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The aim of this thesis was to develope a method for adjusting the parameters
of an existing plucked string synthesis model in such way that the final sound
output is perpectually similar to the sound of a real instrument. The existing
model has been intensively used for sound synthesis of various string instruments
but the fine tuning of the parameters has been carried out with a semiautomatic
method that requires some hand adjustment with human listening. By means of
the method described in this thesis the parameters of the string model can be
now adjusted automatically.

In this thesis previously recorded tones are used as a target with which the syn-
thesized tones are compared. All synthesized tones are then ranked according
to their perceptual error value. The perceptual error value is calculated with a
method that simulates human hearing and takes its limitations such as frequency
dependence and frequency masking into account. The aim is to find a synthesized
tone with minimal perceptual error value. In this thesis a genetic algorithm is
used to find the minimum.

First, this thesis introduces the plucked string synthesis model and its parameters.
Then, the principle of a genetic algorithm and different operators are explained.
Thereafter, the calculation of perceptual error value is described. Discretization
of the parameters and the implementation of the parameter estimation algorithm
are then explained and finally the experimentation and results are shown.

The method described in this thesis enables high quality of synthesis with the
plucked string synthesis model and also illustrates the behaviour of the model
and clarify how the parameters affect to the final sound output.
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Taman diplomityon tavoitteena on ollut kehittda menelmé, jonka avulla on mah-
dollista sddtia soivan kielen synteesimallin parametrit siten, ettd lopputuloksena
on aidon kielisoittimen kuuloinen &éni. Kyseistd kielimallia on kdytetty intensiivi-
sesti eri kielisoittimien dénisynteesiin, mutta puoliautomaattisella menetelmalls
tehty parametrien hienosidéto on vaatinut kiyttajalta harjaantuneisuutta ja tark-
kaa kuuntelukykyéa. Tassa diplomityossé esitellyn menetelmén avulla kielimallin
parameterit voidaan sditad automaattisesti.

Tamaén diplomityon parametrien estimointimenetelméssé kiytetadn aikaisemmin
adnitettyja kielisoittimien d&nid tavoiteddnind, joihin synteesimallin tuottamia
adnid verrataan. Syntetisoidut ddnet jarjestetddn niiden perkeptuaalisen virheen
avulla. Perkeptuaalinen virhe lasketaan menetelmailld, joka simuloi ihmisen kuu-
loaistia ja huomioi kuuloaistin rajoitteet kuten taajuusriippuvuuden ja peittoil-
mion. Tavoitteena on 10ytaa syntetisoitu d4ni jolla on mahdollisimman pieni per-
keptuaalinen virhearvo. Tamén minimin 16ytdmiseksi kidytetdan geneettistd algo-
ritmia.

Tassd diplomityossé késitellddn ensin synteesiin kiytettdvin kielimallin toimin-
ta ja estimoitavat parametrit. Taméan jilkeen kuvataan estimointiin tarvittavan
geneettinen algoritmin toiminta ja laskentaan vaikuttavat tekijat. Seuraavaksi esi-
telladn perkeptuaaliseen virheenlaskentaan kiytettdva funktio ja sen kuuloaistia
simuloivat ominaisuudet. Tdmén jilkeen kisitelldin parametrien diskretointi se-
ki esitelldadn parameterien estimoinnin lopullinen toteutus ja viimeisend kiydaan
lépi koejarjestelyt sekd tulokset.

Diplomityossé kasitelty menetelmé mahdollistaa parempilaatuisen dénisynteesin
kyseiselld kielimallilla ja antaa myos tietoa kielimallin toiminnasta sekd paramet-
rien suhteellisesta vaikutuksesta lopulliseen dineen.

Avainsanat: musiikkiakustiikka, d&dnisynteesi, fysikaalinen mallinnus, kielimalli,
parametrien estimointi, geneettinen algoritmi
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Chapter 1

Introduction

The development of a parameter estimation procedure for an existing plucked string
synthesis model is described in this thesis. By means of the procedure the control
parameters of the synthesis model can be adjusted such a way that the sound output
is perceptually similar to the sound of a real instrument. The procedure in a nutshell
is as follows. The synthesis model is first used to produce a set of tones that are
compared to a previously recorded real instrument tone that functions as a target of
the procedure. The perceptual dissimilarity between the tones, presented as an error
value, is determined and the worst individuals are dumped. Parameter values are then
varied, another set of synthesized tones is produced, and error values are calculated.
This is proceeded until the sound output of the model is indistinguishable from the
recorded tone.

1.1 Background

Physical modeling of musical instruments has become one of the most important re-
search topics in the field of sound synthesis these days. Physical modeling synthesiz-
ers have been successful, which is no wonder since model-based sound synthesis is a
powerful tool for creating natural sounding tones by simulating the sound production
mechanisms and physical behavior of real musical instruments. A strength of physically
modelled instruments is that the control parameters are easy to understand because
they have a real counterpart. Besides real acoustical instruments, a hot trend in the
music industry is the modeling of analog techniques used previously for sound synthe-
sis. Imperfections of these retro instruments have been noticed to bring liveliness and
human characteristics to synthesized sound.
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Roads sees the goals of physics-based sound synthesis as scientific one and artistic one
(Roads, 1996). The goal of the scientific approach is to gain understanding of the
physical behavior of real instruments. These sound production mechanisms are often
too complex to simulate in every detail, and therefore simplified models are designed
for synthesis. Generated models, which are perceptually indistinguishable from real
instruments, are then used for artistic purposes. Also non-existing virtual instruments
can be constructed with a computer and utilized in composing.

Parameter estimation for such systems is an important and difficult challenge. Usually
the natural parameter settings are in great demand at the initial state of the synthe-
sis. When using these parameters with a model, we are able to produce real-sounding
instrument tones. Various methods for adjusting the parameters to produce desired
sounds have been proposed in the literature. Calibration of a plucked string gui-
tar synthesis model and extraction of expressive parameters is proposed in (Vélimaki
et al., 1996; Tolonen and Valiméki, 1997; Erkut et al., 2000). Parameter estimation
for dual-polarization plucked string models using a sub-band Hankel singular value
decomposition algorithm is described in (Nackaerts et al., 2001). Suitable synthesis
parameters are determined by employing the learning ability of neural networks (Liang
and Su, 2000) of a system where the nonlinear component is modelled by radial ba-
sis function networks (Drioli and Rocchesso, 1998). My interest in this thesis is the
parameter estimation of the model proposed by Karjalainen et al. (Karjalainen et al.,
1998). An automated parameter estimation method for the model, known as Calibra-
tor, has been proposed in (Valiméki et al., 1996; Tolonen and Véliméki, 1997), and
then improved in (Erkut et al., 2000). By means of Calibrator the parameters of the
model have been earlier estimated automatically, but the fine-tuning have required
some hand adjustment.

In this thesis, recorded tones are used as a target with which the synthesized tones are
compared. All possible synthesized sounds are then ranked according to their similarity
with the recorded tone. An accurate way to measure sound quality from the viewpoint
of auditory perception would be to carry out listening tests with trained participants
and rank the candidate solutions according to the data obtained from the tests (Mattila
and Zacharov, 2001). This method is extremely time consuming and therefore we
are forced to use analytical methods to calculate the quality of the solutions. An
error function that simulates the human hearing and calculates the perceptual error
between the tones is developed in this thesis. Frequency masking behavior, frequency
dependence, and other limitations of human hearing are taken into account. From
the optimization point of view the task is to find the global minimum of the error
function. The variables of the function, i.e. the parameters of the synthesis model,
span the parameter space where each point corresponds to a set of parameters and thus
to a synthesized sound. When various parameters are used to control the model the
parameter space expands and the optimization of the error function becomes a difficult
task, where specialized methods are needed. In this thesis a genetic algorithm is used
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to optimize the perceptual error function.

1.1.1 Thesis Outline

This thesis is sectioned in three parts, the first of which (Chapters 2-3) concentrates
on theory of the plucked string synthesis model and genetic algorithms. The control
parameters to be estimated as well as possible methods for estimation are described in
Chapter 2. The principle of a genetic algorithm and different operators are explained
in Chapter 3.

The second part of the thesis (Chapters 4-5) is about the implementation of the pro-
cedure. Chapter 4 concentrates on the calculation of the perceptual error. In Chapter
5 the parameter space is discretized in a perceptually reasonable manner and the final
implementation of the parameter estimation procedure is explained. The third part
consists of Chapter 6 where the parameter estimation procedure is tested and results
are analyzed. Conclusions are finally drawn in Chapter 7.



Chapter 2

Physical Modeling Synthesis of a
Plucked String

A workable method for physical modeling synthesis is based on digital waveguide theory
proposed by Smith (Smith, 1992). In the case of the plucked string instruments the
method can be extended to model also the plucking style and instrument body (Smith,
1993; Karjalainen et al., 1993). A synthesis model of this kind can be applied to
synthesize various plucked string instruments by changing the control parameters and
using different body and plucking models (Valimaki et al., 1996; Laurson et al., 2001).
A characteristic feature in string instrument tones is the double decay and beating
effect (Weinreich, 1977), which can be implemented by using two slightly mistuned
string models in parallel to simulate the two polarizations of the transversal vibratory
motion of a real string (Karjalainen et al., 1998). A synthesis model of this kind
is introduced in the beginning of this chapter, after which the possible parameter
estimation procedures for the model are surveyed.

2.1 Plucked String Synthesis Model

The model proposed by Karjalainen et al. (Karjalainen et al., 1998) is used for plucked
string synthesis in this thesis. The block diagram of the model is presented in Figure
2.1. It is based on digital waveguide synthesis theory (Smith, 1992) that is extended
in accordance with the commuted waveguide synthesis approach (Smith, 1993; Kar-
jalainen et al., 1993) to include also the body modes of the instrument to the string
synthesis model.

Different plucking styles and body responses are stored as wavetables in the memory
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Horizontal polarization
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Figure 2.1: The plucked string synthesis model.

and used to excite the two string models S;(z) and S,(z) that simulate the effect
of the two polarizations of the transversal vibratory motion. A single string model
S(z) in Figure 2.2 consists of a lowpass filter H(z) that controls the decay rate of the
harmonics, a delay line z7%7 and a fractional delay filter F'(z). The delay time around
the loop for a given fundamental frequency fy is

_ 1

L_a
T

(2.1)

where f is the sampling rate (in Hz). The loop delay L4 is implemented by the delay
line 27L7 and the fractional delay filter F(z). The delay line is used to control the
integer part L; of the string length while the coefficients of the filter F'(z) are adjusted
to produce the fractional part Ly (Jaffe and Smith, 1983; Laakso et al., 1996). F(z)
is implemented as a first-order all-pass filter. Two string models are typically slightly
mistuned to produce a natural sounding beating effect.

), o)

—\d

A

F(2) = H(2) |+ Z" J

Figure 2.2: The basic string model.

