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Mobile computing devices have great current and future potential in new audio 
processing applications. The Entertainment Audio Platform is a software package 
that enables such applications. This thesis describes the design and implementation 
of the methods required for automated testing of mixing, sampling rate conversion, 
and dynamic range controller functionality of the software.  

Literature from both software and conventional audio testing is reviewed in the 
thesis, and relevant methods are selected for the task at hand. Test automation, 
widely described in the software engineering field, is applied to testing audio 
processing functionality. Especially, equivalence partitioning is applied to the case 
selection problem and test oracles are used for automated verification. Various 
signal analysis methods are used from the audio engineering field. Among others, 
the coherent sampling method is used for maximizing the measurement accuracy. 

Testing is designed as system-level, or end-to-end testing using the application 
programming interface of the platform. This means that the individual algorithms 
operate in their natural context. In addition, testing is parameterized in order to 
allow flexible and extensive test case definition with moderate effort needed to set 
up the tests. This poses requirements on the implementation of the analysis 
functionality used in testing. 

This thesis brings together testing methodologies from both software and audio 
engineering fields. As the main result, the thesis presents methods and 
implementations required in automated audio software testing. 

Keywords: audio software, audio measurement technique, automated testing, black-
box testing  
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Mobiililaitteilla on suuri nykyinen ja tuleva potentiaali uudenlaisille äänenkäsittely-
sovelluksille. Entertainment Audio Platform on ohjelmistoalusta, joka mahdollistaa 
tämän tapaiset sovellukset. Tämä työ käsittelee menetelmiä, joita vaaditaan 
äänimiksauksen ohjauksen, näytetaajuusmuunnosten sekä signaalin dynamiikan 
kontrolloijan automatisoidussa testauksessa. 

Työssä perehdytään kirjallisuuden avulla sekä ohjelmistojen että perinteisten audio-
laitteiden testaukseen. Kirjallisuudesta poimitaan sopivia menetelmiä kuhunkin 
tehtävään. Testauksen automatisointia, jota on käsitelty laajasti ohjelmisto-
tekniikassa, sovelletaan audiokäsittelytoiminnallisuuden testaamiseen. Erityisesti 
syöte- ja tulosarvojen ekvivalenssiluokittelua sovelletaan testitapausten valinnassa, 
sekä testioraakkeleja käytetään järjestelmän ulostulosignaalien tarkastuksen 
automatisointiin. Audiotekniikan alalta sovelletaan useita signaalin analysointi-
menetelmiä. Muun muassa koherenttia näytteistystä käytetään parhaan mittaustark-
kuuden saavuttamiseksi. 

Testaus on suunniteltu tehtäväksi järjestelmätasolla läpi koko järjestelmän käyttäen 
alustan tarjoamaa  sovellusohjelmointirajapintaa. Tällöin yksittäiset algoritmit 
toimivat lopullisessa yhteydessään. Lisäksi testaus on parametrisoitu, jotta 
mahdollistetaan joustava ja kattava testitapausten määrittely kohtuullisella vaivalla. 
Tämä asettaa vaatimuksia testin analysointitoiminnallisuuden toteutukselle. 

Työ kokoaa sekä ohjelmistotekniikan että audiotekniikan metodiikkaa. Päätulok-
sena esitetään menetelmät ja käytännön toteutukset, joita tarvitaan audio-
ohjelmistojen automatisoidussa testauksessa. 

Avainsanat: audio-ohjelmistot, audiomittaustekniikka, automatisoitu testaus, 
mustalaatikkotestaus  
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Chapter 1  
 
Introduction 

The interest in audio features of mobile phones has increased in recent years. It was 
not long ago when ring tones, in addition to speech, were the only sounds heard from 
a mobile phone. Today, playback of high quality audio is available in the latest 
models from several manufacturers. However, few have heard, e.g., music played 
simultaneously with a ring tone. Reason for that might be that the devices have been 
lacking audio mixing — functionality obviously found in every personal computer 
(PC). One can foresee similar entertainment audio capabilities that are commonplace 
in PC environment today, appear in mobile devices in the near future. A candidate 
that enables such functionalities is Entertainment Audio Platform (EAP) developed 
at Nokia Research Center. 

The purpose of this work is to design and implement automated tests for some of the 
core functionalities in EAP. The motivation for automated testing comes from the 
fact that manual testing takes a lot of time. Those familiar with software 
development know that development usually takes place in multiple phases, i.e., 
releases, and is iterative in nature. Each release typically has a set of new features 
and a set of revisited or optimized versions of the old functionality. The new 
functionality obviously requires new tests. Can we trust that the old functionality also 
works correctly? Obviously, it must be tested again. Thus, the testing need increases 
continuously with new functionalities. If testing is automated, the time needed for 
testing a given functionality during the whole development process is essentially the 
time needed to implement the tests for it.  

Test automation starts to be commonplace in software development. However, it is 
difficult to find references where it is applied to audio testing. It might be explained 
with an observation made in this work that audio test automation does not require 
dedicated methodology. It can be achieved by combining existing methods from both 
engineering fields. 
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It should be noted at this point, that the results of this thesis are not in measuring the 
performance of the EAP platform but in developing the methods required for 
automated testing of its functionality.  

The outline of this thesis is as follows. In Chapter 2, the tested audio processing 
functionalities of EAP are introduced and the necessary theoretical background 
required in designing the tests is studied. In addition, a slightly more comprehensive 
review of the operation and applications of audio mixing, sampling rate conversions, 
and dynamic range compression is presented. In Chapter 3, the methodology used in 
software testing is reviewed. Chapter 4 presents existing audio testing methodology 
and describes how testing automation can be applied in audio software testing. In 
Chapter 5, the theory of audio signal analysis that is needed in the practical test 
measurements is studied. In addition to the review of the existing methods, a new 
technique is proposed for sampling rate converter measurements. Chapter 6 describes 
author’s own work in the test design and implementation of test cases. Chapter 7 
concludes the thesis. 
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Chapter 2  
 
Overview of the system under test 

The system under test (SUT) is the Entertainment Audio Platform (EAP), an audio 
processing software platform developed at Nokia Research Center. The system 
features a configurable software framework for running various audio signal 
processing components. The main functionality of the system is interactive mixing of 
audio with the support for several input sampling rates. In addition, EAP supports 
various audio effects.  

The targeted use case of EAP is a system master mixer as a part of an operating 
system, providing the system with mixing of audio streams from several applications 
to a single stream that is fed to the audio device. Applications using the system mixer 
services are, e.g., games, interactive music players, and web browsers with 
Synchronized Multimedia Integration Language (SMIL) support. As any software 
platform, EAP provides its clients with a high-level application programming 
interface (API). The interface provides an access to audio resources, essentially 
feeding the audio data to the system and for controlling the processing.  

In the following sections, EAP core functionalities and the corresponding algorithms 
are described. The EAP software architecture is not presented in this thesis and the 
internal software modules are covered only in detail that is required in test case 
design. Actually, considering the chosen testing strategy, detailed information of 
software internals is not even needed. This will be justified in more detail in Chapter 
3.  

2.1 General concepts 

The audio data flow, which feeds the mixers and on the other hand is the output of a 
mixer, is called an audio stream. A stream consists of one or more audio channels. 
Each channel is able to transfer spatially monophonic sound. As a distinction from 
Musical Instrument Digital Interface (MIDI) channels, a single audio channel can 
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contain more than one type of sound. However, once two or more sounds are mixed 
into a single channel, it is generally not possible to separate them.  

The definition of stream includes an assumption that an entire audio file is not loaded 
in the device memory in any phase but the data is processed as it becomes available. 
The stream may originate from a local file or another system. In addition, the source 
that generates the stream or its intermediate data format is not specified. It can be a 
natural or synthetic source and the data can be in compressed or uncompressed 
format. The only assumption is that the stream is brought to digital sampled (16-bit 
pulse code modulated) audio prior to feeding it to the system. EAP is targeted for 
generic audio processing. In the audio signal processing sense, this means that no 
assumptions can be made of the characteristics of the signal. Finally, as is the case 
with any mixing console, EAP is only responsible for processing the audio data and 
sending it to the audio device, not actually generating it.  

2.2 Mixer 

Interactive audio mixing is the most essential functionality of the EAP audio engine. 
The mixer supports several controls that can be applied in real time during the 
mixing. The logical structure of a stereo mixer is illustrated in Figure 2.1. The input 
stream of the mixer contains N audio channels. Output of a stereo mixer always has 
two channels. There are three controls available for each channel of an input stream: 
level, muting and panning. These input stream specific channel controls are applied 
independently of other channels. In addition to the channel controls, there are 
equivalent stream controls for the down-mixed stereo signal.  
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2.2.1 Signal mixing 
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Figure 2.1: Logical structure of an N-input stereo mixer with independent channel 
controls and separate controls for mixed down stereo signal. 

Mixing two or more signals together is a linear operation. The simplest case, mixing 
of two signals, can be illustrated with a circuit of Figure 2.2. Input signals  and  
are first multiplied by independent gain coefficients  and , and then summed 
together. In general, the output of the mixer can be written as 

1x 2x
1g 2g

[ ] [ ],
1

∑
=

=
N

i
ii nxgny                        (2.1) 

where N is the number of input signals. Setting one of the gain coefficients equal to 
zero, implements muting for the corresponding input signal.  

g1

x1[n]

g2

x2[n]

y[n]

 
Figure 2.2: Circuit for mixing two signals. 
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2.2.2 Panning 

As monophonic channels are brought to a stereo mixer, they can be distributed into 
particular positions in the stereo image. Traditionally, this has been done with a 
simple electronic circuit called panoramic potentiometer or panpot (Nisbett, 1979, p. 
72). In panning, the signal from a mono channel is divided into the left and right 
channels of a stereo output. The gain proportion between the left and right channel 
signals determines the location of the source in the final stereo image. Usually, the 
user desires that the overall level is kept constant when the image of the source is 
moved from one position to another. The most standard panning rule for stereo 
loudspeaker reproduction is the equal power panning law (DLS-2, 1999, p. 22). If the 
desired panning is P and it is normalized to interval [–1.0, +1.0], where –1.0 
represents far left panning and +1.0 far right, equations 

( )
( 4/)1(sin

4/)1(cos
+= )
+=

Pg
Pg

R

L

π
π

                                                   (2.2) 

give linear left and right channel gains, respectively. Equal power panning law is also 
known as trigonometric panning law, as it weights the channel gains with 
trigonometric functions.  

