
ial task using a simple linear classifier (such as a minimum Euclidean distance classifier).
On the other hand, as discussed in Section 1.1, practically any intermediate representation in
a pattern classifier can be interpreted as the output of a feature extraction module, followed
by a simpler pattern classifier. From yet another viewpoint, pattern recognition systems
could be arranged in cascade such that the class probability outputs from a Bayesian classi-
fier stage are used as features for some classifier in the second stage (which may deal with
different classes). In this case, where does feature extraction end and pattern classification
begin? In some sense, designing audio pattern recognition systems is all about designing
audio feature extractors. In an audio pattern recognition system, if the audio classes are to
be separable by a general-purpose nonlinear pattern classification method (Chapter 4), the
audio features produced by the feature extraction module must be of sufficiently high level.

Attention should be paid to auditory knowledge. A good starting point for reasonable fea-
ture exctraction for audio is knowledge of the human/mammalian auditory system (Chapter
2). The auditory perception capabilities in animals have evolved over millions of years and
can reasonably be assumed to be computationally efficient so as to preserve maximal brain
capacity for other functions as well. In terms of auditory perception, most computable
acoustic features can be classified as either loudness, pitch, timbral or rhythmic features
(Sections 3.5-3.6). Loudness features have a strong connection to the short-time acoustic
energy, pitch features are obtained by pitch estimation and tracking methods, timbral fea-
tures characterize the shape of the short-time (auditory) spectrum and rhythm features use
long-term processing to capture modulation properties. In selecting features for a specific
recognition application, it may be useful to consider what perceptual aspects best differen-
tiate between the target classes.

Discrimination of broad sound classes, such as speech, music and environmental sounds,
often requires the use of long-term rhythmic/modulation information, because these classes
can not be reliably discriminated based on the instantaneous short-time auditory spectra.
Carefully observing the behavior of short-time features during different sound classes (e.g.,
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Figure 3.4 in Section 3.5) may lead to discoveries of useful long-term features that capture
just the correct class-discriminating rhythmic/modulation information. For example, AR(1)
prediction coefficients estimated from short-time loudness features over a one second win-
dow were found in Section 4.2.4 to be promising candidates for detecting speech apart from
music. This is because the modulation spectrum of short-time loudness features is generally
dominated by lower frequencies for speech than for music (see, for example, the features
LGSTE and LOUD in Figure 3.4). As another related example, the 4 Hz modulation energy
has been found to be an effective feature for speech detection [107].

Unsupervised classification methods are promising. The psychoacoustical phenomenon
of auditory stream segregation, which is fundamental to all hearing and which has its ori-
gins in the higher neural stages of the auditory system, has been shown by Bregman [17] to
be well explained by the Gestalt grouping rules (Section 2.2). Because the Gestalt group-
ing rules describe the formation of perceived patterns from sensory elements by forces of
mutual attraction, they seem to require the presence of an unsupervised, bottom-up control
mechanism in pattern recognition. This makes unsupervised pattern recognition methods
attractive. A completely unsupervised approach is a natural choice in problems with un-
constrained general audio, in which the classes may be very hard to define beforehand.
However, in a supervised classification setting, in which the classes are known in advance,
it is often not clear how the found unsupervised pattern classes should be associated with the
supervised, predefined classes. Nevertheless, the author holds the view that unsupervised
classification methods can be useful in a central role even in a supervised classification
setting (as demonstrated in [96], where the supervised class association was handled by
means of parameter initialization for EM re-estimation of a HMM). The author sees this
kind of approach as an interesting direction of research and has attempted to highlight this
possibility also in the unsupervised speech/music discrimination example (Section 4.2.4).

As further justification for unsupervised classification methods it can be noted that, rather
surprisingly, the Bayesian classification principle, Eq. 4.4 in Section 4.1.1, can also ac-
commodate unsupervised learning. When each state of nature ω is modeled by a corre-
sponding PDF model λω, the distinction between supervised Bayesian classification and
unsupervised probabilistic classification is determined by whether λω is previously trained
on labeled training data or whether it is obtained from the testing data in an unsupervised
manner (e.g., as a set of decomposed Gaussian mixture components after EM re-estimation
of a GMM). In the latter case, the discussion of Section 4.1.1 leading to Eq. 4.4 still ap-
plies as long as the correspondence between ω and λω (the supervision) can somehow be
established.

The author also presents a meaningful performance measure for evaluating unsupervised
classification performance in a supervised classification setting, the minimum misclassifi-
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cation rate MMR (Eq. 4.30 in Section 4.2).
Because the author considers unsupervised pattern classification and clustering methods

to be important in audio recognition, several cluster initialization methods for the iterative
optimization or EM-style unsupervised classification algorithms are presented in Section
4.2.2 (initialization is central in [96], where the unsupervised EM algorithm is used in
a supervised classification task). Among others, the iterative cluster centroid reduction
(ICCR) method developed by the author is presented for clustering/cluster initialization.

For future research, it would also be very interesting to look for general pattern recogni-
tion methods that can combine automatic on-line feature selection with unsupervised clas-
sification. In comparison to unsupervised classification using a fixed set of features, the
on-line feature selection approach would be even better justified by the psychoacoustical
mechanisms of auditory stream segregation, because stream segregation is considered to
gather competing evidence and combine it in a mechanism that is like voting [17] [4] (Sec-
tion 2.2); i.e., human auditory scene analysis does not use a fixed feature set.

While the building blocks for low-level feature extraction and subsequent pattern recog-
nition are presented in Chapters 3 and 4, respectively, the author also presents a categoriza-
tion of recognition strategies that combine these building blocks in different ways (Section
5.1). The four basic strategies have been termed 1) change detection, 2) sliding window,
3) template matching and 4) unsupervised classification. Most of today’s automatic speech
recognition is based on strategy 3), template matching (Viterbi decoding for a composite
HMM template) with a great deal of domain knowledge included in the classifier (most
notably in the form of sophisticated language models). In contrast, strategies 1) and 4)
lend themselves to the largely unsupervised, largely bottom-up approach which has justifi-
cations in human auditory scene analysis. Recently, both strategies have become popular in
applications involving recognition of general, unconstrained audio material (Chapter 5).

In terms of the end application domain, the end applications can be conveniently cat-
egorized into three categories: speech applications, music applications and general audio
applications. This categorization highlights the importance of speech and music as utility
signals. Of these three, recognition of general audio typically has to deal with the broad-
est class specifications and often includes speech and music as separate categories. Ap-
plications of automatic speech recognition are central in the speech application category.
Both automatic speech recognition and phonetic analysis of speech have been studied for
decades. The categories of music and general audio include newer recognition problems
that have only recently attracted attention. For many of these recognition problems, widely
accepted state of the art solutions have not yet emerged. The research in all audio infor-
mation extraction is further driven by the ever increasing storage and transmission capacity
for digital multimedia material (the need for automatic organization) as well as by the in-
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creasing computational power (the means for automatic organization). Thus, the field of
automatic audio recognition can be expected to contain many important research topics in
the future.
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