A one-pole filter with transfer function
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1+a

H(z)=¢g——
(2) gl +az7!

(2.2)

is used as a loop filter in the model. Parameter 0 < ¢ < 1 in Eq. 2.2 determines the
overall decay rate of the sound while parameter —1 < a < 0 controls the frequency-
dependent decay. The excitation signal is scaled by the mixing coefficients m, and
(1 —my) before sending it to two string models. Coefficient g. enables coupling be-
tween the two polarizations. Mixing coefficient m, defines the proportion of the two
polarization in the output sound. All parameters m,, g. and m, are chosen to have
values between 0 and 1. The transfer function of the entire model is written as

M(z) = mpymySp(z) + (1 —myp)(1 —m,)S,(2) +
+ my(1 —my)geSh(2)Sy(2), (2.3)

where the string models Sp,(z) and S,(z) for the two polarizations can be written as
an individual string model

(2.4)

The model in Figure 2.1 can be rearranged and presented as in Figure 2.3.

If Equations 2.3 and 2.4 without a fractional delay filter F'(z) are combined we get an
expanded transfer function for the model as follows

M; + ]\45(%2_1 + Msamz_2 — MgGhz_LIh — MlGUZLI”—
1 + a’sz_l + amZ_2 - GvZ_LIU — GhZ_LIh — Gva/hz(_LI”_l)—

M(z) =

—MyGha,z L= — MG, ap2"Lro—1)
o —Ghavz(_Llh_l) + Gthz(_LIh_le) ’

(2.5)
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Horizontal polarization
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Figure 2.3: The rearranged plucked string synthesis model.

where

M, = mm,

M, = (1-=m,)(1—my)
M; = gmy(1—m,)

M, = M+ My + M;
M, = M{MyM;

as = ap+a,

U = Qpay

Gn = gn(1+ap)

Gy, = g(l+a,)

Equation 2.5 is useful when analyzing the effect of coupling and mixing parameters
as well as orthogonality of the model. Although the model appears to be asymmetric
for two polarizations due to unidirectional coupling path we can define m, and m,
such a way that the parameters of individual string model are exchangeable between
polarizations. It can be seen in Figure 2.3 that if

m,=1-—m,

the transfer functions S(z), and S(z), of individual polarizations can be swapped
without affecting to the transfer function M (z) of the entire model. This implies that
similar tones are produced with parameter sets of two individual string model regardless
of which way the sets are ordered.
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Synthesis model of this kind has been intensively used for sound synthesis of vari-
ous plucked string instruments (Laurson et al., 2001; Erkut et al., 2001; Erkut and
Vilimaki, 2000). Different methods for estimating the parameters have been used, but
in consequence of interaction between the parameters, systematic methods are at least
troublesome but probably impossible. The nine parameters that are used to control
the synthesis model are listed in Table 2.1.

parameter | control
fon fundamental frequency of the horizontal string model
fow fundamental frequency of the vertical string model
gh loop gain of the horizontal string model
ap frequency dependent gain of the horizontal string model
o loop gain of the vertical string model
Cy frequency dependent gain of the vertical string model
myp input mixing coefficient
m, output mixing coefficient
Je coupling gain of the two polarizations

Table 2.1: Control parameters of the synthesis model.

2.2 Estimation of the Model Parameters

Determination of the proper parameter values for sound synthesis systems is an impor-
tant problem and also depends on the purpose of the synthesis. When the goal is to
imitate the sounds of real instruments the aim of the estimation is unambiguous: We
wish to find a parameter set which gives the sound output that is sufficiently similar
with the natural one in terms of human perception. These parameters are also feasible
for virtual instruments at the initial stage after which the limits of real instruments
can be exceeded by adjusting the parameters in more creative ways.

Parameters of a synthesis model correspond normally to the physical characteristics
of an instrument (Karjalainen et al., 1998). The estimation procedure can then be
seen as sound analysis where the parameters are extracted from the sound or from the
measurements of physical behavior of an instrument (Roads, 1996). Usually, the model
parameters have to be fine-tuned by laborious trial and error experiments, in collab-
oration with accomplished players (Roads, 1996). Parameters for the synthesis model
in Figure 2.1 have been earlier estimated this way and recently in a semi-automatic
fashion, where some parameter values can be obtained with an estimation algorithm
while others must be guessed. Another approach is to consider the parameter estima-
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tion problem as a nonlinear optimization process and take advantage of the general
searching methods. All possible parameter sets can then be ranked according to their
similarity with the desired sound.

2.2.1 Sound Analysis Based Parameter Estimation
Calibrator

A brief overview of the calibration scheme used earlier with the model in (Valimaki
et al., 1996; Tolonen and Valiméki, 1997) is given here. The block diagram from (Erkut
et al., 2000) is presented in Figure 2.4. The fundamental frequency fo is first estimated
using the autocorrelation method. The frequency estimate in samples from Equation
2.1 is used to adjust the delay line length L; and the coefficients of the fractional delay
filter F(z). The amplitude, frequency, and phase trajectories for partials are analyzed
using the short-time Fourier transform (STFT), as in (Valiméki et al., 1996). The
estimates for loop filter parameters g and a are then analyzed from the envelopes of
individual partials.

The excitation signal for the model is extracted from the recorded tone by a method
described in (Vialiméki and Tolonen, 1998). The amplitude, frequency, and phase
trajectories are first used to synthesize the deterministic part of the original signal and
the residual is obtained by a time-domain subtraction. This produces a signal which
lacks the energy to excite the harmonics when used with the synthesis model. This
is avoided by inverse-filtering the deterministic signal and the residual separately. In
(Erkut et al., 2000) an optimization technique for the procedure is proposed. Output
signal of the model is fed to the routine which automatically fine-tunes the model
parameters by analyzing the time-domain envelope of the signal.

Extracting Beating

The difference in the length of the delay lines can be estimated based on the beating
of a recorded tone. In (Valimaki et al., 1999) the beating frequency is extracted from
the first harmonic of a recorded string instrument tone by fitting a sine wave using
the least squares method. According to Viliméki et al. this yields a good estimate of
the difference in the fundamental frequencies of the two polarization but the method
is probably useful only for instruments with strong beating characteristics, such as the
kantele.

Another procedure for extracting beating and two stage decay from the string tones
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Figure 2.4: Block diagram of the calibrator from (Erkut et al., 2000).

is described by Bank in (Bank, 2000). The general exponential decay is first removed
from the amplitude envelope of one particular partial. The resulting signal, describing
the deviation from the ideal exponential decay, is then normalized and a model of an
exponentially rising or decaying sinusoid is fit on the data. The amplitude and decay
time of the normalized deviation signal is computed by a similar method that was used
to analyze the partial envelopes. Each partial is analyzed separately and beating and
two stage decay is realized with a model consisting of one string model and a resonator
bank instead of two parallel string models (Bank et al., 2000).

In practice the mistuning between the two string models has been found by ear (Laurson
et al., 2001).

2.2.2 Optimization Based Parameter Estimation

Instead of extracting the parameters from audio measurements an approach is to find
the parameter set that produces a tone that is perceptually indistinguishable from the
target one. Each parameter set can be assigned with the quality value, which denotes
how good the candidate solution is. This performance metric is usually called a fitness
function, or inversely, an error function. A parameter set is fed into the fitness function

10
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which calculates the error between the corresponding synthesized tone and the desired
sound. The smaller the error the better the parameter set and the higher the fitness
value. These functions give a numerical grade to possible solution by means of which
we are able to classify candidate parameter sets.

When dealing with discrete parameter values the number of parameter sets is finite
and given by the product of the numbers of possible values of each parameter. Using
nine control parameters with 100 possible values a total of 10'® combinations exist in
the space and therefore an exhaustive search is obviously impossible. Therefore, more
effective optimizing algorithms have to be used.

Evolutionary algorithms have shown a good performance in optimizing problems relat-
ing to the parameter estimation of synthesis models. Vuori and Valiméki (Vuori and
Vélimaki, 1993) tried a simulated evolution algorithm for the flute model and Horner
et al. proposed an automated system for parameter estimation of FM synthesizer us-
ing a genetic algorithm (Horner et al., 1993). Genetic algorithms have been used for
designing sound synthesis algorithms automatically in (Garcia, 1998; Johnson, 1999).
In this thesis a genetic algorithm is used to optimize the perceptual error function.

11



Chapter 3

(Genetic Algorithm

Genetic algorithms (GA) mimic the evolution of the nature and take advantage of
the principle of survival of the fittest (Mitchell, 1998). These algorithms operate on
a population of potential solutions improving characteristics of the individuals from
generation to generation. Each individual, called a chromosome, is made up of an
array of genes that contain in our case the actual parameters to be estimated. In every
generation, a new set of chromosomes is created by crossing and mutating the fittest
individuals from the previous generation. Desired characteristics are passed into the
next generation while imperfect individuals become extinct.

Genetic algorithms have been developed by John Holland and his students and col-
leagues at the University of Michigan in the 1960s and 1970s. Since then the genetic
algorithms have been intensively used in various disciplines for solving numerous op-
timizing problems. Genetic algorithms are theoretically and empirically proven to
provide robust search especially in complex spaces (Goldberg, 1989).

In this chapter we discuss first the basic features of genetic algorithms. To illustrate the
behavior of an algorithm we use the original algorithm design for a simple optimization
problem: to find a maximum of a single variable function with known maximum points.
Possible improvements for the simple GA are surveyed and the operators, which are
later in this book applied to our algorithm, are explained in detail.

3.1 Operation of a Genetic Algorithm

Genetic algorithm operates on the population of S, individuals. Each individual rep-
resents a potential solution to the problem. All the individuals in a generation are

12
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evolved in parallel which is a clear advantage if various local minima exist in the search
space. In the original algorithm design the chromosomes were represented with binary
digits (Holland, 1975). Michalewitz introduced the floating point representation of GA
and developed operators for the algorithm (Michalewicz, 1992). He also described the
characteristics of the operators.

A simple algorithm is implemented as follows:

1. Initialization: Create a random population of S, individuals (chromosomes).

2. Fitness calculation: Calculate the fitness for each individual in the initial popu-
lation.

Repeat the following steps until termination

3. Selection: Select individuals from the current population to the mating pool to
produce a new generation.

4. Altering: Alter the new population by crossing and mutating the individuals.
5. Evaluate: Calculate the fitness for each individual.

6. Replace the current population with the new one.

The algorithm is normally terminated when a specified number of generations is pro-
duced or when the sum of the deviations among the individuals becomes smaller than
some specified threshold. Several schemes are feasible for selection, crossover and mu-
tation processes depending on which chromosome representation is used.

3.2 Finding a maximum of a Simple Function

In the following example we use a genetic algorithm to find a maximum of a simple
function f(z) with one variable . The aim is to illustrate the behavior of a GA at
grass roots. All the steps are implemented in a simplified manner but realistically.

The function is defined as follows

f(z) = —2* + 24sin(x) + 120, (3.1)

13
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where x = [—10, 10]. The function graph is drawn in Figure 3.1.