The panning law currently used in EAP is what could be called a “linear panning 
law.” It is used because it seems to work well for headphone playback. Using the 
same notation and normalization as in equation (2.2), the linear gains are given by 

2/2/1
2/2/1

Pg
Pg

R

L

+=
−=

                                                            (2.3) 

Equal power panning law and linear panning law are illustrated in Figure 2.3. 

Default panning for a channel is in the center (P = 0). Left and right channel gains of 
equation (2.3) are equal and thus the source appears in the middle of the stereo 
image. In case of linear panning law, both gains are 0.5. Consequently, the amplitude 
of a monophonic signal is halved in panning. This feature has its implications in 
testing. The two-channel input stream is handled as a special case. To preserve the 
original stereophonic image, the first channel of a stereo stream is panned to the far 
left and the second channel to the right. 
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Figure 2.3: a) Equal power panning law and b) linear panning law. 

2.2.3 Stream controls 

When all channel specific controls have been applied and the two-channel output has 
been formed, channels are mixed down. For the panning to be retained as desired, 
left and right channels of each panpot are mixed to the left and right output channels, 
respectively.  

After that, the controls that are specific to the down-mixed stereo signal are applied. 
The stream controls are otherwise equivalent to the channel controls but instead of 
panning, a balance control is used for adjusting the level balance between final left 
and right outputs. The balance curves are slightly different from the ones used in 
panning. If balance setting is at center, both gains equal one. When it is adjusted 
towards one of the ends, the gain of the opposite output channel is decreased 
similarly as in panning but the gain of the other channel is kept constant. 

2.2.4 Gain interpolations 

All controls except muting are applied with smooth level interpolation, or fade, from 
the current value to a new value with a desired transition duration. For muting, long 
fade is usually not desirable, thus only a very short fixed transition is used to prevent 
discontinuities when the muting setting is changed. To produce a smooth level 
transition, a gain signal generator is needed. There are three signal generators for 
each input channel of a mixer. An exponential signal source is used to implement the 
level interpolations as linear fades on dB scale. For the pan and balance fades, one 
linear signal generator is needed for both output channels. Together they provide the 
two gains of equation (2.3) that mix the input channel to the left and right output. 

2.2.5 Discussion 

What was presented above, and is used in EAP, is traditional stereo mixing. It would 
be quite straightforward to generalize the functionality to multi-channel mixers that 
rely on amplitude mixing. Essentially, the only difference is the greater number of 
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output channels and thus panning and balance controls with higher degrees of 
freedom. Examples of speaker-systems that take advantage of multi-channel mixing 
are a 5.1-system and Ambisonic (Leese, 1998).  

Another, more recently introduced system designed for reproduction of surround-
sound is Vector Base Amplitude Panning (VBAP). It allows an arbitrary placement 
of virtual source on an active triangle spanned by the three loudspeakers that are 
nearest to it (Pulkki, 1997). An advantage of VBAP over Ambisonic system is that it 
more easily suits arbitrary loudspeaker configurations. 

2.3 Sampling Rate Conversions 

As the input streams for the mixer may originate from various sources, it is 
reasonable that they may have different sampling rates. Before two streams can be 
mixed together, they have to have a common sampling rate. EAP supports several 
input sampling rates. The first family of converters is: 8 to 48 kHz, 16 to 48 kHz, 24 
kHz to 48 kHz, and 32 to 48 kHz. As the greatest common factor is eight, they are 
called the 8-kHz family of converters. In addition, the following conversions are 
supported: 11.025 to 48 kHz, 22.05 to 48 kHz, and 44.1 to 48 kHz. They are called 
the 44.1-kHz family of converters as the sampling rate conversion is implemented in 
several stages where the last stage is always a conversion from 44.1 kHz to 48 kHz. 

A procedure that brings sampling rate of a signal to a different rate is called sampling 
rate conversion (SRC). If the sampling rate is increased, the procedure is called 
upsampling. In case the sampling rate is decreased, it is called downsampling. There 
are several methods available for the conversions. The basic operations are 
interpolation and decimation (Oppenheim et al., 1999). Combining interpolation and 
decimation is a classical approach for conversions by a non-integer factor. Before 
reviewing the basic operations and conversion by a rational factor, an analog 
interpretation of sampling rate conversion is studied. Unless otherwise stated, the 
theory of operation is after Oppenheim et al. (pp. 150-178, 1999). 

2.3.1 Analog interpretation 

Sampling of continuous-time signal  is a periodic operation that results in a 
sequence of samples  

)(txc

[ ] )(nTxnx c= ,  ∞<<∞− n                           (2.4) 

where T is the sampling interval and its reciprocal, TFS /1= , is the sampling 
frequency. Signal x[n] is a discrete-time representation of , i.e., it exists only for 
the integer multiples of T. As human beings are not able to receive discrete-time 
signals, it has to be converted back to continuous-time signal in the end. For the 
reconstruction of the continuous-time signal to be unique,  has to be 
bandlimited to , i.e., Nyquist frequency before sampling. This condition is a 

)(txc

)(txc

2/SF±
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straight implication of Nyquist-Shannon’s sampling theorem and it is assumed from 
now on.  

If one wants to change the sampling rate of x[n], essentially the task is to find a new 
discrete-time representation of the underlying continuous-time signal of the form  

[ ] )'(' nTxnx c= ,                       (2.5) 

where sampling period TT ≠'  (Oppenheim et al., 1999). The most intuitive approach 
to obtain  from [ ]nx' [ ]nx  is to reconstruct the continuous-time signal  via 
discrete-to-continuous time (D/C) conversion and then resample it with the new 
sampling period T’, i.e., perform continuous-to-discrete time (C/D) conversion

)(txc

1. 
However, this is impractical for the purpose.  

It is not necessary that [ ]nx  be obtained directly by sampling the continuous-time 
signal. Nyquist-Shannon’s sampling theorem guarantees that the underlying 
continuous time signal  can be uniquely reconstructed from the discrete time 
signal via  

)(ˆ txc

[ ] ,)(ˆ ∑
∞

−∞=

−=
n

c nTthnxx                        (2.6) 

where 

=)(th sinc( )tFS
( )

tF
tF

S

S

π
πsin

= .                       (2.7) 

Equation (2.6) is a convolution of the input signal and the impulse response of an 
ideal lowpass filter and this reconstruction operation is called bandlimited 
interpolation (Smith and Gossett, 1984; Smith, 2004a). 

2.3.2 Interpolation 

In interpolation, the sampling rate of a signal is increased by an integer factor L. For 
example, in case of a conversion from 16 kHz to 48 kHz L equals three. If [ ]nx  
represents the input signal, the output is given by 

[ ] [ ]
⎩
⎨
⎧ ±±=

=
.otherwise,0

,...2,,0,/ LLnLnx
ny                       (2.8) 

In the analog interpretation, equation (2.8) corresponds to the substitution LTT /'=  
in equation (2.5), i.e., shortening the sampling interval of  to the L:th fraction of 
its original length. This operation is called sampling rate expansion, and the system 

)(txc

                                                 
1 C/D conversion is otherwise similar to an analog-to-digital conversion (ADC) but in C/D conversion 
the amplitude of the signal is not quantized. 
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that performs the operation is referred as an expander2. In practice, expansion is 
carried out by inserting L – 1 zeros between successive samples in the signal. After 
expansion, every L:th sample in [ ]ny  is an exact copy of an input sample and the 
samples in between are plain zeros.  

Writing the impulse trail of equation (2.8) in series form, gives 

[ ] [ ] [ ]∑
∞

−∞=

−=
k

kLnkxny δ .                       (2.9) 

The discrete-time Fourier transform3 (DTFT) of equation (2.9) yields the frequency 
domain representation of [ ]ny : 

[ ] [ ]

[ ] ),(

)(

Lj

k

Lkj

nj

n k

j

eXekx
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which reveals that the spectrum of [ ]ny  has L-fold repetition of the spectrum of the 
input signal .  [ ]nx

Figure 2.4 shows the repetition of the spectrum in frequency domain. Figure 2.4 a), 
presents the discrete-time Fourier transform of the sequence  on a normalized 
frequency scale, where 

[ ]nx
π=ΩN  is the Nyquist frequency. Figure 2.4 b) shows 

( )ωjeY  according to equation (2.10), with L = 3. If these spectral images are not 
treated in any way, they will be audible. To get rid of the images, the output of the 
expander is filtered with a lowpass filter that ideally meets the following 
specification for its transfer function 

⎩
⎨
⎧ ≤

=
.otherwise,0

/,
)(

LL
eH j πωω                     (2.11) 

The example of Figure 2.4 requires a lowpass filter with a gain of 3 and cutoff 
frequency 3πω =  as depicted in Figure 2.4 c). Finally, Figure 2.4 d) shows the 
scaled and image filtered response.  

                                                 
2 Not to be confused with the signal dynamics related expander term in section 2.4. 
3 Distinction is made between the discrete-time Fourier transform (DTFT) and the discrete Fourier 
transform (DFT). In DTFT, only the time variable is discrete; the frequency ω  is continuous, while in 
(DFT) both time and frequency variables are discrete. 
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The filter specified by the equation (2.11) is called an anti-imaging filter, as it is 
responsible of removing the spectral images. Another commonly used name is 
interpolation filter since it interpolates the values for the zero samples that were 
inserted between the original samples and thus smoothes out the signal. The filter is 
scaled by factor L in order to maintain unity gain in the passband. It compensates for 
the signal power that was lost in the filtering of spectrum images. A system that 
implements interpolation is called an interpolator and is presented in Figure 2.5. 