150

100f

50

0 1 1 1
-10 -5 0 5 10
Figure 3.1: Graph of the function f(z) = —2? + 24sin(x) + 120.

The maxima of the function in the specified range are analyzed by determining the
zeros of the first derivative f(x)' for the function f(x)

f(@) = —2x + 24 cos(z) = 0. (3.2)

The zeros are determined by iteration and the approximate maxima are found at x =
—4.3421,x = 1.4497, and z = 7.2095. Maximum function value is found in x = 1.4497
where f(1.4497) = 141.7226.

3.2.1 Binary Representation

In binary representation the precision of the solution depends on the number of bits
in a binary number. Genetic algorithm manipulates the strings of binary digits, where
each bit is considered as a gene of a chromosome.

Discretizing the range [-10,10] with the precision of 0.0001 implies that at least 200000
uniformly distributed values should be used for the range. Representing this with
binary numbers means that 18 bits are required. The mapping from 18 bit binary
number into the real number from the range [-10,10] is carried out by first converting

14
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a binary string to a real number, for example

Ty = (011001011001001011)1)(1362 = 1040111)0.8610)

which is an index number signifying 104011th value in a discrete grid. A corresponding
real number from the range [-10,10| is then calculated as follows

By — By,

T

(3.3)

where the By is the upper and By, is the lower boundary of the range (10 and -10 in
our example) and N, is the number of bits (18 in our example). The example binary
digit x; represents therefore the real number -2.0646.

3.2.2 Initialization

Random population of S, = 10 individuals shown in Table 3.1 is first created for
optimizing the function f(x). The binary numbers are converted from base two to
base ten and the corresponding real values are calculated with Eq. 3.3. The function
value represents the fitness of each chromosome. We use a small population size to get
a sparse distribution over the variable x at the initial state. In order to illustrate the
behavior of a genetic algorithm the best possible initial population is not required.

No. | chromosome corresponding real number | function value
1 101000011001011001 2.6240 124.9889
2 | 110100010110110010 6.3613 81.4067
3 | 110011110100101111 6.1951 79.5089
4 1010010100011011000 -4.2022 123.2853
5 | 001100001000100011 -6.2083 83.2543
6 | 001110100011101110 -5.4506 108.0438
7 | 000011101000110011 -8.8633 28.6634
8 1000101111000011011 -8.1620 30.5113
9 | 100000011011101001 0.1350 123.2120
10 | 011101100000010001 -0.7799 102.5144

Table 3.1: Initial population of ten chromosomes, corresponding real numbers,
and function values
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3.2.3 Selection

Selection procedure plays an important role in genetic algorithm. The idea is to give
preference to better individuals and allow them to pass to the mating pool where the
individuals are altered before they form up a new generation. Chromosomes are se-
lected according to their fitness values such that the chromosomes with higher value
have an increased probability of contributing one or more offspring in the next gener-
ation. Several schemes are available for the selection process: roulette wheel, elitist,
tournament, scaling techniques, linear and nonlinear ranking methods, and truncation
selection.

We use here the roulette wheel, which was the first selection method developed by
Holland. Each chromosome has a probability of being selected that is determined by the
chromosome‘s fitness as a percentage of the total population fitness. Each chromosome
has a roulette wheel slot that is sized according to the chromosomes proportion. The
roulette wheel with slots according to our initial population in Table 3.1 is shown in
Figure 3.2.

1: 14% 10: 12%

2: 9% 9: 14%

8: 3%
7: 3%

3: 9%

4: 14% 6: 12%
5: 9%

Figure 3.2: Weighed roulette wheel with slots, size of which depend on the fitness
value of corresponding chromosome. Slots are numbered according to chromo-
somes in Table 3.1

Roulette wheel is spun S, times to select individuals to the mating pool. Spinning
is simulated by generating S, random numbers pointing to the wheel. Obviously,
some chromosomes would be selected more than once. The worst chromosomes die off
while the better ones get more copies and therefore the average fitness will increase
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throughout the process.

The chromosomes in Table 3.2 are selected from our initial population by the roulette
wheel scheme. As we can see the poorest chromosomes number 3,7 and 8 with function
values 79.5089, 28.6634, and 30.5113 in the initial population in Table 3.1 are replaced
by the copies of the better chromosomes and the average fitness value has increased.

No. | chromosome corresponding real number | function value
1 | 101000011001011001 2.6240 124.9889
2 1 101000011001011001 2.6240 124.9889
3 | 110100010110110010 6.3613 81.4067
4 1010010100011011000 -4.2022 123.2853
5 | 001100001000100011 -6.2083 83.2543
6 | 001110100011101110 -5.4506 108.0438
7 1001110100011101110 -5.4506 108.0438
8 | 001110100011101110 -5.4506 108.0438
9 |100000011011101001 0.1350 123.2120
10 | 011101100000010001 -0.7799 102.5144

Table 3.2: Mating pool. Chromosomes are selected with roulette wheel from the
initial population in Table 3.1

Chromosomes in the mating pool are then altered by crossover and mutation opera-
tions.

3.2.4 Altering

Two classical genetic operators are available for the altering: crossover and mutation.
Crossover operator picks two parents and produces offspring by splitting the parents
in a random point and swapping the parts. Crossing the two chromosomes z3 and
Zp5 from the mating pool

73 = (1101/00010110110010)
s = (0011/00001000100011)

with fitness values

F(xi3) = £(6.3613) = 81.4067
F(zis) = f(—6.2083) = 83.2543
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results in the two offspring vectors

zy3 = (1101/00001000100011)
zys = (0011/00010110110010)

with fitness values

F(zis") = £(6.2918) = 80.6200
Flxis') = f(—6.1387) = 85.7720.

Each chromosome in the mating pool has a chance of being a parent for crossing, which
is controlled by the probability of crossover p.. Only a even number of parents can be
selected.

Mutation flips each bit in every chromosomes with some specified probability p,,. Mu-
tating two genes (fifth and tenth) in a chromosome o

Tp16 = (011101100000010001)

with the fitness f(z510) = f(—0.7799) = 102.5144 produces a chromosome z; 1o’

Tp16 = (011111100100010001)

with the fitness f(zp10)" = f(—0.1354) = 116.7424. In this particular case the mutation
and crossover procedures improve the chromosome z;7¢ and x5 while the fitness value
for the offspring vector x5’ is lower than in its parent xj3.

3.2.5 Test Run

We have run GA with the following parameters:
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Population size S, = 10, number of generations = 100, probability of crossover
pe = 0.6, probability of mutation p,, = 0.05.

The results are shown in Table 3.3 where the generations with improvement in the
function value are presented. The exact global maximum is found at x = 1.4497. The
corresponding binary digit is (10010010100011100)pgse2- The convergence of z and f(x)
is shown in Figure 3.3.

Generation | best real number value | function value
1 2.6240 124.9889
5 2.5850 125.9978
10 1.2278 141.0943
16 1.2302 141.1080
19 1.2497 141.2118
25 1.2499 141.2126
31 1.2499 141.2130
40 1.4802 141.7106
43 1.4558 141.7221
54 1.4454 141.7224
60 1.4507 141.7226
81 1.4497 141.7226
100 1.4497 141.7226

Table 3.3: Generations with improvement in the fitness value.

3 ‘ : : : 145
— x
v target value of x
1401
2.5¢ 0
135
8 9 g
130
1.5¢ v 125 ]
| o
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

(a) (b)

Figure 3.3: Convergence of the function variable z and the function value f(z).
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3.3 Improvements

One disadvantage of the roulette wheel selection scheme is that it does not guarantee
that the fittest chromosome will be selected. Therefore, the global maximum is not
necessarily found, especially when a small population size is used. This behavior can
be avoided by using other selection methods:

e Elitist models: According to Goldberg (1989) the first improved selection
scheme was proposed by De Jong in (De Jong, 1975). The best chromosome
is enforced to survive to the next generation. De Jong designed five variations of

the basic GA.

e Tournament selection (Goldberg et al., 1991): Some number Ny, of individuals
is chosen randomly from the current population and the best individual from this
group is selected into the next generation. This process is repeated S, number
of times. The values for IV, ranges from 2 to S,. The typical value is NV, = 2.

e Ranking (Grefenstette and Baker, 1989; Goldberg, 1989): Individuals are first
sorted according to their fitness and given a rank number r, where r = 1 is the
best and r = S, is the worst. Probability of selecting the rth individual to the
next generation is then calculated by a linear function (linear ranking), e.g.

P(ry=q— (r—1r, (3.4)

where

(3.5)

or a nonlinear function (nonlinear ranking), e.g.

P(r)=q(1-q, (3.6)

where 0 < ¢ < 1 is the user defined parameter which denotes the probability
of selecting the best individual. Another possible ranking scheme is proposed in
(Joines and Houck, 1994). It is called normalized geometric ranking, where the
probability is calculated by the function
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P(r)=q¢'(1-¢" ", (3.7)
where

! q

- a5 (3.8)

q

Parameter ¢ is also said to control the so called selection pressure. If ¢ = 0
all individuals have the same probability of being selected while ¢ = 1 means
that only copies of the best individual are selected. An example case for the
probability of selection for each individual when S, = 10 and ¢ = 0.05 is shown
in Table 3.4.

rank r | Probability of selection P(r)
1 0.1246
0.1184
0.1125
0.1068
0.1015
0.0964
0.0916
0.0870
0.0827
0.0785

O O[O | W N

—_
o

Table 3.4: Probability of selection P(r) for a population of ten individuals when
normalized geometric ranking with ¢ = 0.05 is used.

It is noteworthy that the selection probabilities do not depend on the absolute
fitness values but only on the rank.

e Truncation (Miihlenbein and Schlierkamp-Voosen, 1993): Individuals are first
sorted similarly as in ranking methods. Only the best S; individuals are selected
to mating pool. S; indicates the proportion of the population to be selected as
parents and takes values ranging from 50%-10%. Individuals below the truncation
threshold do not produce offspring.

Improvements in crossover and mutation schemes have also been studied by various
researchers. Eshelman et al. have experimented with other possible crossover schemes
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such as two-point, multi-point, segmented, and shuffle crossover (Eshelman et al.,
1989). Two-point and multi-point crossover select multiple crossing points and swap
chromosome parts between them. Segmented crossover allows the number of crossover
points to vary by replacing the fixed number of crossover points with a switch rate
that specifies a probability of any point in a string to be a crossover point. A possible
improvement is to change over from binary to the floating point representation.

3.4 Floating Point Representation

In floating point representation each chromosome is coded as a vector of floating point
numbers. Each gene contains one number which is forced to be within the desired
range. Michalewicz showed that the floating point representation results in faster, more
consistent, higher precision, and more intuitive solution of the algorithm (Michalewicz,
1992) especially with large domains.

One possible chromosome with nine components (genes) containing parameters of the
plucked string synthesis model is shown in Table 3.5.

fO,h fO,U gn Qp, Gy Ay mp me e
330 | 331 | 0.9892 | -0.21 | 0.9912 | -0.198 | 0.5 | 0.5 | 0.1

Table 3.5: A chromosome with nine genes containing parameters of the plucked
string synthesis model.

Crossover and mutation schemes applied to chromosomes with floating point numbers
differ from simple ones described above.

3.4.1 Crossover

e Simple crossover: Similar than in binary representation. A chromosome is split
in a random point and the parts are swapped.

e Arithmetical crossover: Produces two offspring Z,; and &, that are linear
combinations of the two parents &), ; and &, as follows

To1 — Cfp,l + (1 - C)fp,g (39)
Top = (1—¢)Tpy + clpo (3.10)
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where 0 < ¢ < 1. The parameter ¢ can be either a constant (uniform arithmetical
crossover), or a variable whose value depends on the age of population (non-
uniform arithmetical crossover). If ¢ = 0.5 the scheme is called a guaranteed
average Crossover.

e Heuristic crossover: Produces a single offspring &, which is a linear extrapo-
lation of the two parents Z,; and 7, 2 as follows

T, = h(fpﬂ - fp,l) + fp,% (3-11)

where 0 < h <1 is a random number and the parent 7}, is not worse than 7, ;.
Non feasible solutions are possible and if no solution after w attempts is found,
the operator gives no offspring. Heuristic crossover contributes to the precision
of the final solution.

3.4.2 Mutation

e Uniform mutation: Sets a randomly selected component (gene) in a chromo-
some to an uniform random number between the boundaries. In the early phase
the operator allows the candidate solutions to move freely around the parameter
space. In the later phases the parameter contributes the solution not to be stuck
in a local optimum.

e Non-uniform mutation: Selects randomly one variable 7 in a chromosome, and
sets it equal to an non-uniform random number as follows:

L, i + (By — i) f(G) if ha < 0.5,
T — (23 — Br)f(G) if by > 0.5,

where 0 < h; < 1 is a random number and By and B, are the upper and lower
boundaries of the variable. h; chooses the direction of mutation. If h; < 0.5 the
variable is mutated towards the lower bound while h; > 0.5 mutates towards the
upper bound. Function f(G) weights the difference between z; and the bound
non-uniformly. Function can be defined according to the application for example
as follows
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hy = arandom number between [0,1],
G = -current generation,

Ny = number of generations in total,
b = degree of non-uniformity.

The probability for the function f(G) being close to zero increases as G ap-
proaches N, as can be seen in Figure 3.4. This means that the scheme operates
uniformly over the space at the early stage of the algorithm. When the cur-
rent generation approaches the maximum number of generations the operator
searches very locally and therefore contributes in fine tuning. The degree of non-
uniformity is controlled with the parameter 6. This affects the steepness of the
curves in Figure 3.4.

1

0.8

0.6

flG)

0.4}

0.2

0

Figure 3.4: f(G) of four selected moments while b = 2.

e Multi-non-uniform mutation: Changes all genes in the chromosome non-
uniformly.

e Boundary mutation: Sets a parameter to one of its boundaries. It is useful
if the optimal solution is supposed to lie near the boundaries of the parameter
space.

Although instructions for particular parameter and operator setting of genetic algo-
rithms can be found in the literature it seems unlikely that any general principles can
be formulated but the settings are always application dependant (Mitchell, 1998). The
comparison of different selection schemes is reported in (Blickle and Thiele, 1995) and
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a study on influence of the control parameters on the GA is presented in (Schaffer
et al., 1989).
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Chapter 4

Fitness Calculation

Genetic algorithms are powerful tools for searching large and complicated spaces. The
application areas vary from learning algorithms for backgammon playing (Qi and Sun,
2001) to automated generation of jazz melodies and solos (Papadopoulos, 1998; Biles,
1994). The task of GA is always similar: To find a minimum or maximum of the
optimized function. The GA itself is a universal tool, while the most critical and
application dependent stage of operation is the calculation of the fitness value. Care
has to be taken when considering how to rank the candidate solutions.

This chapter concentrates on the fitness function that is used in conjunction with the
GA. The aim of the fitness function is to calculate the perceptual similarity between
two tones and give a grade for the tone that is under examination. A psychoacoustic
model that accounts for the frequency masking behavior and frequency dependence of
human hearing is designed.

4.1 Mean Squared Error of STFT Sequences

Human hearing analyzes sound both in the frequency and time domain. Since spectra
of all musical sounds vary with time it is appropriate to calculate the spectral similarity
in short time segments. A common method is to measure the mean squared error of
the short-time spectra of the two sounds. The STFT of signal y(n) is a sequence of
discrete Fourier transforms (DFT) (Allen and Rabiner, 1977)
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N-1
Yo(k) = 3 w(n)y(n + mH)e 7", m=0,1,2,... (4.1)
n=0
with
21k
= — k=012 ... N—-1 4.2
W N ) Oa ) 4 ) ( )

where N is the length of the DFT, w(n) is a window function, and H is the hop size or
time advance (in samples) per frame. When N is a power of two, e.g. 1024, each DFT
can be computed efficiently with the FFT algorithm, which is the case in practise.

If o(n) is the output sound of the synthesis model and #(n) is the target sound then the
mean squared error (MSE) (inverse of the fitness) of the candidate solution is calculated
as follows

™~
—

1 -1 N-—

E=g= 15 S (0u(k)] - [Tulk))) (4.3

=0 k=0

3

where Oy, (k) and T,,(k) are the STFT sequences of o(n) and ¢(n) and L is the length of
the sequences m = 0,1,2,..., L — 1. Normalized STFT sequences for two synthesized
tones with different parameter values and the mean squared error surface are shown
in Figure 4.1. The error value E is calculated by summing the frequency and time
components of the surface, for this particular case F = 21.2032. Error values of
various cases are not necessarily comparable because the fitness function is not an
absolute metric but the values depend on the lengths of the analyzed signal and DFT.
Also the coarse normalizing can affect values and a more sophisticated fitting technique
for STFT sequences are required.

4.2 Frequency Masking

The analytical error calculated with Eq.(4.3) is a raw simplification from the viewpoint
of auditory perception. Therefore, an auditory model is required. An important feature
of human hearing is the frequency masking phenomenon, where a low-level signal, e.g,
a pure tone (the maskee) can be made inaudible by simultaneously occuring stronger
signal (the masker), e.g, narrow band noise, if masker and maskee are close enough
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Figure 4.1: STFT sequences for two synthesized tones. (a) Parameter values:
fo,n =331, for =331.5, g =0.99, ap = —0.1, g, = 0.992, a, = —0.2, m,, = 0.5,
me = 0.5, and g. = 0.1. (b) Parameter values: fo5 = 331, fo = 331.7, g5, =
0.985,ap, = —0.12, g, = 0.994, a,, = —0.05, mp = 0.2, m, = 0.8, and g, = 0.4. (c)
Mean squared error surface for the STFT sequences. The error value E = 21.2032.
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to each other in frequency. The masking threshold depends on the sound pressure
level (SPL), the frequency of the masker, and on the characteristics of the masker and
maskee. The masking curves for narrow band noise when the center frequency of the
masker is 250 Hz, 1 kHz or 4 kHz at the SPL of 60 dB are shown in Figure 4.2 (Zwicker
and Zwicker, 1991). As can be seen the slopes are steeper towards lower frequencies,
implying that the higher frequencies are more easily masked.

80
—
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T
o 40
c
o
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o
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Frequency (kHz)

Figure 4.2: The masking curves for narrow band noise when the center frequency
of the masker is 250 Hz, 1 kHz or 4 kHz at the SPL of 60 dB (Karjalainen, 1999).

One possibility to include the frequency masking properties to our model would be to
measure the masking threshold for all partials and ignore the inaudible components
in the error calculation. Such a method has been used to speed up additive synthesis
(Lagrange and Marchand, 2001), data compression of sinusoidal modeling (Garcia and
Pampin, 1999), and perceptual wavetable matching for synthesis of musical instrument
tones (Wun and Horner, 2001; Wun et al., 2001). Partials are first tracked from each
STFT spectrum and a simple masking model, as in Figure 4.3, is used to evaluate the
signal-to-mask ratio (SMR) of each partial (Zwicker and Fastl, 1990). The model where
the masking threshold is considered as a triangle in the Bark scale is an approximation
and the behavior is not exactly realistic especially in the top of the triangle. The model
consists of:

e The difference § between the level of the masker and the masking threshold
(typically -10 dB),
e The masking curve towards lower frequencies, or left slope (typically -27 dB/Bark),

e The masking curve towards higher frequencies, or right slope (typically -15 dB/Bark).

One disadvantage of the method is that it requires peak tracking of partials which is
a time consuming procedure. In this thesis we use a technique which determines the
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Figure 4.3: A sinusoid of frequency fj; masking another sinusoid of frequency fp,.

threshold of masking directly from the STFT sequences. The frequency components
below that threshold are inaudible and therefore they are unnecessary when calculating
the perceptual similarity. This technique proposed by Johnston, while at the Bell
Labs, in (Johnston, 1988b) has been successfully included in an audio coder (Johnston,
1988a) and applied in perceptual error calculation (Garcia, 1998). The technique,also
known as Johnston model, forms a basis to present day audio codecs, for example, the
ISO/IEC MPEG-1 psychoacoustic model 2, which is often used in ".mp3" encoders, is
a close relative to the Johnston’s model (Painter and Spanias, 2000). Masking curve
determination with MPEG-1, psychoacoustic model I (ISO/IEC 11172-3, 1993) is used
for psychoacoustic modeling of audio in (Hermus et al., 2002). Improvement in the
psychoacoustic model is related to the tonality estimation and prediction of individual
frequency components.

4.3 Calculating the Threshold of Masking

The threshold of masking is calculated in several steps:

1. Windowing the signal and calculating STF'T,
2. calculating the power spectrum for each DFT,

3. mapping the frequency scale into the Bark domain and calculating the energy
per critical band,

4. applying the spreading function to the critical band energy spectrum,

5. calculating the spread masking threshold,
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6. calculating the tonality dependant masking threshold,

7. normalizing the raw masking threshold and calculating the absolute threshold of
masking.