3/π

)( LjeX ω

3/2π π 3/4π LT /Ω=ω

)b
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π

LT /Ω=ω

L=3
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)a
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3/π

)( ωj
i eX

π LT /Ω=ω

)d

π23/5π

3/π

)( LjeX ω

3/2π π 3/4π LT /Ω=ω

)b

)( ωjeH

π

LT /Ω=ω
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)( ωjeX

π2 TΩ=ω

)a

)c

π2

3/π

3/5π

3/π

)( ωj
i eX

π LT /Ω=ω

)d

π23/5π  
Figure 2.4: Frequency domain illustration of interpolation by a factor of three. 

2.3.3 Decimation 

H(z)X(z) Y(z)L
 

Figure 2.5: Interpolator is a system that increases the sampling rate by L. It consists 
of a sampling rate expander and an anti-image filter. 

The opposite operation to sampling rate interpolation is sampling rate decimation. In 
decimation, the sampling rate is lowered by an integer factor M. Discarding 1−M  
consecutive samples after every M samples in the signal carries out the sampling rate 
compression. For instance, in decimation from 48 kHz to 24 kHz M equals two and a 



CHAPTER 2. OVERVIEW OF THE SYSTEM UNDER TEST 
 

12

compressor throws out one sample after every second input samples4. The operation 
is analogous with interpolation and therefore its derivation is omitted.  

A fundamental difference is that the signal has to be filtered with a lowpass filter that 
ideally satisfies the following specification for its transfer function 

⎩
⎨
⎧ ≤

=
.otherwise,0

/,1
)(

M
eH j πωω                     (2.12) 

before the compression. Otherwise, aliasing will occur because in compression all 
frequency components above M/π  fold down. If they have energy, aliased 
components overlap in frequency with the input signal [ ]nx  and it is not possible to 
recover the original signal from its decimated version. The lowpass filter of equation 
2.12 is called anti-aliasing filter, as its purpose is to prevent aliasing. 

A system that decreases the sampling rate by an integer factor is called a decimator. 
It consists of an anti-alias filter and a sampling rate compressor as depicted in Figure 
2.6.  

Time-variance of sampling rate conversions 

Linearity and time-invariance are important system properties because the signal 
processing theory of linear and time-invariant (LTI) systems is well established. A 
system is linear if it satisfies scaling and superposition properties. It is time-invariant 
(shift-invariant) system, if the following holds true for any time-shift N: the time-
shifted output of the system is equal to the output of the system for a time-shifted 
input (Oppenheim et al., 1999, p. 20).  

The time-invariance property can be easily tested for the compressor. In Figure 2.7 
a), ten samples of an arbitrary signal are plotted. Figure 2.7 b), depicts the output of 
the compressor when the input is first shifted by one sample and then compressed by 
a factor of two. It is clearly different from the signal in Figure 2.7 c) that is the output 
when the input is first compressed by a factor of two and then shifted by one sample. 
By this counter-example, decimator is not a time-invariant system. 

H(z)X(z) Y(z)M
 

Figure 2.6: System diagram of decimator. 

 

                                                 
4 In case M = 2, one could say more fluently, “throw out every second sample” but it is dangerous 
mnemonic as, e.g., in case M = 4 it becomes “throw out every third sample” Wrong! Instead, “keep 
every fourth” is right. 
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Strictly speaking, any discrete time operation that produces different number of 
samples compared to its input is time-variant. Thus, the interpolator is time-variant 
system, too. This has to be considered when selecting the analysis method for 
sampling rate converters.  

0 2 4 6 8 10
0

0.5

1
Signal

0 1 2 3 4
0

0.5

1
Shifted - compressed

0 1 2 3 4
0

0.5

1
Compressed - shifted

 
Figure 2.7: Time-variance in a compressor. a) The input signal, b) output when 
first shifted then compressed c) output when first compressed then shifted. 

b) 

c) 

a) 

2.3.4 Sampling rate conversion by a rational factor 

A classical approach for conversions by a rational factor L / M is to use integer ratio 
conversions in multiple stages as illustrated in Figure 2.8. The interpolator is 
cascaded with the decimator. Since both the interpolation and decimation filters 
operate at the same sampling rate, they can be combined in a single filter. From 
equations (2.10) and (2.11), it follows that the combined filter  should ideally 
have the following specification  

)( ωjeH

⎩
⎨
⎧ ≤≤

=
.otherwise,0

}/,/min{0,
)(

LML
eH j ππωω                (2.13) 

Conversion by the factor 3/2 is illustrated in Figure 2.9 in frequency domain. Figure 
2.9 a) presents the periodic magnitude spectrum of the input sequence . Figure 
2.9 b) shows the expanded signal 

[ ]nx
( )ωj

e eY  according to equation (2.10), with L = 3. 
Until now, the spectrums are similar to the ones seen in Figure 2.4 a) and b). If 
compression by a factor of M = 2 is done at this point, all images are stretched by a 
factor of two and mirrored around the new Nyquist frequency, i.e., 3/2πω = . The 
resulting spectrum in Figure 2.9 c) has overlapping images and the signal is severely 

H(z)v(n) w(n) y(n)L Mx(n)
 

Figure 2.8 Sampling rate conversion by a rational factor L/M 
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aliased. However, if ( )ωj
e eY  is filtered with an ideal anti-aliasing filter that has its 

cutoff frequency at 3/πω =  as illustrated in Figure 2.9 d) and then compressed by a 
factor of two, aliasing is avoided. 
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Figure 2.9: (a) – (c) Sampling rate conversion by a rational factor with aliasing. (d) 
– (e) with prefiltering to avoid the aliasing. 

Conceptually, a sampling rate converter that operates by a non-integer factor always 
contains a decimator. Thus, conversion by a rational factor is not time-invariant. This 
has implications in testing. 

2.3.5 Implementation in EAP 

Sampling rate conversions are usually implemented as a polyphase filter structure. 
Polyphase representation allows computationally efficient implementations of 
interpolation and decimation filters (Vaidyanathan, 1993, p. 120). The sampling rate 
conversion algorithm used in EAP is derived from the bandlimited interpolation 
technique that was originally described by Smith and Gossett (1984) and further 
explained in Digital Resampling Tutorial (Smith, 2004a). It relies on the analog 
interpretation of sampling rate conversion presented earlier.  

The impulse response (IR) of an interpolation filter is obtained by sampling the ideal 
low-pass filter, i.e., the sinc function given by equation (2.7). The number of samples 
used per zero crossing determines the cut-off frequency of the lowpass filter. As the 
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sinc function ranges from ∞−  to ∞  it is shortened by means of windowing. The 
Kaiser window is used as it results the best stop-band attenuation with given filter 
length, it has one parameter that is used to trade-off between stop-band attenuation 
and the transition bandwidth. The resulting IR is convolved with the input signal 
according to equation (2.6), which carries out the filtering. 

If the rate conversion factor is fixed, the sampling rate conversion algorithm reduces 
to regular polyphase implementation. 

In the bandlimited interpolation technique, it is possible to reconstruct the signal in 
arbitrary continuous times from the discrete-time samples of the input signal. The 
main difference in the EAP algorithm is that the filter coefficients are pre-calculated 
for the necessary sampling rates only, rather than interpolated from large array of 
generic interpolator coefficients. This implies that time-varying resampling, i.e., the 
possibility to change sampling rate smoothly from one rate to another, is not present. 
The reason for supporting only selected rates is the strict memory requirements 
posed to the system. 

2.4 Dynamic Range Controller 

The dynamic range of natural sounds is huge. The human ear can accept sound 
pressures in the range Pa, approximately  (Karjalainen, 1999, p. 18). In 
terms of dynamic range, i.e., the ratio of the maximum peak signal level to the 
inherent noise level, this corresponds to 130 dB. Since the very first attempts of 
recording and reproducing of sound, there have been technical challenges to handle 
such enormous dynamics.  

25 1010 −−

Dynamic range controller (DRC) is a device that reduces or increases the dynamic 
variations of a signal by monitoring the incoming signal level and applying a time-
varying gain to the signal according to predefined rules. Depending on the operation 
mode of DRC, different names are used. When the dynamic range is reduced, the 
device is called a compressor. If the dynamics are increased, the device is known as 
an expander. Extreme cases of compressor and expander are called limiter and noise 
gate, respectively. (Nisbett, 1979, p. 351) 

The characteristics of the DRC can be defined with static and dynamic parameters. 
Static parameters describe the transfer function for steady state signals. Attack and 
release times are the parameters that control dynamic behavior. Their contribution is 
essential during signal transients. 

2.4.1 Applications 

To reproduce sound ideally, the signal level has to be kept between the noise and 
distortion levels through the entire audio chain from the sound source to the listener 
at all times. Prior to the digital era, the transmission media was the weakest link. 
Inexpensive consumer equipment was not able to achieve signal-to-noise ratios 
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(SNR) higher than 50 dB (Nisbett, 1979, p. 351). On the bottom end of the dynamic 
range the problem was the high noise level of transmission media, e.g., shellac 
records, and on the top end the vulnerability of AM transmitter power-amplifiers to 
excessive signal levels (Nisbett, 1979, p.358). As the signal level of a radio or TV 
program varies greatly from speech to musical material, human mixer operators were 
responsible for keeping the variation in signal level of the program in the required 
range. Because sudden level adjustments within, for instance, a musical piece are 
perceived annoying, the operator had to prepare for loud and quiet parts in good time 
before the peaks with a smooth level change. Further problems were caused by 
unexpected signal peaks in the program, which were totally beyond the control of the 
operator. The need for an automated system was evident.  