First each DFT is converted to the power spectrum

Pr(k) = Re{Tru(k)}* + Im{Tpn(k)}* = |Ton (k). (4.4)

The frequency spectrum is then translated into the Bark scale by using the approxi-
mation (Zwicker and Fastl, 1990)

0.76 f
kHz

(4.5)

2
v = 13 arctan ( 7.5kHz> ,

) + 3.5 arctan (

where f is the frequency in Hertz and v is the mapped frequency in Bark units. The
energy in each critical band is the partial sum

Zn(v)= > Pu(k), v=12,...,N, (4.6)

where By, (v) is the upper boundary of the critical band v, By(v) is the lower boundary
of the critical band v, and N, is the number of critical bands which depends on the
sampling rate. N, is 25 for the sample rate of 44.1 kHz. A power spectrum and
energy per critical band for a 12 ms excerpt from a guitar tone are shown in Figure
4.4(a). The discrete representation of fixed critical bands is a close approximation and
in reality each band builds up around a narrow band excitation. The effect of masking
of each narrow band excitation spreads across all critical bands. This is described by
a spreading function given in (Schroeder et al., 1979)

101ogyg B(v) = 15.91 + 7.5(v + 0.474) — 17.5\/1 + (v + 0.474)2dB. (4.7
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The spreading function is presented in Figure 4.5. The spreading effect is applied by
convolving the critical band energy function with the spreading function (Johnston,
1988h)

Spm(V) = Zn(v) * B(v), (4.8)

where the asterisk corresponds to discrete convolution. Spread energy per critical band
is shown in Figure 4.4(b).

Masking threshold depends on the characteristics of the masker and masked tone. Two
different thresholds are detailed and used in (Johnston, 1988b). For the tone masking
noise the threshold is estimated as 14.5 + v dB below the Sp,,. For noise masking the
tone it is estimated as 5.5 dB below the Sp,. Spectral flatness measure is used to
determine the noiselike or tonelike characteristics of the masker. The spectral flatness
measure V' in decibels is defined as (Johnston, 1988b)

2|~

i)

k=0
1 N-1

that is the ratio of the geometric to the arithmetic mean of the power spectrum. The
tonality factor « is defined with the V;, as follows

Vin
m = i 3 1 ) 4.10
Oy, = Min <melc ) (4.10)
where V.. = —60 dB. That is to say that if the masker signal is entirely tonelike

a = 1, and if the signal is pure noise « = 0. The tonality factor is used to weight
geometrically the two thresholds mentioned above to form the masking energy offset
Upm(v) for each band
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Un(v) = an(14.5 + v) + (1 — o) 5.5. (4.11)

The offset is then subtracted from the spread spectrum to estimate the raw masking
threshold shown in Figure 4.4(c)

Um (v)
10

Rm(V) — 1010g10(5P,m(’/))_ (4.12)

Convolution of the spreading function and the critical band energy function increases
the energy level in each band. Normalization procedure used in (Johnston, 1988b)
takes this into account and divides each component of R(v) by the number of points
in the corresponding band

Qm(v) = (4.13)

where N,(v) is the number of points in each band v. The final threshold of masking
W,(k) is calculated by comparing the normalized threshold to the absolute threshold
of hearing and mapping from Bark to the frequency scale. The most sensitive area in
human hearing is around 4 kHz. If the normalized energy Q,,(v) in any critical band
is lower than the energy in a 4 kHz sinusoidal tone with one bit of dynamic range, it
is changed to the absolute threshold of hearing. This is a simplified method, used in
(Johnston, 1988b), to set the absolute levels and in reality the absolute threshold of
hearing varies with frequency.

An example of the final threshold of masking is shown in Figure 4.4(d). It is seen that
most of the high partials and the background noise at the high frequencies are below
the threshold and thus inaudible.

This is the traditional method for evaluating the auditory masking threshold. More ef-

ficient methods have been reported in the literature as in (Mourjopoulos and Tsoukalas,
1992) where the calculation was performed with neural networks.
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Figure 4.4: Determining the threshold of masking for a 12 ms excerpt from a
recorded guitar tone. Fundamental frequency of the tone is 331 Hz. Power spec-

trum is shown with the solid line in Figures (a)-(d).

Dashed line shows the

calculated threshold. (a) Energy per critical band. (b) Spread energy per critical
band. (c) Raw masking threshold. (d) Final masking threshold.

34



CHAPTER 4. FITNESS CALCULATION

0

-20}
m
=
= 40
o]
2
& -60
<
=

-80}

-1 ‘ ‘ ‘ ‘ ‘
0% -4 -2 0 2 4 6
Bark

Figure 4.5: Spreading function.

4.4 Calculating the Perceptual Error

Perceptual error is calculated in (Garcia, 1998) by weighting the error from Eq. 4.3
with two matrices

1 i T(k) > Win(k)
Wim(k) = {0 otherwise 1y
Wiy = | 1 0n(k) 2 Waa(k) and Tou(k) < Win(k) (4.15)
tm o 0 otherwise .

Matrices are defined such that the full error is calculated for spectral components
which are audible in a recorded tone 7, (k) (that is above the threshold of masking).
Matrix Wy, (k) is used to account for these components. For the components which
are inaudible in a recorded tone but audible in the sound output of the model O,, (k)
the error between the sound output and the threshold of masking is calculated. Matrix
Wim(k) is used to weight these components.

Perceptual error E, is a sum of these two cases. No error is calculated for the compo-
nents which are below the threshold of masking in both sounds. The error calculation
is illustrated in Figure 4.6. The error is calculated according to the shaded area as
follows

e Full error is calculated when Fy < f < Fj or F3 < f < Fy, since T'(k) > W (k)
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e Partial error between the synthesized tone’s spectrum and the threshold of mask-
ing is calculated when F; < f < F, or Fy < f < Fj, since O(k) > W, (k) and
T (k) < Wi (k).

e No error is calculated when F5 < f < F3.

— -srynthaized spectru:(k) 0
. //// //
e -

Figure 4.6: Error is calculated according to the shaded area. Full error is cal-
culated when Fy < f < Fy or F3 < f < Fjy. Partial error is calculated when
F, < f < Fyor Fy < f < Fs. No error is calculated when Fy < f < F3

The sensitivity of the ear varies with the frequency and the quality of the sound. This
phenomena was examined by Fletcher and Munson, who first determined the equal
loudness curves for pure tones (Fletcher and Munson, 1933). Our auditory model
accounts for the frequency dependence of human hearing. This is done by weighting
the error with an inverted equal loudness curve at sound pressure level of 60 dB shown
in Figure 4.7. This is not exactly the case in practice, especially for the very quiet or
loud tones, but it is reasonable for the average listening volumes.

The overall amplitude of STFTs O,, (k) and T, (k) can vary depending on the excitation
signal and the parameter values. However, the aim is to calculate dissimilarities in the
shape of spectra and to find two similarly shaped STFT surfaces. Therefore, the
amplitude of the spectrum of the synthesized tone has to be equalized with the target
spectrum. This is done by multiplying |O,,(k)| with the normalizing gain p which is
defined as follow
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Figure 4.7: The frequency dependant weighting function, which is the inverse of
the equal loudness curve at the SPL of 60 dB.

=0 m=0
p= | 2= (4.16)

Finally, the perceptual error function is evaluated as

By = = X W) X (0100~ [Tl Wy (4)) -
4 [DIOm(R)| — [T ()] W (R, (@17)

where W (k) is the inverted equal loudness curve used to imitate the frequency depen-
dence of human hearing.
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Chapter 5

Implementation

Theory of the synthesis model, genetic algorithms, and fitness calculation are explained
in previous chapters. Operation of genetic algorithms is explained in Chapter 3 and
the fitness function that is used in this thesis is described in Chapter 4. This chapter
is about implementation of the parameter estimation procedure that is founded on the
theory.

At the beginning of this chapter the parameter space is discretized to reduce the number
of possible parameter sets for the model. Results from previous studies are used as a
basis for discretization, but the exact discrimination levels for all parameters have not
been proposed in literature, and therefore the sensitivity of parameters, examined with
the fitness calculation method described in previous chapter, is used as a guideline to
the discretization. Combining the results discrete grids are defined for nine parameters
that are used to control the plucked string synthesis model. In the end of the chapter
the genetic algorithm used for parameter estimation, side effects due to discretization,
and modifications for standard GA operations are explained.

5.1 Discretizing the Parameter Space

The number of data points in the parameter space can be reduced by discretizing the
individual parameters in a perceptually reasonable manner. Range of parameters can
be reduced to cover only all the possible musical tones and deviation steps can be kept
just below the discrimination threshold.
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5.1.1 Decay Parameters

The audibility of variations in decay of the single string model in Figure 2.2 have
been studied in (Jdrveldinen and Tolonen, 2001). Time constant 7 of the overall decay
was used to describe the loop gain parameter g while the frequency dependent decay
was controlled directly by parameter a. Values of 7 and a were varied and relatively
large deviations in parameters were claimed to be inaudible. Jarveldinen and Tolonen
proposed that a variation of the time constant between 75% and 140% of the reference
value can be allowed in most cases. An inaudible variation for the parameter a was
between 83% and 116% of the reference value.

The discrimination thresholds were determined with two different tone durations 0.6
s. and 2.0 s. In our study the judgement of similarity between two tones is done by
comparing the entire signals and therefore the results from (Jarveldinen and Tolonen,
2001) cannot be directly used for parametrization of @ and g. The tolerances are
slightly smaller because the judgement is made based on not only the decay but also
the duration of a tone. Based on our informal listening test and including a margin of
certainty we have defined the variation to be 10% for the 7 and 7% for the parameter
a. The parameters are bounded so that all the playable musical sounds from tightly
damped picks to very slowly decaying notes are possible to produce with the model.
This results in 62 discrete non-uniformly distributed values for g and 75 values for a as
shown in Figures 5.1(a) and 5.1(b). The corresponding amplitude envelopes of tones
with different g parameter are shown in Figure 5.1(c). Loop filter magnitude responses
for varying parameter a with g = 1 are shown in Figure 5.1(d).

5.1.2 Fundamental Frequency and Beating Parameters

The fundamental frequency estimate fo from the calibrator is used as an initial value
for both polarizations. When the fundamental frequencies of two polarizations differ
the frequency estimate settles in the middle of the frequencies as shown in Figure 5.2.
Frequency discrimination thresholds as a function of frequency have been proposed
in (Wier et al., 1977). Also the audibility of beating and amplitude modulation has
been studied in (Zwicker and Fastl, 1990). These results do not give us directly the
discrimination thresholds for the difference in the fundamental frequencies of the two
polarization string model, because the fluctuation strength in a output sound depends
on the fundamental frequencies and the decay parameters g and a.

The sensitivity of parameters can be examined when a synthesized tone with known

parameter values is used as a target tone with which another synthesized tone is com-
pared. Varying one parameter after another and freezing the others we obtain the error
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Figure 5.1: Discretizing the parameters g and a. (a) Discrete values for the pa-
rameter g when fy = 331 and the variation for the time constant 7 is 10%. (b)
Discrete values for the parameter a when the variation is 7%. (c) Amplitude
envelopes of tones with different discrete values of g. (d) Loop filter magnitude
responses for different discrete values of a when g = 1.

as a function of the parameters. In Figure 5.3(a) the target values of f,, and fy ) are
331 and 330 Hz. The solid line shows the error when fy, is linearly swept from 327
to 344 Hz. The global minimum is obviously found when f;, = 331 Hz. Interestingly
another non-zero local minimum is found when f;, = 329 Hz that is when the beating
is similar. The dashed line shows the error when both f;, and f,, are varied but
the difference in the fundamental frequencies is kept constant. It can be seen that the
difference is more dominant than the absolute frequency value and have to be therefore
discretized with higher resolution. Instead of operating the fundamental frequency pa-
rameters directly we optimize the difference d;y = |fy, — fo,n| and the mean frequency
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[ = |foo + fonrl/2 individually. Combining previous results from (Wier et al., 1977)
and (Zwicker and Fastl, 1990) with our informal listening test we have discretized d;
with 100 and f} with 20 discrete values. The range of variation is set as follows

rp = i<ﬁ> " (5.1)

1 ‘ 1 ‘

g ) Y

E ; E N

2 05 | = 0.5 , \

a =i

on N y .

I < / NN

g = S Lo

s 0 = 0 S '

S E -——- 80 Hz

B0 E-0.5 —— 84Hz

Z ‘ --- 80 + 84 Hz A -~ 80+ 84 Hz
1 o Maximum 1 o Maximum
0 001  0.02 003 0.04 0.01  0.011 0.012 0.013 0.014

Time (s) Time (s)

(a) (b)

Figure 5.2: Three autocorrelation functions. Dashed and solid lines show functions
for two single polarization guitar tones with fundamental frequencies of 80 Hz
and 84 Hz. Dash-dotted line corresponds to a dual-polarization guitar tone with
fundamental frequencies of 80 Hz and 84 Hz. (a) Entire autocorrelation function.
(b) Zoomed around the maximum.

5.1.3 Other Parameters

The tolerances for the mixing coefficients m,, m,, and g. have not been studied and
the parameters have been earlier adjusted by trial and error (Laurson et al., 2001).
Therefore, no initial guesses are made for these parameters. The sensitivities for the
mixing coefficients are examined in an example case in Figure 5.4(a) where m, = 0.5
and m, = 0.5. It can be seen that the parameters m, and m, are most sensitive near
the boundaries. The range for m, and m, are discretized according to the hyperbolic
tangent between the range z = [—2, 2] as follows
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Figure 5.3: (a) Error as a function of the fundamental frequencies. The target
values of fo, and fop are 331 Hz and 330 Hz. The solid line shows the error
when fo, = 330 and fo, is linearly swept from 327 to 334 Hz. The dashed
line shows the error when both frequencies are varied simultaneously while the
difference remains similar. (b) Range of variation in fundamental frequency as a
function of frequency estimate from 80 Hz to 1000 Hz.

tanh(z) + tanh(2)
2 tanh(2) ’

z=[2,2] (5.2)

where the range x = [—2, 2] is uniformly sampled with 40 values. The sampling grid
is shown in Figure 5.5(b). The sensitivity for the parameter g, is presented in Figure
5.4(a) where the target value g. = 0.1. To obtain denser distribution near the zero we
use the non-uniform sampling grid with 40 values in Figure 5.5 for the parameter g,
the range of which is limited to 0-0.5.

Discretizing the nine parameters this way results in 2.77 - 10! combinations in total
for a single tone. For an acoustic guitar about 120 tones with different dynamic levels

and playing styles have to be analyzed. It is obvious that an exhaustive search is
impracticable.

5.1.4 Sensitivity of the Fitness Function

Error sensitivities of the mean fundamental frequency f§ and the difference of the
fundamental frequencies dy are shown in Figure 5.3(a). Sensitivities of m,, m,, and g.
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Figure 5.4: (a) Error as a function of the mixing coefficients m,, m,. The target
values my = m, = 0.5. (b) Discrete values for the parameters m, and m,,.

are presented in Figures 5.4(a) and 5.5(a). As can be seen the error curves for ds, m,,
m,, and g, are steep and the optimum can be assumed to be sensitive. The maximum
error varies from 100 to 250, which is noticeably larger than with f]. Error Sensitivities
of parameters g and a are shown in Figure 5.6. The error curves of the parameter g
seems to be even more steeper than the other parameters, implying g to be the most
sensitive parameter. In contrast, the parameter a is noticed to be ten times less sensitive
that the parameter g. The maximum error is about 20, while the maximum error of ¢
is more than 200. Behavior of error is similar although the fundamental frequency is
different. Difference in sensitivity of parameters does not necessarily imply problems
but supposedly the more sensitive parameters converge first while the less sensitive
parameters settle in the later stage of the algorithm. The algorithm is not as stabile
as it could be.

5.2 The Algorithm

A floating point implementation of GA is used with the parameter estimation procedure
in this thesis. The algorithm is implemented as follows:

0. Analyze the recorded tone to be resynthesized using the calibration methods
discussed in Section 2.2.1. The range of the parameter fj is chosen and the
excitation signal is produced according to these results. Calculate the threshold
of masking (Section 4.3) and the discrete scales for the parameters (Section 5.1).
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Figure 5.5: (a) Error as a function of the coupling coefficient g.. The target value
ge = 0.1. (b) Discrete values for the parameter g..

. Initialization: Create a population of S, individuals (chromosomes). Each Chro-
mosome is represented as a vector array £ with nine components (genes) which
contains the actual parameters. The initial parameter values are randomly as-
signed.

. Fitness calculation: Calculate the perceptual fitness for each individual in the

initial population.

Repeat the following steps until termination

Selection of individuals: Select individuals for the mating pool by the normalized
geometric ranking scheme (Section 3.3).

. Crossover: Pick randomly a specified number of parents from selected individuals.

Offspring is produced by crossing the parents with the simple, arithmetical, and
heuristic crossover schemes (Section 3.4.1).

Mutation: Pick randomly a specified number of individuals for mutation. Uni-

form, non-uniform, multi-non-uniform, and boundary mutation schemes are used
(Section 3.4.2).

. Evaluate: Calculate the perceptual fitness for each new individual.

. Replace the current population with the new one.

Floating point representation is used due to its fast operation compared to the binary
based algorithm. Discrete parameter space and floating point numbers might appear to
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Figure 5.6: (a) Error as a function of the loop gain g. The target value g, = 0.984
(b) Error as a function of the frequency dependent loop gain aj. The target value
ap, = —0.3. f{ = 330.5 in both examples.

be a inconsistent combination, because an advantage of floating point representation is
the higher precision of the algorithm. In practise, the precision of an algorithm depends
on the precision used for floating point numbers. However, the algorithm has proven
workable and results have been consistent. Few modifications to the original operators
have been made.

All crossover schemes function with the discrete grid. Simple, arithmetical, and heuris-
tic schemes produce offspring as originally. The only differences compared to true
floating point numbers are that if single parameter values in parents are inside one
discrete step the GA crosses the values over and over without a change in the error
value. This is not a real problem because sooner or later single parameter values will
converge to a single value among a population.

Uniform and boundary mutations operate without modifications. Uniform mutation
operates uniformly over the space regardless of the ration G/N,, which is the ratio of
the current generation to the maximum number of generations. Non-uniform mutation
with original definition becomes inoperative when G /N, approaches number one. At
the later stage of the algorithm average values for f(G) are too small to chance the
parameter values in a discrete grid. Therefore, the minimum value for f(G) is defined
to be 0.05 implying that if the parameter ¢ has the twentieth value in our 40 point
discrete scale the parameter is mutated at least one step. This can be seen in Figure
5.7, which is a modified case of Figure 3.4 in Chapter 3. The curves are forced not to
get values below 0.05.
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fiG)

Figure 5.7: f(G) for four selected moments while b = 2. Minimum value for f(G)
is 0.05.

The boundary mutation sets a parameter to one of its boundaries. It is useful if the
optimal solution is supposed to lie near the boundaries of the parameter space. The
scheme is used in special cases such as with staccato tones. A random number is used
for the arithmetical crossover parameter c.

5.3 STFT

A special Pitch synchronous Fourier transform scheme, where the window length L,
is synchronized with the period length of the signal such that L,, = 4f/fo is utilized
in this thesis. The used Hanning window for L,, points is defined as

w(n) = 0.5(1 - cos (%}Gill)) n=01,2,..., Ly—1 (5.3)

The overlap of the windows is 50%, implying that H = L,,/2. Our sampling rate
fs = 44100 Hz by default and the length of FFT N = 2048. If the window function
has less than N points the signal buffer is padded with zeros to reach the N = 2048.
Care have to taken when the window function has more than N points, in which case
the windowed signal is truncated. L,, > N when f; < 86.13Hz which is valid for the
lowest guitar note. If fj < 90Hz FFT length is changed to N = 4096.
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5.4 Implementation

The block diagram of the parameter estimation scheme is presented in Figure 5.8.
The implementation of the genetic algorithm is based on the Matlab toolbox The Ge-
netic Algorithm Optimization Toolbox (GAOT) for Matlab 5 developed by Houck et
al. (1995), in North Carolina State University. The toolbox is available in the World
Wide Web at http://www.ie.ncsu.edu/mirage/GAToolBox/gaot/. M-files for fit-
ness function calculation, non-uniform, multi-non-uniform mutation, and file handling
properties has been implemented for the GAOT-toolbox, the original routines of which
have been modified slightly.

The fundamental frequency of a recorded target tone is first analyzed in pitch estima-
tion block. The frequency estimate is used to calculate the pitch synchronous STFT
and discrete parameter scales. Originally the pitch estimation and STFT-analysis
blocks were built into the Calibrator, but since the frequency estimate and STFT are
required also elsewhere the operations are performed off-line. Short time spectra are
used to calculate the threshold of masking and the excitation signal is extracted from
the target tone by the Calibrator. Analyzed data are fed into the genetic algorithm,
which estimates a set of parameters.
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Figure 5.8: Block diagram of the parameter estimation procedure
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Chapter 6

Experimentation and Results

In this chapter the efficiency of the proposed method is studied. First the parameters
are estimated for the sound produced by the synthesis model itself. The advantage of
using a synthetic signal as a target tone is the possibility to use predefined parameters.
If the parameters are set according to the discrete grid there will always be a solution
that gives the zero error and exactly reproduces the target tone.

First the same excitation signal extracted from a recorded tone by the method de-
scribed in (Véliméaki and Tolonen, 1998) was used for target and output sounds. A
more realistic case is simulated when the excitation for resynthesis is extracted from
the target sound. Finally, the model was tested with real recorded tones of different
decaying and dynamic characteristics.

The system was implemented with Matlab software for the Microsoft Windows 98

operating system. All runs were performed on an Intel Pentium III computer 833 Hz
with 256 MB of RAM.

6.1 Synthesized Target Tone with an Original
Excitation

Same excitation is used for the target and the synthesized tone in the first experiment.
The parameters for the experiment 1 is set as follows:

Population size S, = 60, number of generations = 400, probability of se-
lecting the best individual ¢ = 0.02, degree of non-uniformity b = 3, retries
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w = 3, number of crossovers = 18, Number of mutations = 18.