Modern day applications and reasoning for the need of a DRC in a mobile device are 
as follows. In listening situations where the background noise level is high, the useful 
dynamic range is limited. With a DRC, loudness of a signal can be increased without 
clipping it. It has artistic purposes, e.g., in vocal and drum sound processing. A 
known disadvantage of DRC is that excessive compression results in a signal with 
(musically) dull dynamics. As the dynamics processing is done dynamically in the 
device, it is possible in ideal listening conditions to turn off the compression. In 
addition, EAP has several preset settings for the extent of compression for different 
program material. An important situation also arises after mixing stages, where 
signal may be wider than 16 bits. Then the limiter functionality is exploited to 
squeeze the signal to 16-bit dynamics. 

2.4.2 Static parameters 

The static characteristics of DRC are defined as a relationship between input and 
output levels on decibel scale (Zölzer 1998): 

[ ] [ ])( dBXfdBY = .                            (2.14) 

The function f can, e.g., be a piecewise linear curve. Figure 2.10 depicts the input-
output relations for typical operation modes: a) compression, b) expansion, c) 
limiting, and d) noise gating. Figures are conventionally plotted such that the 
horizontal axis represents the DRC input signal level (on dB scale) and the vertical 
axis is the output signal level. The diagonal dash line in the plots represents the linear 
mode, in which the DRC does not alter the dynamics at all. Each mode in the Figure 
2.10 has a section in its curve that has a slope unequal to one. On that part the signal 
dynamics are altered. 

For instance, in case of compression, the dynamic range of the output signal is 10 dB 
smaller than the dynamic range of the input signal. The parameters that characterize 
each operation mode are summarized in Table 2.1. It lists the static parameters and 
their abbreviations as used in Figure 2.10. 

The compression ratio (CR), as well as the other ratios ER, LR, and NR, are defined 
by the ratio of the input level change IL∆  to the output level change  as given by OL∆
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Table 2.1: Static DRC parameters; their abbreviations, value range and parameter 
values used in Figure 2.10 

Abbrev. Parameter Value range Value 
CT 
CR 
CF 
ET 
ER 
EF 
LT 
LR 
NT 
NR 

Compression Threshold 
Compression Ratio 
Compression Factor 
Expansion Threshold 
Expansion Ratio 
Expansion Factor 
Limiting Threshold 
Limiting Ratio 
Noise-gating Threshold 
Noise-gating Ratio 

CR > 1 
CF  0 ≥
 
ER < 1 
EF ≥  0 
 
LR >> 1 
 
0 ≤  NR << 1 

-20 dB 
2:1 
10 dB 
-30 dB 
1:1.5 
10 dB 
-20 dB 
∞  
-30 
0 

 
 

O

I

L
LR

∆
∆

= .                      (2.15) 

Conventionally, CR and LR are normalized so that the required input level change is 
proportional to a one-decibel change in the output level, and thus expressed in the 
form x:1, where x is a real number greater than one. For expansion and noise gating, 
ER and NR are scaled so that the one-decibel change in the input level is related to 
the change in the output level and written in the form 1:x (McNally, 1984). For 
instance, in Table 2.1, the expansion ratio 3020=ER  is denoted 1:1.5. The limiter 
and the noise gate employ the extreme values for the compression ratio (LR= ∞ , 
NR=0) in the example curves. It should be mentioned that finite and nonzero ratios 
are used in certain applications.  

Threshold values (CT, ET, LT, NT) define the input level that triggers the wanted 
action. For compressor and limiter, CT and LT define the lower limits of 
compression and limiting, while ET and NT define the upper limits of expansion and 
noise gating, respectively. In case of compressor, for example, compression only 
activates when the input level exceeds the compression threshold (CT). Below CT 
the signal is not compressed.  

Below CT, as seen in Figure 2.10 a), the output level is constantly 10 dB higher than 
the input level. This constant gain is called the compression factor (CF). It tells how 
much the non-compressed part, i.e., the section of the curve that has 1:1 compression 
ratio, is amplified. A corresponding gain factor can be recognized in the expander 
(EF), but the limiter and the noise gate lack it completely. 
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Figure 2.10: DRC operation modes and their essential static parameters. 

d)

c)

b) 

 a) 

In EAP, several operation modes can be combined into a single DRC curve. The 
turning points of this curve can be defined quite freely with the following 
restrictions: 

• The first point along the line is always at (-100, -100) dB. 

• The number of user-definable values is confined to five points. 

• One of the user-defined points has to be for 0 dB input level. 

• After the last user-defined point, the output level is restricted to its maximum 
given value. 

2.4.3 Dynamic Parameters 

The attack time is defined as the time required for the gain to reach its final value 
after the input level has exceeded the threshold value. Careful consideration is 
needed when the value is selected. If the attack time is too long, the gain is not able 
to react to a level change from the very beginning. With typical input signals, e.g., 
music and speech, this means emphasis on the beginnings of notes and syllables. In 
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case that the attack time is too short, the gain compensation becomes too sudden, 
which means that the system responds to signal peaks rather than energy or loudness. 
In the worst case, it results in a discontinuity in the signal that is heard as a click. The 
release time affects how fast the output level changes as the input level has decreased 
below the threshold. (Blesser et al., 1968) 

2.4.4 Implementation in EAP 

The EAP full-band DRC algorithm is depicted in Figure 2.11. Both the input and 
output signal are stereo. The incoming signal is delayed using a look-ahead delay 
line that gives the algorithm the necessary possibility to smoothly react to the 
changes in the incoming signal. After the delay, the signals are multiplied with a 
common time-varying gain. The gain is calculated from the current level of the 
incoming signal, taking into account the compression curve. An essential feature of 
the algorithm is that the most complex part, i.e., applying the compression curve, is 
done at a lower sampling rate than the audio sampling rate. This gives significant 
performance benefits, and allows for a fairly complex calculation of the compression. 
Another computational efficiency aspect in the algorithm that affects testing is that 
the estimate of incoming signal level is not a true RMS energy. As presented in 
Figure 2.11, the level estimate is obtained from the absolute values of the current 
audio samples on both of the channels rather than squared ones. 

The DRC presented does not utilize the spectral information of a signal. It alters the 
amplitudes of all frequency components uniformly. With a multi-band DRC, it is 
possible to alter the signal dynamics in a more complex way. It divides the full 
frequency into sub-bands and amplifies each band separately. 
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Figure 2.11: Block diagram of EAP full-band DRC. 
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Chapter 3  
 
Software testing 

To begin with, G.J. Myers makes the definition of the word “testing” in software 
development clear in his pioneering textbook The Art of Software Testing (Myers, 
1979). He brings out a very essential psychological aspect in software testing. As 
human beings tend to be very goal oriented, establishing the proper goal has an 
important psychological influence. Compare the two definitions: “Testing is the 
process of executing a program with the intent of finding errors,” and “Testing is the 
process of establishing confidence that a program does what it is supposed to do.” In 
the former, the target of the tester is to find as many programming errors as possible. 
She is not satisfied with the results until she has found several bugs from the program 
under test. On the other hand, if the test designer has adopted the latter definition it is 
more probable that she chooses tests the program is likely to pass.   

It is clear that the tester who adopts the first orientation in test case design will add 
more value to the program than the tester who is using the latter definition as her 
guideline. In fact, following the latter definition the tester should prove that the 
program is error-free, which is theoretically and practically impossible, except in the 
simplest cases. However, most people are mentally more into making new objects 
than ripping them apart, which implies that destructive thinking behind the first 
definition can be very difficult to achieve. The higher the testing abstraction level the 
more the tester’s goal tends to incline towards the latter orientation. 

3.1 Testing as a part of software development process 

The development of new software starts with the idea and preliminary study of a 
problem. Requirement specification is written to formalize the problem and 
customer’s requirements. In addition to designing the system itself, careful planning 
is needed to meet economical targets. After planning, follow programming and 
testing of the system. When the system is ready or the dead line of the project is at 
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hand, the system is released to the customer. After the release, installation and 
maintenance of the system is usually needed, too.  

In order to avoid chaos, above-mentioned steps are usually carried out according to 
some software process model. The big-bang model is the least process-oriented but it 
gives very little control (Patton, 2001, p. 31). The most commonly used software 
process model is the waterfall model (Patton, 2001, p. 34). Its variation is a spiral 
model (Patton, 2001, p. 34). The V-model is the most testing oriented software 
development process (Haikala and Märijärvi, 2002, p. 286). Aspects of V-model are 
studied in more detail in section 3.3. 

The testing process 

Several phases can be recognized in the testing process. First comes test planning. 
Testing of software is a demanding and labor consuming process. In order to achieve 
effective results testing has to be planned carefully. Other reasons for test planning 
are to make the testing organized and repeatable, improve the tracking of failed and 
passed test cases and in certain industries provide means for proving what was tested 
(Patton, 2001). In test planning decisions are made about what is actually tested, and 
what is not tested. 

Then the tests are designed for the planned functionality. In the test design phase, 
solutions are found for testing the planned functionalities and verifying the output. 
After that, test cases are specified. The test case specification contains detailed 
descriptions of test parameters, e.g., input signals, and the criteria that are used in the 
verification. When the tests are implemented and the program is ready, the tests are 
executed. Finally, a test report is produced. It has at least a summary of test run and 
detailed descriptions of failed test cases. All phases should be documented. The 
required content of each document is specified in the IEEE standard (IEEE-829, 
1998). 

3.2 Testing strategies 

It is quite easy to convince oneself that complete testing of a program is theoretically 
impossible, except for the trivial ones. Complete testing would require that the tester 
executes the program with all possible inputs and with program’s internal states are 
not economically reasonable. One test case would be required for each execution 
path.  There are two main strategies available to the test case selection problem, 
black-box testing and white-box testing. 

3.2.1 Black-box testing 

In black-box testing, the system is fed a known input x and the system response is y. 
The tester compares the response to the specified output f(x). If y equals f(x) the test 
is passed, otherwise a flaw is present in the program. When testing a program on its 
interfaces, knowledge of the internal structure of the program or programming 
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solutions is not used. The tester is only interested in finding situations in which the 
program does not behave according to its specifications.  To find these situations, the 
tester feeds the system with inputs and compares the outputs of the system to the 
specified correct outputs, hence the name data-driven testing (Myers, 1979, p. 8).  