The original and the estimated parameters for three runs are shown in Table 6.1. The
execution time for a run was about 5 hours. The exact parameter values are estimated
for the difference d; and for the g, and g, in every run and for the a, in run 1 and run
2. As noted in chapter 2 parameter values can be swapped between two polarizations
if m, = 1 — m,, which is valid for our target values. Therefore, estimated decay
parameters are swapped in run 3 and we get perfect agreement for parameters g, gy,
and a,. Adjacent point in discrete grid is estimated for parameter a; in every run and
for the mean frequency f§ in run three. As can be seen in Figure 5.3(a) the sensitivity
for the mean frequency is negligible compared to the difference d;, which might be the
cause of deviations in mean frequency.

parameter | original estimated | estimated | estimated

parameter | parameter | parameter | parameter
(runl) (run2) (run3)

0 330.5409 | 331.000850 | 330.000850 | 330.6799

dy 0.8987 0.8987 0.8987 0.8987
9n 0.9873 0.9873 0.9873 0.9873
ap -0.2905 -0.3108 -0.3108 -0.3108
Iy 0.9907 0.9907 0.9907 0.9907
y -0.1936 -0.1936 -0.1936 -0.1477
my 0.5 0.2603 0.6024 0.3489
m, 0.5 0.6971 0.3489 0.4483
Je 0.1013 0.2628 0.0612 0.1378
error - 0.0464 0.0465 0.0112

Table 6.1: Experiment 1. Original and estimated parameters when a synthesized
tone with known parameter values are used as a target tone. The original excita-
tion is used for the resynthesis.

A conspicuous feature is the difference in the mixing parameters m,, m, and the cou-
pling coefficient g.. When running the algorithm multiple times no explicit optima for
mixing and coupling parameters were found. However, synthesized tones produced by
corresponding parameter values are indistinguishable. The behavior of two parameters
can be studied by freezing the others and mapping all the points of the space of the two
parameters into the related space of the error values. The resulting surface is called
fitness or error landscape (Press, 1992). Error landscapes for mixing parameters with
different values of g. are shown in Figure 6.1 where the z-axis is reversed, implying
that the minimum error is found in the highest point of an error landscape. Every
other value in the nonlinear grid in Figure 5.5(b) is plotted for mixing parameters,
which means that the actual minimum of an error landscape is not necessarily drawn
in Figure. However, the shape of drawn landscapes are similar with real ones.
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When the coupling path in the model is totally closed (g. = 0) the minimum error
value E = 34.4081 in Figure 6.1(a) is significant. Obviously, when g, = 0.08, which is
the target value, the minimum error is exactly zero as can be seen in Figure 6.1(d).
Interestingly, the smallest error value, found in the intersecting point of two hogbacks,
is very close to zero also in the other cases. In practice, the non-zero error value could
be the consequence of the discrete sampling grid. The zero error might be found in
every case if floating point numbers with sufficient precision were used.

The single requirement for the negligible error seems to be the non-closed coupling path
(gc > 0). Another feature is that the error minimum is shown as a smooth hogback
that rides along an error landscape while g, is varied. This means that almost similar
sounds which are very close to the optimal can be synthesized with various mixing
parameters when g, is fixed. A characteristic that can been noticed in runs one and
two is that almost identical error value is obtained with parameters m, = 0.2603, m, =
0.6971, g. = 0.2628 and m, = 0.6024, m, = 0.3489, g. = 0.0612. With these values we
get quite similar results for coefficients M; and M, at Equation 2.5 but especially the
values of M3 are very close to each other. M3 = 0.028706 in the first and M5 = 0.028338
in the second run. This kind of behavior has been noticed throughout the experiments,
although the run three, which gives the best error value does not follow the trend.
Looking Figure 6.1 verifies the conclusion. When g, is increased the optimal value of
m,, is decreasing and m, is increasing.

However, it is obvious that the parameters m,, m, and g. are not orthogonal which
is clearly a problem with the model and also impairs efficiency of our parameter esti-
mation algorithm. The implementation of the coupling effect and beating should be
reconsidered in future.

Rather than look into the exact parameter values it is better to analyze the quality of
the tones produced with the parameters. In Figures 6.2 and 6.3 time domain envelopes
and the eight first partials for the synthesized target tone with known parameter values
and for the synthesized tones that uses estimated parameter values according to Table
6.1 are presented. As can be seen the envelopes are exactly similar and the partial en-
velopes match well. Only negligible dissimilarities can be noticed in beating amplitude
in time domain, where the small dip in approximately 0.3 seconds from beginning of
the tone is slightly deeper in estimated tones. According to our informal listening the
variations in tones are inaudible.
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(b) g. = 0.0013, minimum error £ = 0.0933
at m, = 0.9780 and m, = 0.0089.

LTSS

(d) g. = 0.0800, minimum error E = 0 at
mp = 0.5 and m, = 0.5.

(e) g. = 0.3200, minimum error E = 0.0436

at m, = 0.1556 and m, = 0.6971.

(f) g. = 1, minimum error E = 0.0090 at
myp = 0.1050 and m, = 0.7785.

Figure 6.1: Error landscapes for parameters m, and m, with different values of g..
Z-axis is reversed and the grid for mixing parameters accords to the discretizing
scheme in Figure 5.5(b). Target values 8, = 0.5, m, = 0.5, and g, = 0.08. Other
parameters fy; = 330.5, dy = 0.8986, g, = 0.9925, a;, = —0.2071, g, = 0.9873,

a, = —0.2715.
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Figure 6.2: Time domain analysis for the synthesized tones according to experi-
ment 1 in Table 6.1. Original excitation is used for the resynthesis. (a) Target
tone. (b) Estimated tone, run 1, Error = 0.0465. (c) Estimated tone, run 2, Error
= 0.0123. (d) Estimated tone, run 3, Error = 0.0232.
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(d) Eight first partials for the estimated tone

(c) Eight first partials for the estimated tone
with parameter values according to the run

with parameter values according to the run
2 in Table 6.1. 3 in Table 6.1.

Figure 6.3: Frequency analysis for the synthesized tones according to experiment
1 Table 6.1. Original excitation is used for the resynthesis. Eight first partials
for the tones are presented. (a) Target tone. (b) Estimated tone, run 1, Error =
0.0465. (c) Estimated tone, run 2, Error = 0.0123. (d) Estimated tone, run 3,

Error = 0.0232.

The convergence of error for three runs in experiment 1 is shown in Figure 6.4. Error
minimum is found in generation 197 in run one, 281 in run two, and 164 in run three.
Convergence in runs one and two are quite similar implying the particular minima to
be smooth. Three additional runs confirms that a strong local minimum according to
first six parameters is found in run one and two. The error value in confirm runs settles
in 0.0461 — 0.0468. Error value in run three is better than earlier and steep drops in
Figure 6.4(c) implies better convergence, but the minimum is harder to obtain with
additional runs. It can be assumed that the minimum is non smooth.
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Figure 6.4: Convergence of error in experiment 1. (a) Run 1. (b) Run 2. (¢) Run
3.

Although we can estimate parameters which produce tones that are indistinguishable
from the target one, the unpunctuality in values indicates that our parameter estima-
tion procedure operates incompletely. Theoretically, the exact parameter values should
be found with the method. GAs has been reported to have disadvantages related to
the precision of the final solution. Parallelism of GA ensures effective global search,
but as shown by many researchers, GA performs poorly in a localized search (Bersini
and Renders, 1994; Houck et al., 1996; Mitchell, 1998). The performance of GA can be
enhanced with various localized optimizing methods that start from the point that has
been determined by GA as optimal. In our case the non-orthogonality of parameters
makes the task even more difficult, since various negligible small error minimums can
be found over the parameter space. To overcome the non-orthogonality problem we
have run the algorithm with constant values of m, and m,. The algorithm parameters
for the experiment 2 are set as in previous experiment. We have used two different
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model parameter settings for the target tone:

1. Parameters are set according to discrete grid, and so zero error is possible with
the exact parameter values

2. Parameter values lie between two discrete values just slightly off the midpoint.

Mixing parameters are fixed as m, = m, = 0.5 and parameter g, is to be estimated.
Results are shown in Table 6.2. The exact parameters are estimated in run 1 and error
Apart
from the fact that the parameter values are estimated precisely, the convergence of

is obviously zero. The error convergence of run 1 is shown in Figure 6.5(a).

the algorithm is very fast. Zero error is found already in generation 87. Running the
algorithm multiple times ensures the fast convergence. We rerun the algorithm two
times and zero error was found in generations 104 and 88. Convergence of run 2 is also
fast as can be seen in Figure 6.5(b), where the minimum is found in generation 77.
The nearest points in the discrete scales are estimated for the fj, df, g., and the decay
parameters gy, g,, and ay,. Decay parameters are swapped between the polarizations,
but as mentioned it is the feature of the model, when m, = 1—m,. Optimal error value
0.1971 is more than four times higher than in experiment 1, where the target parameter
values match better the discrete grid. As discussed in Section 5.1.4 parameters d; and
g are much more sensitive than parameter a. This might be the reason for the slight
deviation in frequency dependant gain a,. Dominant error due to differences in dy and
g is reduced by adjusting the unsensitive parameter ay. If aj is chanced next to the
target value, the agreement of parameters is best possible, but the resulting error value
0.3765 is twice as high than in the estimated case. This supports the conclusion above.

parameter | original estimated | original estimated
parameter | parameter | parameter | parameter
(runl) (runl) (run2) (run2)
0 330.5 330.5 330.599 330.6139
dy 0.8987 0.8987 0.962 1.0272
gn 0.9873 0.9873 0.9865 0.9916
ap -0.2905 -0.2905 -0.3006 -0.1936
o 0.9907 0.9907 0.9911 0.9859
Qy -0.1936 -0.1936 -0.1873 -0.2537
ge 0.1013 0.1013 0.096 0.1013
error - 0 - 0.1971

Table 6.2: Experiment 2. Original and estimated parameters when a synthesized
tone with known parameter values are used as a target tone. The original and
the extracted excitation is used for the resynthesis.
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Figure 6.5: Convergence of error in experiment 2. (a) Run 1. (b) Run 2.

The convergence of the parameters for second experiment’s run number one is shown
in Figure 6.6. The most dominant parameters are difference dy and overall decay
parameters g, and g,, which converge first while other parameters keeps vibrating and
settle in the later stage of the algorithm.
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Figure 6.6: Convergence of the parameters for the first 150 generations of experi-

ment 2 in Table 6.2. An original excitation is used for the resynthesis. (a) fj. (b)
dg. (c) gn and g,. (d) ap and a,. (e) ge.
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6.2 Synthesized Target Tone with an Extracted
Excitation

In the third experiment an excitation that is extracted from a target tone is used for
the resynthesis. The parameters for the algorithm is set as follows:

Population size S, = 60, number of generations = 500, probability of se-
lecting the best individual ¢ = 0.01, degree of non-uniformity b = 3, retries
w = 3, number of crossovers = 18, Number of mutations = 18.

The original and the estimated parameters for three runs are shown in Table 6.3.

parameter | original estimated | estimated | estimated

parameter | parameter | parameter | parameter
(runl) (run2) (run3)

0 330.5409 | 331.00085 | 330.51935 | 331.00085
dy 0.8986 0.8986 0.8986 0.8986
gn 0.9873 0.9907 0.9907 0.9907
ap, -0.2905 -0.2071 -0.1809 -0.1936
G 0.9907 0.9873 0.9873 0.9873
Qy -0.1936 -0.1290 -0.0920 -0.1290
my 0.5 1.0000 0.6971 0.9324
my 0.5 0.8715 0.8135 0.6511
Je 0.1013 0.2450 0.1800 0.0703
error - 0.4131 0.4657 0.4283

Table 6.3: Original and estimated parameters when a synthesized tone with known
parameter values are used as a target tone. An extracted excitation is used for
the resynthesis.

Similar behavior is noticed when an extracted excitation is used. The difference is
estimated precisely and only a small variation in the mean frequency can be noticed.
If the decay parameters are swapped we ge exact match for the g, and g,. Parameters
my, M, and g, drifts as in experiment one. Interestingly, the m, = 1 in the first run and
close to one in third run, which means that the straight path to vertical polarization is
totally or nearly closed. The model is, in a manner of speaking, rearranged such a way
that the individual string models are in series as opposed to the original construction
where the polarization are arranged in parallel.

We can again look at the envelopes and partial envelopes of the tones in Figure 6.7 and

6.8. Envelopes are almost identical. Only slight inaudible dissimilarity in the beating
amplitude in partials can be noticed.
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Figure 6.7: Time domain analysis for the synthesized tones according to exper-
iment 3 in Table 6.3. An extracted excitation is used for the resynthesis. (a)
Target tone. (b) Estimated tone, run 1, Error = 0.4131. (c) Estimated tone, run
2, Error = 0.4657. (d) Estimated tone, run 3, Error = 0.4283.
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Figure 6.8: Frequency analysis for the synthesized tones according to experiment
1 Table 6.1. An extracted excitation is used for the resynthesis. Eight first
partials for the tones are presented. (a) Target tone. (b) Estimated tone, run 1,
Error = 0.4131. (c) Estimated tone, run 2, Error = 0.4657. (d) Estimated tone,
run 3, Error = 0.4283.

Unlike in the previous experiments the exact parameter values are not so relevant
since different excitation signals are used for the target and estimated tones. The
initial energy of each partial differs subtly resulting to amplitude envelopes of partials.
When used identical parameters and extracted excitation gives 1.6889 error that is
four times higher than in experiment three, implying that the error minimum is not
found anymore with the target parameters values. Eight first partials for two tones
using similar parameter settings and different excitation signals is shown in Figure 6.9.
Better agreement in partial envelopes can be obtained with parameters estimated in
experiment three. Mixing gains, coupling coefficient and parameters a, and a, are
adjusted differently to target values to decrease the error. Fixing m, = m, = 0.5 as in
experiment two does not improve the convergence nor the error value. Three additional
algorithm runs with mixing parameter fixed gave error values between 0.6779 and
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0.6501, implying that the power of the model is slightly lost when mixing parameters
are constant. Better results are obtained if input mixing coefficient m,, is constant and
m, is estimated. Fixing m, = 1 gives error 0.4130 in generation 345 and m, = 0.5
gives error 0.4275 in generation 322. Similar results are obtained with multiple runs,
indicating better stability of the algorithm and higher orthogonality of parameters.
Another question is that which would be the best value for m, and if the power of
expression of the model is limited critically with the particular value in a real case.

Amplitude (dB)

Figure 6.9: Eight first partials for two tones using similar parameter settings and
different excitation signals. Solid line shows the partials when the original excita-
tion is used. Dashed line shows the partials when the excitation signal is extracted
from the target sound.

The convergence of the error of the third experiment is shown in Figure 6.10 and the
convergence of the parameters run for the run number one is shown in Figure 6.11.
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Figure 6.10: Convergence of error in experiment 3. (a) Run 1. (b) Run 2. (c)
Run 3.

6.3 Recorded Target Tone

Our estimation method is designed to use with real recorded tones. We ha test our
system with four tones with fundamental frequencies ~ 330 Hz, 196.5 Hz, 145 Hgz,
and 82.5 Hz. Time and frequency analysis for such cases are shown in Figures 6.12,
6.13, 6.14,and 6.15. When f0 = 330 the envelope and the partials for a recorded
tone are very similar with those that are analyzed from a tone that uses estimated
parameter values. When looking at the partials of three other cases we can say that
the time domain envelopes are very much alike, so the original and synthesized tones
are decayed similarly. In Figure 6.15 we can see that the original tone has strong
beating in its seventh partial. In the synthesized tone the initial amplitudes and the
overall decay characteristics of the partials are similar. Slight beating can be noticed
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Figure 6.11: Convergence of the parameters of the experiment 3 in Table 6.3 500
generations are produced and the synthesized excitation is used for the resynthesis.

(a) f§. (b) dy. (c) gn and gy. (d) ap, and a,. (€) mp, m, and ge.
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in all 8 partials which results in the same kind of two stage decay in the time domain
envelope.

Appraisal of the perceptual quality of synthesized tones is left as a future project but
our informal listening indicates that the quality is comparable or better than with
our previous methods and it does not require any hand tuning after the estimation
procedure. Sound clips demonstrating these experiments are available in the World
Wide Web at http://www.acoustics.hut.fi/publications/papers/jasp-ga/.
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Figure 6.12: Time and frequency analysis for a recorded tone and for a synthesized
tone that uses estimated parameter values. Extracted excitation is used for the
resynthesis. Estimated parameter values are fj = 331.1044, d;y = 1.1558, g5 =
0.9762, a;, = —0.4991, g, = 0.9925, a, = —0.0751, m, = 0.1865, m, = 0.7397,
and g, = 0.1250. (a) Time domain envelope of a recorded tone. (b) 8 first partials
of a recorded tone. (c) Envelope of an estimated tone. (d) 8 first partials of an

estimated tone.
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Figure 6.13: Time and frequency analysis for a recorded tone and for a synthesized
tone that uses estimated parameter values. Extracted excitation is used for the
resynthesis. Estimated parameter values are fy = 197.86765, df = 2.6985, g, =
0.9763, ap, = —0.0054, g, = 0.9762, a, = —0.7000, m, = 0.7397, m, = 0.4483,
and g. = 0.0378. (a) Time domain envelope of a recorded tone. (b) 8 first partials
of a recorded tone. (c) Envelope of an estimated tone. (d) 8 first partials of an

estimated tone.
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Figure 6.14: Time and frequency analysis for a recorded tone and for a synthesized
tone that uses estimated parameter values. Extracted excitation is used for the
resynthesis. Estimated parameter values are f; = 146.16, df = 0.3916, g, =
0.9957, ap, = —0.1127, g, = 0.9831, a, = —0.7000, m, = 0.3489, m, = 0.94693,
and g. = 0.0903. (a) Time domain envelope of a recorded tone. (b) 8 first partials
of a recorded tone. (c) Envelope of an estimated tone. (d) 8 first partials of an

estimated tone.

68



CHAPTER 6. EXPERIMENTATION AND RESULTS

[}
e
=S5
i
'_Q“ ~~
m
% :
el
E &
g_ £
g 0.5 =
Z.
-1 : : :
0 1 2 3 4
Time (s)
(a)
[}
e
=}
i
'_Q“ ~~
m
% :
el
E &
£_ £
5 0.5 =
Z.
-1 : : :
0 1 2 3 4

Time (s)

(c) (d)

Figure 6.15: Time and frequency analysis for a recorded tone and for a synthesized
tone that uses estimated parameter values. Extracted excitation is used for the
resynthesis. Estimated parameter values are fj = 81.9445, dy = 0.2423, g, =
0.9915, ap, = —0.2371, g, = 0.9883, a, = —0.7000, m, = 0.8715, m, = 0.2215,
and g, = 0.0050. (a) Time domain envelope of a recorded tone. (b) 8 first partials
of a recorded tone. (c) Envelope of an estimated tone. (d) 8 first partials of an

estimated tone.
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Chapter 7

Conclusions and Future Work

In this thesis, a procedure for estimating the parameters of a plucked string synthesis
algorithm is studied and designed. The procedure is based on a genetic algorithm.
Different genetic operators and methods are first surveyed and a suitable algorithm for
our purposes is designed.

Genetic algorithm is a universal optimizing tool, which is well suited to our problem.
The most important question is the fitness calculation. How to rank sounds? Employ-
ing the knowledge of properties of the human auditory system, a psychoacoustic model
for fitness calculation is designed. The frequency-dependent sensitivity and frequency
masking of human hearing are taken into account in the model. In addition, the pa-
rameter space is discretized in a perceptually reasonable manner. The non-uniform
discrete sampling grid for all parameters is designed based on former research results,
experiments on parameter sensitivity, and informal listening.

The estimation method is designed for use in natural-sounding synthesis of various
string instruments. All these instruments have their own sound characteristics that
have to be included in synthesized tones by defining correct parameter values. In
previous methods some parameters have had to be fine-tuned manually by an expert
user. This has been a clear disadvantage. The objective of this work was to create
a fully automated method for parameter estimation and to improve the quality of
previous methods. These two goals were reached, but also more supplementary studies
have to be carried out in the future.

The system has been tested with both synthetic and real recordings. When using syn-
thetic tones as target tones we are able to evaluate the parameter estimation procedure
since the target values of parameters are known. This parameter set exactly reproduces
the target tone and therefore gives zero error when analyzed with the error calculation
function. In practice the zero error cannot be reached if some of the target values are
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not adjusted with the discrete grid. The method has been tested with two choices of
excitation signals for the plucked string synthesis model. A parameter set with zero er-
ror (if target values are adjusted with the grid) or negligible error can be found in both
cases. Original and synthesized tones are indistinguishable. The estimation method
is designed to use with real recording. Since there are no known correct parameter
values, the quality of the estimation method is evaluated by comparing the target and
synthesized tones. This is carried out in time and frequency domain by examining the
time domain envelopes and partial envelopes of the tones. The estimation procedure
works great with simple tones that is when all the partials behave similarly. The pro-
cedure also works with complex tones, where individual partials may have dissimilar
behavior. Although the result is not exactly identical with the target tone the synthe-
sized tones sound realistic. The implementation of the parameter estimation method
and the results of our studies have been published in the references (Riionheimo and
Viliméki, 2002) and (Riionheimo and Véliméki, 2003).

Perceptual quality of resynthesis is difficult to measure. An accurate way to measure the
sound quality would be to carry out listening tests with trained participants. Appraisal
of synthetic tones that use parameter values from the proposed GA-based method is
left as a future project. More perceptual studies has to be carried out and better
auditory models for the fitness calculation have to be designed.
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