Using this technique, the tester cannot make any assumptions about the program’s 
internals. In theory, the only solution to show that no errors are present in the 
program is to execute it with every possible input (Myers, 1979, p. 8). 

Equivalence partitioning 

A method called equivalence partitioning can be used to reduce the number of test 
cases to a reasonable, but effective set (Patton, 2001, p. 68). It provides means for 
systematically selecting input values that will most probably reveal errors and ignore 
the redundant ones. The approach is to group similar inputs, similar outputs and 
similar operation of the software into equivalent partitions. The test cases derived 
from a given partition, test the same thing or reveal the same bug.  Important 
equivalence partitions can be found from the following input data classes: boundary 
conditions, sub-boundary conditions, nulls, and invalid data.  

Boundary conditions are the situations at the edge of the planned operational limits 
of the software (Patton, 2001, p. 68). They exist in every program that performs 
operations on a range of numbers but they are the most obvious to find, as they 
should be documented in the program’s specification. Sub-boundary conditions are 
conditions that take place on the internal boundaries of the program. Although the 
end-user of the program is not aware of these boundaries, they still need to be 
checked by the tester. Finding them requires some knowledge of the program’s 
internal operation but not necessarily access to the implementation. For instance, in 
real-time audio software many algorithms are designed such that they process the 
audio streams in blocks of samples rather than sample by sample. A sub-boundary 
condition related to the block size used in the processing can create a situation for a 
bug.  

Once the boundaries have been identified, testing them is straightforward. In addition 
to testing with the last possible valid input, it is worth testing with a valid input just 
inside the boundary and with an invalid input just outside the boundary. Boundary 
condition testing is based on the binary nature of software and on the assumption that 
if the program behaves correctly on the limit of its operation, it most likely functions 
correctly on typical input values, too. 

Nulls mean situations when no input was passed to the program or when it operates 
on default values. Invalid data situations occur when the program is used with 
incorrect inputs. Resolving the two latter conditions requires input data checking in 
the program. In testing, the expected result is that the program is not able to perform 
the operation on illegal data. Thus, testing invalid data is inherently testing-to-fail. In 
error situations, program should return an error code. Invalid data should not be able 
to crash the program. 
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3.2.2 Other testing strategies 

The testing strategy where the tester derives the test cases by studying the program’s 
logic and internal structure is known as white-box testing, or logic-driven testing. To 
assure that no errors are present in the program the tester has to execute every 
statement in the program with every possible combination of inputs and program’s 
internal states (Myers, 1979, p. 9). White-box testing requires understanding of and 
thus access to program’s implementation. 

A testing strategy that utilizes the best aspects of black-box testing and white-box 
testing is called gray-box testing. It takes advantage of program’s specifications and 
implementation principles (Haikala and Märijärvi, 2001, p. 289). 

3.3 The V-model of software testing 

According to the V-model, testing is planned and actually done on several levels. 
Figure 3.1 illustrates how the planning of testing and verification of results is directly 
linked to the planning and documentation of the system. At the lowest level is 
module testing, which corresponds to the specifications of software modules. Second 
level is integration testing that corresponds to the architecture specification.  The 
third level is system testing that corresponds to the functional specification of the 
system.  The highest level of testing is acceptance testing that actually validates the 
system against to end user requirements.  

The V-model strongly emphasizes the importance of testing as testing is planned 
right from the beginning of the process. Each level of testing can be planned right 
after the corresponding specification is written (Haikala and Märijärvi 2002, p. 286). 
In the following, each of the testing levels is briefly described. 

Verification of results Planning of testing

System testing

Integration testing

Module testingModule specification

Technical specification

Functional specification

Programming

Requirements specification Acceptance testing

Verification of results Planning of testing

System testing

Integration testing

Module testingModule specification

Technical specification

Functional specification

Programming

Requirements specification Acceptance testing

 
Figure 3.1:The V-model of testing (adapted  from Haikala and Märijärvi 2002, 
p. 287) 
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3.3.1 Module testing 

Testing of a program should be started from its modules. A module is a software 
component that ideally has the following attributes (Beizer, 1990): 

• It is the work of one programmer 

• It has a documented specification that includes, in minimum, input definition, 
functional definition, output definition, and interface definition. 

• A module can be compiled, executed, and tested separately from other 
modules, except for sub-modules it might call. 

The tester and the programmer of a module is usually but not necessarily the same 
person. Module testing should reach 100 % coverage of code. Therefore, white-box 
testing is used as the testing strategy. Additional code is usually required when 
testing a module that is intended to interact with other modules. The pieces of 
software that provide, e.g., the initialization of the module under test are called test 
beds (Haikala and Märijärvi, 2002, p. 289).  

3.3.2 Integration testing 

Once the individual modules have been thoroughly tested, they are integrated to 
groups of modules and sub-systems. Integration testing concentrates on testing the 
interfaces between the modules. Results of testing are verified against the technical 
specification. Integration testing of modules can be done either constructively 
(bottom up) during the module integration or structurally (top down) after the 
integration (Haikala and Märijärvi, 2002, p. 288). 

3.3.3 System testing and acceptance testing 

In system testing, an entire software system, is tested end-to-end to discover common 
system bugs, e.g., resource loss, synchronization problems, and shared file conflicts. 
On that level, the program logic is so complicated that logic-driven testing is not 
feasible. Therefore, black-box testing strategy is commonly used. The software will 
be published only after a formal acceptance test on the target hardware. After this 
phase, the customer accepts or rejects the software. 

If module and interface testing are for some reason not done carefully, all kind of 
bugs are potential on the system level. Essentially, the difference to the lower testing 
is that testing is done through the same API the end-user of the system has access to. 
This very interpretation reflects to the title of this thesis. 

3.4 Test automation 

In test execution automation, or test automation, for short, tests are executed without 
human intervention. Test automation requires a system that is able to read and 
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interpret the specified test and execute the program according to it. During the 
program execution, the test system has to be able to receive the data the program 
outputs. When the program has exited, the system must be able to validate the output 
and return an unambiguous result whether the test passed or failed.  

The first two tasks can be automated easily. The test execution is usually 
implemented with test drivers that run tests with pre-generated scripts. For output 
capturing, many tools exist. Often, the program itself is able to write its output to a 
file. Specifying the test cases for automated execution requires a formal language. 
The ETSI-standardized language used to write test specifications for automated test 
is the testing and test control notation (TTCN-3, 2005). 

The verification task needed in the test automation is in general not a trivial one. 
Until recently, a person has always been needed to determine, whether the SUT 
behaves correctly in a given test case. However, human assessment of software 
behavior has two main drawbacks: cost and accuracy (Baresi and Young, 2001). 
Verifying results of hundreds of tests manually not only takes a lot of time but also is 
very prone to errors. An automated approach has been proposed by Baresi and 
Young (2001). An automated test oracle is some method that is able to check 
whether the SUT has behaved correctly on a particular execution. 

Test oracles are ideally general in the sense that pre-computed input-output pairs or 
earlier versions of the SUT are not needed (Baresi and Young, 2001). The first 
property allows rapid increase in test coverage via input parameter variation. The 
independency of earlier version of SUT is essential when that does not exist. 
Moreover, the most clever test oracles are also able to derive the test cases (Memon 
et al. 2000). For that a formal specification of program’s behavior is needed. It 
should be noted that the composition task of the state transition diagram or another 
system model needed for such a formal specification may be a bigger effort than the 
manual derivation of test cases. 
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Chapter 4  
 
Audio testing and audio quality 

Traditionally, audio testing has been done with a set of measurements that evaluate 
the performance of an audio device. In previous chapter, testing was defined as the 
process of executing a program with the intent of finding errors. In this chapter, the 
meaning is quite the opposite, i.e., the process of establishing confidence that a 
system does what it is supposed to do.  

The difference comes from the fact that traditionally audio systems have been sound 
reproduction systems whereas software systems have always had tasks that are more 
complex. A software system either works correctly or does not. The acceptability of 
an audio system is not so binary in nature. A measure for that exists: audio quality.  

4.1 Parametric vs. bit-exact testing 

In bit-exact testing, the output of the SUT is compared to a pre-generated reference 
signal bit-by-bit. The reference signal must be generated with a system that is 
considered correct. In software technology, such a system is called a reference 
implementation. The test criterion is same for all tests: the signals have to be 
identical up to the least significant bit. In order to compare the reference signal to the 
device output bit-exactly, careful synchronization of signals is required. This 
requirement implies that bit-exact testing cannot be considered for algorithms that 
are time-variant, if proper synchronization cannot be guaranteed. Bit-exact testing 
has been used, e.g., in testing of low-bit rate speech codec implementations (3GPP, 
2002). 

In parametric testing, the test criterion is parametric. Estimates of the parameters 
under interest are analyzed from the output signal of the SUT. Typical parameters 
are, e.g., average amplitude level or minimum attenuation required in the filter 
stopband. As mentioned in section 3.4, the test coverage can be conveniently 
increased by input parameter variation. In practice, this requires testing be done 
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parametrically. Otherwise, the number of input-output pairs increases drastically. In 
this thesis, all designed tests are parametric. In addition, usage of error tolerances is 
possible. Error tolerance is an allowed variation from the required parameter value. 

The only advantage of bit-exact testing over parametric testing is that the test signals 
can be chosen freely. Natural sound, e.g., music can be used as a test signal. This is 
advantage in case of passive functionality. However, in case of interactive 
functionality, the test signal selection is only half of the task. Control parameter 
variation is independent of the test signal selection. Hence, another synchronization 
issue arises from the timing of control adjustments.  

4.2 Audio quality 

Sound quality is the common term used for referring quality of sound in general. 
Depending on the point of view, the specific term varies, e.g., speech quality, sound 
quality of a concert hall, and noise quality. This section concerns sound quality in 
audio technology, i.e., audio quality. Audio quality can be divided into subjective 
and objective quality and the methods further into conventional and perceptual audio 
quality methods. Typically, an audio quality measure tries to describe the 
performance of the audio device with a single scalar valued parameter. 

4.2.1 Conventional objective methods 

In ideal sound reproduction, the sound chain is an LTI system and its transfer 
function is ( ) 1=ωjeH , i.e., the system does not modify the sound  (Karjalainen, 
1999, p. 47). In real world systems, distortions always exist. In conventional 
objective methods, audio quality is determined using physical signal representations, 
e.g., frequency and amplitude. 

Classical system characteristics measured from the audio system are frequency 
response function and various distortion measures, e.g., signal to noise ratio (SNR) 
and total harmonic distortion (THD). A commercial device capable of such 
measurements in both analog and digital domain is available from Audio Precision 
(2005). 

Conventional audio design does not take advantage of perceptual constraints that 
could produce computational or transmission savings. The requirements stated for 
the devices are often perceptually exaggerated. Therefore, conventional methods are 
considered to measure the quality of the system rather than audio quality. 

4.2.2 Perceptual audio quality 

The requirements stated for perceptually motivated audio quality take into 
consideration psychoacoustical phenomena, i.e., what kind of impairment introduced 
by the SUT can be heard, and what cannot be heard. Conventionally, subjective 
audio quality has been measured with listening tests. A representative group of 
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listeners called a listener panel is selected. From individual opinions of each listener, 
audio quality can be measured using statistical methods (Karjalainen, 1999, p. 200). 

Formal listening tests are laborious, expensive and not suitable for continuous 
monitoring of audio quality (BS-1387, 1999). Relevant objective quality measures 
can be obtained with human hearing models. They model the sensitivity to, e.g., level 
difference, frequency difference, and distortions. In addition, different perceptual 
constraints, such as the frequency masking phenomenon, are considered. Beerends et 
al. (1992) have proposed a method that is able to estimate the masking effect. ITU-R 
standard specifies a method for objective measurements of perceived audio quality 
(BS-1387, 1999). Both methods have applications on evaluation of low-bit rate audio 
codecs. 

Common to all methods is that, the physical signal representations, e.g., frequency 
and amplitude of the input and SUT output signals are mapped onto a 
psychoacoustical representation, e.g., pitch and loudness. The mappings permit 
calculating the perceptual degradation introduced by the SUT, from which the 
perceptual audio quality can be predicted to a certain extent.  

Figure 4.1 depicts the general concept of an objective audio quality measurement. 
Test signal is fed into SUT. The signal captured from the SUT output is called a 
signal under test. Using a perceptual model, the objective measurement method 
calculates an audio quality estimate from the test signal and signal under test. It 
estimates the extent of perceptual degradation the system under test causes to that 
test signal. 

Perceptual models are out of the scope of the practical work presented in this thesis. 
The A-weighting described below is the only effort towards psychoacoustically 
motivated testing. 

System under test Objective
Measurement

method

Signal under testTest signal

AQ estimateSystem under test Objective
Measurement

method

Signal under testTest signal

AQ estimate

 
 
Figure 4.1 General concept for perceptual audio quality measurements. (Adapted 
from BS 1387-1, 2000) 

4.2.3 A-weighting 
 

The human hearing is less sensitive at low and high frequencies than in the upper 
midrange, and the perceived loudness level as a function of frequency depends on the 
sound pressure level (SPL). Fletcher and Munson have determined this dependency 
in equal loudness curves (Rossing, 1990, p. 92). The A-weighting tries to combine 
these curves into a single filter. It has been criticized for oversimplifying the hearing, 
as it totally ignores the loudness level’s dependency of the sound intensity (Elliot, 
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2003). The approximation is closer to the true loudness level at low levels. In this 
thesis, A-weighting is applied to the THD+N measurements of the rate conversions. 
There, it is justified as the weighted signal mainly consist of low-level noise. 

The A-weighting function is defined in an IEC standard and given by: 
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where 1000  is a normalization constant, in decibels, that scales the filter gain to 0 dB 
at 1 kHz (IEC 61672-1, 2003). Approximate values for frequencies 1  to 4  in 
equation (5.10) are 20,60 Hz, 107,7 Hz, 737,9 Hz, and 12,194 kHz, respectively. 
Figure 4.2 illustrates the magnitude spectrum of the A-weighting filter on audio 
band. 
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4.3 Automated audio testing 

Few publications on automated audio testing exist. The oldest reference is probably 
an article by Roberts (1968), in which he describes an automated system that is 
capable of doing several performance tests for audio amplifiers. The test system was 
used in production line testing and it might be operated by “non-technical 
personnel”. For that, the system was able to report the test result with “go” and “no 
go” lights. Cabot has proposed an automated measurement procedure for loudspeaker 
small signal parameter calculation (1986) and an automated measurement technique 
for DRC dynamic parameters (1987). In either article, Cabot does not describe the 
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Figure 4.2 The magnitude spectrum of A-weighting filter. 
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validation task needed in testing. In a more recent study, Groeper et al. (1991) have 
proposed an automated FFT-based distortion measurement method for loudspeaker 
cones. In their approach, measured parameter values are validated against the values 
of respective parameters measured from a known good reference unit.  

Parametric automated audio testing of a single functionality consists of three phases: 
parameter selection, parameter extraction, and verification. The parameter selection 
phase includes test parameter variation. In interface testing, parameter selection can 
by done by means of equivalence partitioning (discussed in section 3.2.1). Parameter 
extraction is done by means of audio signal analysis that is the topic of the next 
chapter. For verification of parameter values, the approach used in this thesis is 
described below. 

4.3.1 Test oracles 

Automated test oracles were introduced in section 3.4. The automated test oracle in 
audio testing is a method that is able to determine the correctness of the signal under 
test in terms of test parameters. A schematic presentation of the oracle is depicted in 
Figure 4.3. Oracle extracts a specific signal characteristic from the signal under test 
with methods of audio signal analysis. In order to verify the parameter values, it 
receives the test criterion. In case of simplified oracle, it consists of the expected 
parameter values and error tolerance. In some cases, it is worth implementing a 
clever oracle that is able to derive the expected parameter values itself. This requires 
a model of the (sub-) system under test that is able to compute the expected 
parameter values from the test signal. 

In practice, test oracles are not generic in the sense that one oracle was able to verify 
all functionalities of the SUT. Instead, designated oracles are used for most of the 
functionality. 
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Figure 4.3: Test oracle in audio software testing (adapted from Memon et al. 2000). 
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4.4 DUT framework 

To give an overall picture of the EAP testing, a high-level description of the test 
framework is given. The test framework used in EAP testing is called DUT. It 
automates the test execution. In the following, the test instruments are first shortly 
described and then the operation flow in test execution is discussed. 

4.4.1 DUT instruments 

As EAP is targeted for system service rather than stand-alone mixer application, it is 
implemented as dynamically linked libraries (DLL) and therefore does not have any 
executable front-end or user interface. Stribodus is a program that offers the front-
end and a script based user interface for the tester to execute any of the EAP API 
level functionalities. In a Stribodus script, the EAP control commands that are 
needed in the test are defined. Essentially, the script interface makes testing easier 
and less prone to errors as the tester is able to execute versatile tasks without writing 
a designated program for each scenario. 

In order to allow flexible parameter variation, Stribodus control scripts are generated 
dynamically. As a basis for generation, is a selection of parametrical script templates 
needed in the tests. The script generator assigns the values for the parameters 
specified in the test case. 

Test oracles needed in the verification are implemented in Matlab®. Matlab is well 
established among audio developers as a simulation environment and it has extensive 
selection of built-in tools for signal processing. Therefore it is a natural choice for an 
analysis environment. Parameters always include at least the filename of the signal 
under test and the test criteria. Estimates of the parameters under test are computed 
and they are compared against the test criteria. Each analysis script is responsible of 
returning the test result (pass/failed) and a detailed report of the analysis. The signal 
analysis needed in the tests is described in Chapter 6. Appendix B gives an example 
implementation. 

4.4.2 Operation flow in test execution 

Figure 4.3 depicts the most essential DUT components. The test controller is the 
main module of the DUT framework. It controls the test instruments and test 
execution. In addition to the instruments, all necessary data needed in the tests must 
be available. Essentially, test configuration contain the test case specifications, test 
signals stored in pre-generated files, and Stribodus templates in their own database.  

 

 

 
® Matlab is a registered trademark of Mathworks Inc. URL: 
http://www.mathworks.com/products/matlab/ 



CHAPTER 4. AUDIO TESTING AND AUDIO QUALITY                                                                
 

32

The operation flow in testing can be described as follows. 
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Figure 4.4:DUT test framework. 

1. Read test configuration data. 

2. Generate a Stribodus script. 

3. Process input files with EAP and apply the controls defined in the script.  

4. Copy test parameters to the Matlab workspace. 

5. Compute estimates of the test parameters in Matlab and verify parameters 
against the test criteria. 

6. Report test result. 

7. Loop through all test cases, write test report and send result to developers. 
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Chapter 5  
 
Audio signal analysis for testing 

Audio signal analysis is required in various audio processing tasks. In feature 
analysis of musical sounds, e.g., pitch can be extracted. Physics based sound 
synthesis requires analysis of natural sounds in order to model the sound source. 
Audio coding exploits perceptual constraints in hearing. Signal analysis is needed to 
find the perceptually redundant information in audio signal. Automated audio testing 
requires signal analysis in extracting various parameters from the output signal of the 
SUT. This chapter presents audio signal analysis techniques that are needed in the 
measurements. 

Measurements can be divided into time-domain measurements and frequency-
domain measurements. Theory and definitions of time-domain measurements are 
examined first. Before going to the details of frequency domain measurements 
practical limitations of the discrete Fourier transform (DFT) are studied. The theory 
is presented to the extent it is needed in practical measurements. 

5.1 Level measurements 

The most basic audio signal analysis can be done on the time-domain representation 
of a signal, i.e., by inspecting the signal waveform. For simple signals, the waveform 
is a useful representation to get an idea of temporal features of the signal. If the 
signal is more complex, the pure waveform data is quite obscure as such. Useful 
parameters that characterize the signal in the time-domain are signal peak level, 
energy level, and amplitude envelope. 

5.1.1 Amplitude level 

Amplitude of a signal is a parameter that tells the signal strength. It can be measured 
at a certain point of time that is referred as instantaneous amplitude or it can be the 
average amplitude over a longer period. 
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Instantaneous amplitude is a useful parameter for simple periodic signals. In case of 
non-periodic signals, instantaneous amplitude is less informative, as it changes 
arbitrarily over time. In practical measurements, the average amplitude is often a 
more useful parameter. It averages absolute values of a signal over an N-length 
window: 
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If expressed on a linear scale, the amplitude is cumbersome. A well-established 
quantity in signal processing is level. Being measured on logarithmic scale, level is 
more manageable and corresponds better to human perception. To obtain amplitude 
level, amplitude A is expressed in decibels 
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where  is a reference amplitude. Decibel is ratio of two numbers; it always 
requires a reference value. In digital domain, a standard reference value is full-scale 
amplitude, which is the amplitude of a 997-Hz sine wave whose positive peak value 
reaches the positive digital full scale (AES-17, 1998, p. 5). With signed two’s 
complement integers the full-scale amplitude is .  

refA

327671215 =−

Expressing the signal amplitude relative to the full-scale amplitude defines decibels, 
full-scale (dB FS) (AES-17, 1998, p. 5). With the fixed reference value, level 
becomes an absolute quantity similarly to, say, sound pressure level. Although rarely 
seen in other audio applications but in audio measurements, dB FS is a convenient 
unit when expressing digital signal levels. The amplitude level of a signal is an 
essential parameter when verifying mixing. In addition, it is very useful in 
measurements of other features, e.g., DRC static parameters. 

5.1.2 Energy level 

Signal energy can be defined in several ways. Mathematically the most correct 
estimate of signal energy is a root-mean-square (RMS) energy value. It is computed 
over some time window by first squaring the signal, then averaging it over the frame 
and finally taking square root, as given by: 
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where N is the length of the time frame and x[n] is the input signal (Cabot, 1999). To 
obtain the energy level, RMS energy is expressed in decibels with equation (5.2), 
full-scale amplitude as the reference. 
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5.1.3 Amplitude envelope 

Amplitude envelope is a temporal representation of signal amplitude. In envelope 
extraction, the signal is smoothed out such that only the overall variation of the 
original signal is left. Amplitude envelope is a useful feature when verifying mixer 
gain ramps. There are several techniques available for computing the amplitude 
envelope of a signal. A traditional DSP oriented approach is to use a simple circuit 
that consists of a half-wave rectifier and a leaky integrator. Leaky integrator is a low-
pass filter that is implemented with a first order IIR filter having its feedback 
coefficient slightly less than one (Smith, 2005). Being computationally very efficient, 
the technique suits best real-time extraction of the envelope. It yields an average 
envelope rather than peak envelope. 

Another technique that is better suited to off-line extraction of an amplitude envelope 
is to obtain an intermediate signal representation called analytic signal, from which 
amplitude envelope is readily available. Analytic signal is a complex-valued signal 
that lacks negative frequency components (Oppenheim et al., 1999, pp. 775–810). It 
can be obtained via a Hilbert transform that uses filtering techniques to remove the 
negative frequencies.  

A pure transformation based approach has been proposed by Marple (1998). It 
assumes that the signal to be analyzed is finite-length and real-valued. The conditions 
are obviously met for computer stored audio signals. The procedure begins with the 
computation of an N-point discrete Fourier transform (DFT) (see also section 5.2) of 
the signal under investigation. Then the cancellation of negative frequencies is done 
by manipulating the frequency bins. Finally, an N-point inverse DFT is computed 
yielding a complex discrete-time analytic signal. Details of the operation are 
presented in Marple’s article (Marple, 1998). 

The resulting complex analytic signal is of the form 

[ ] [ ] [ ]nnn jyxz += .                       (5.4) 

Using the polar form of complex signals, i.e., writing z[n] in terms of magnitude A[n] 
and phase ϕ[n], the analytic signal can be expressed as 

[ ] [ ] [ ]njeAz ϕnn = ,                       (5.5) 

where A[n] is the amplitude envelope of the original signal (Smith, 2004b). 

A few problems are expected in practical analysis. The transformation introduces the 
Gibbs phenomenon if the signal contains radical discontinuities (Oppenheim et al. 
1999, p. 468). They tend to provoke ringing effects on the envelope corners. 
However, in testing the problems introduced by discontinuities can be prevented by 
careful selection of test signals. At low amplitude levels, the finite word-length 
effects become dominating; they are seen as a ripple in the envelope. This is a more 
severe problem as the ripple interferes with the measurement, and cannot easily be 
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avoided in practical tests. Using relaxed error tolerances below a certain signal level 
is required.  

Although the technique presented is theoretically complicated, the whole procedure 
can be implemented very conveniently in Matlab using a couple of built-in functions. 
In addition, the transformation method was found to give accurate estimations of 
amplitude envelopes in this application. 

5.2 On the analysis of periodic signals using the Discrete Fourier 
Transform 

The discrete Fourier Transform (DFT) is an essential tool in several digital signal-
processing applications, including filtering and spectral analysis. When performing 
any spectral analysis with DFT, it is necessary to understand its operation, 
capabilities, and limitations. Measurements that require high precision in the 
frequency domain are impossible to perform without this understanding. Such 
measurements in this thesis are, e.g., the accuracy of SRC and the distortion 
measurements, in which the test signal cannot be separated from distortion 
components if the signal energy is spread on nearby frequency bins. Hofbauer (2004) 
has presented an extensive survey of methods for high accuracy measurement of 
sinusoids in harmonic signals. 

5.2.1 Spectral accuracy and spectral leakage 

To obtain accurate measurements on periodic signals with the DFT, care must be 
taken. This is due to the discrete nature of the DFT, which will only give an exact 
answer if there are an integer number of signal periods under the window of interest. 
The discrete Fourier transform actually finds the frequency components of a signal, 
which consists of endlessly repeated copies of the sampled signal. In other words, 
DFT assumes that the waveform being analyzed is periodic with a period that is 
equal to the length of the data record seen by the DFT (Cabot, 1999). If the 
frequency of the sinusoid being analyzed does not exactly coincide with one of the 
available frequency bins, some of the energy is spread between nearby bins. This 
also implicates that the obtained frequency, amplitude, and phase estimates are never 
accurate. The terms used of this phenomenon vary in the literature. Oppenheim et al. 
(1999, p. 703) refers to it with the term spectral sampling. A more commonly used 
and more felicitous term is spectral leakage. 

Figure 5.1 illustrates a usual situation when DFT is used in frequency analysis 
without knowledge of its operation. Signal under investigation is a sinusoid with a 
period of 200 samples. In order to compute a 256-point DFT, a 256 samples long 
data record is chosen arbitrarily from the signal. Once one has fixed the length of the 
DFT to 256 samples, it is assumed that the period of the signal is 256 samples long. 
The DFT interprets the sampled signal to repeat endlessly but the beginning and the 
end of the record do not meet with the same value and slope (refer Figure 5.1 b)). 
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Figure 5.1: A careless computation of DFT of a periodic signal. a) A sinusoid that 
has a period of 200 samples. The gray rectangle represents a 256-point DFT 
window. b) The periodic signal as seen by the DFT. b) The magnitude of DFT that is 
influenced with the spectral leakage. 

The discontinuity will result in spectral leakage in the magnitude spectrum. This is 
seen in Figure 5.1 c). In case of a single sinusoid, the magnitude of DFT should 
consist of two peaks. Now, the energy of the input signal is spread over all 
frequencies, which disturbs the measurement by possibly hiding the nearby 
frequency components. Another observation is that the signal-to-noise ratio is less 
than 50 dB. In an ideal measurement, over 300 dB SNR can be observed. In that 
case, the noise only constitutes of the rounding errors in the DFT computation with 
the Matlab precision. Refer, e.g., magnitude spectrum of Figure 5.2 for such high 
precision measurement. 

The spectral leakage can be avoided by understanding the periodic nature of the 
DFT. In testing circumstances, if the test signal can be composed of one or more 
sinusoids whose frequencies are in integer relationships, it is possible to choose the 
frequencies such that they coincide with the DFT bins. This possibility is heavily 
exploited in a DFT-technique called coherent sampling that is studied in more detail 
in section 5.2.2. 

In practice, situations that are more common are those when the length of the signal 
period and DFT length cannot be synchronized in the analysis. Another situation is 
analysis of non-periodic signals. Fortunately, there are a couple of techniques 
available for those situations, too. They are windowing and zero-padding. They do 
not yield as accurate results as coherent sampling but a significant improvement can 
be achieved compared to direct application of DFT. 
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5.2.2 Coherent sampling 

In coherent sampling, the frequency of the test signal is chosen such that it coincides 
with one of the DFT bins in the analysis. Let K be the DFT window length and J the 
number of sinusoid periods that fits exactly in K samples. Coherent sampling occurs 
when the following relationship is met for integer K and J  

K
J

f
f

S

test = ,                        (5.6) 

where  is the frequency of the test sine at  output sampling frequency (IEEE-
1241, 2001). When proper ratios are used, the DFT yields perfect results in terms of 
frequency and amplitude accuracy with the absence of spectral leakage. To find the 
test frequencies, the sampling frequency and the DFT length are fixed first. The test 
frequency can then be selected letting J be any integer. The upper limit is J = K / 2 
that gives the Nyquist frequency. 

testf Sf

Despite the coherence relationship of equation (5.6) will work for any integer J, it 
has been reported that certain values provide better results (IEEE-1241, 2001). The 
frequency of a sine wave is optimum if there are K distinct phases in the DFT data 
record that are uniformly distributed between 0 and π2  radians. Those frequencies 
are found from equation (5.6), when J is chosen such that it is mutually prime with 
K. Although originally used in the context of Analog-to-Digital Converter (ADC) 
measurements, the criterion is relevant in the measurements of sampling rate 
converters, too. 

Figure 5.2 depicts a coherently sampled DFT. As the length of the DFT is now 
exactly the same as the length of two periods in sine, the DFT window repeats 
without discontinuities. The resulting SNR is only limited by computational 
accuracy. The position of the DFT window does not affect the repetition of the 
window. If information about the phase response of the system is not needed, no 
synchronization is required in measurement. 
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5.2.3 Windowing and zero-padding  
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Figure 5.2: Coherent sampling of a periodic waveform. In a), sinusoid that has a 
period of 128 samples. The gray rectangle represents the 256-point DFT window. In 
b), the periodic signal as seen by DFT. In c), the obtained magnitude of DFT with 
great spectral resolution. 

For situations when the conditions of coherent sampling cannot be met, there are 
windowing and zero-padding. As they are techniques that are more common in 
digital signal processing than the coherent sampling, their properties are only 
reviewed shortly. 

Windowing 

In windowing, smooth fade-in and fade-out are applied to the signal frame to remove 
the discontinuities (that were seen in Figure 5.1) at frame ends. In practice, 
windowing is carried out by multiplying the frame by the mathematical expression 
that defines the window. There is a wide selection of window functions available. 
The frequency characteristic of a window is a continuous spectrum consisting of a 
main lobe and several side lobes. The width of the main-lobe relates to the frequency 
and amplitude precision of a window, while the amplitudes of the side-lobes are 
proportional to the amount of frequency leakage (Oppenheim et al., 1999, p. 701). 
By default, DFT uses rectangular window function. It has the narrowest main-lobe 
width for the given window length but, on the other hand, the worst side-lobe 
attenuation of all the commonly used windows (Oppenheim et al., 1999, p. 701). 
From windowing point of view, the accuracy and leaklessnes of coherent sampling 
can be explained with the fact that only the main lobe of the rectangular window is 
effective; the side lobes of the window are totally suppressed at bin frequencies 
(Dallas, 2002). 
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The most important windowing function in EAP testing is the Kaiser window. It has 
two parameters, β  and N, which can be used to trade between main-lobe width and 
relative side-lobe amplitude (Oppenheim et al., 1999, p. 701). The length of the 
window is defined by N and the shape of the window by β . Other windows that are 
suitable for spectrum analysis have been extensively studied by Harris (1978). 

Window selection is always a trade-off between width of the central lobe and 
suppression of side lobes. A disadvantage of windowing is that it reduces the ability 
to resolve signal components that are closely spaced in frequency (Oppenheim et al., 
1999, p. 701). 

Zero-padding  

Alternatively, the signal frame can be extended with a sequence of zeros, which is 
known as zero-padding. DFT is then computed over the extended sequence. Padding 
a signal with sequence of zeros makes the frequency spacing finer because it changes 
the spacing of the frequency bins. Thus, with padding one is able to obtain a more 
accurate estimation of the frequency of a single sinusoid. However, it does not affect 
the frequency resolution, i.e., ability to resolve two sinusoidal components that are 
closely situated in frequency (Oppenheim et al., 1999, p. 711). Padding only 
interpolates the already sampled spectrum. If there were two sinusoidal components 
between the two frequency bins in a spectrum obtained without zero-padding, 
padding would not reveal them either. In order to increase the frequency resolution, 
the only solution is to increase the length of the signal frame.  

Zero-padding has a practical application in time critical systems as it can be used to 
speed up DFT computation. Even if the signal is made longer with added zeros, the 
computation is quickened. This is due to the nature of many Fast Fourier Transform 
(FFT) algorithms that require the length of the sequence to be a power of two. Zero-
padding may also be necessary when magnitude spectra from two different signals 
are needed with the same resolution. This is the case, e.g., when comparing a 
system’s output to a reference spectrum; a case often encountered in testing. 

Zero-padding is by no means a general solution to the spectral leaking problem but 
when used in conjunction with windowing, the accuracy of DFT can be improved 
with controlled spectral leakage. 

5.3 Existing methods for frequency response function 
measurements 

The frequency response (FR), function or its time-domain counterpart impulse 
response (IR) function, is the most important characteristic feature of a system 
(Lahti, 1995, p. 91). The frequency response function is a complex function given by 
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where  is the DTFT of the output and  is the DTFT of the input. If the 
impulse response function 
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There are many different approaches to identify the FR function. In case the 
identification of the frequency response function of a system is done by 
measurements, methods mainly vary by the signals that are used to excite the system. 
Common to all of them is that excitation is a wide-band signal, i.e., it contains all 
frequencies on the frequency band under interest. Moreover, in all methods, the task 
is to find an inverse function  that is needed to deconvolve the input signal 
from the output, leaving the frequency response function. The inverse function exists 
for all excitation signals, but in general, finding one is not a trivial task.  

)(1 ωjeX −

Frequency response function measurements are needed in the evaluation of anti-
aliasing filters in sampling rate conversions. When selecting a measurement method 
for the purpose, it must be kept in mind that time-invariance cannot be assumed, as 
was shown in section 2.3.3. In the following, conventional techniques for impulse 
response measurements are first shortly reviewed. Then a more recent swept-sine 
technique is studied.  

5.3.1 Conventional methods 

The most prominent conventional methods for impulse response measurements are 
presented in this section. They employ impulses, pseudo-random noise, and pure 
tones as their excitation signals. 

Impulses 

From the impulse response point of view, an impulse is the most intuitive excitation. 
The impulse measurement method does not require finding an inverse function, as 
the captured response already is the desired IR (Müller and Massarani, 2001). The 
frequency response function is then obtained with DFT. The method has some 
practical limitations in acoustical measurements. Physical constraints in loudspeakers 
prevent the reproduction of perfect impulses. In addition, SNR from a single 
measurement is poor due to the very low amount of energy an impulse is able to 
bring to the system. However, in low noise digital systems, those problems do not 
exist and the impulse measurement is valid. 

The impulse measurement method could be used in measurements of an anti-imaging 
filter of sampling rate conversions that interpolate by an integer factor. In these 
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cases, the impulse response characterizes the system fully even if SRC is inherently a 
time-variant operation.  

Maximum-length sequences 

In an MLS measurement, a sequence of periodic pseudorandom noise called 
maximum-length sequence is used as an excitation. The impulse response of a 
system is obtained by a cross-correlation between input and the measured output 
signals (Borish and Angell, 1983).  

Compared to the impulse measurement method, better SNR can be achieved with the 
MLS technique because for given maximum amplitude, more energy is brought to 
the system (Borish and Angell, 1983). For this reason, MLS technique has been used 
often in measurements where noise is present, e.g., acoustical measurements. 
However, in the digital era, as the noise level in the measurement data storing has 
dropped dramatically, the internal SNR of the technique has been criticized (Müller 
and Massarani, 2001). 

In addition, the MLS technique assumes perfect linearity and time-invariance of the 
system (Farina, 2000). Thus, it is not suitable for measurements of time-variant 
systems. Another drawback of the MLS is that it requires perfect synchronization of 
excitation signal and system output (Farina, 2000). 

Stepped sinusoids  

In the stepped sinusoids method, a pure tone is used as an excitation to the system. 
As a steady sine is able to measure a single frequency at a time, several sub-
measurements are required. The system is excited over the desired frequency band by 
increasing frequency step by step. Removing the excitation from the system response 
yields the frequency response at the test frequency. The test sine can be removed by 
means of filtering and rectifying the fundamental or by numerically canceling the 
fundamental from the DFT of the response with coherent sampling (Müller and 
Massarani, 2001). When the desired frequency band is measured, the FR of the 
system is obtained by averaging the FR’s from the sub-measurements.   

The measured frequency response function is inherently discrete. Unless smoothness 
of the system’s actual FR can be assumed or for some other reason a high resolution 
is required, the frequency distance between two successive sines has to be selected 
short enough. In that case, determining the FR over a wide band, e.g., the whole 
audio band can be exhaustingly time consuming (Müller and Massarani, 2001).  

The stepped sinusoids method provides the best SNR of all known methods (Müller 
and Massarani, 2001). This is due to the possibility to use coherent sampling in the 
individual measurement of each sine. Another advantage of the method over the 
previously presented ones is that the distortion generated by the system can be 
evaluated from the same measurement.  
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5.3.2 Swept-sine technique 

The swept-sine technique (SST), originally introduced by Farina (2000), uses 
logarithmic sweep as an excitation. With SST, it is possible to separate the non-linear 
distortion from the system’s impulse response. More accurately, in addition to the IR 
corresponding to the linear part of the system is obtained, each IR corresponding to 
the harmonic distortion orders of interest can be selectively separated from the same 
measurement. This is because the SST produces a two-sided nonsymmetrical impulse 
response: on the right side of the impulse is the linear response of the system while 
the distortion is pushed to the left side.  

In order to obtain the two-sided impulse response the input signal is deconvolved 
from the system output. For this purpose, an inverse filter that packs the input sweep 
into a delayed Dirac’s delta function has to be generated. The inverse filter is a time 
reversed and equalized version of the input sweep. Its generation has been described 
in detail by Stan et al. (2002). Once the inverse filter has been computed, the 
deconvolution can be obtained by linearly convolving the output of the measured 
system with this inverse filter. According to Farina (2000), using linear convolution 
instead of circular one used in earlier methods is the trick that separates the distortion 
from the linear impulse response. 

It should be noted that the SST method as used by Farina (2000) is not able to isolate 
distortion components that in frequency appear below the original signal. In fact, 
distortion sweeps always show above the excitation signal in the spectrograms 
presented in the article. Therefore, SST is not able to show aliased components, and 
direct application to SRC testing is not possible. 

The requirement for the possibility to separate the distortions of different harmonics 
is that the sine is swept logarithmically. The distortion products become detached 
from the linear IR also with linearly swept sine, but it is not possible to distinct 
different harmonics as they collapse horizontally on the left side of the IR. In a 
logarithmic sweep, the instantaneous frequency is made to vary exponentially with 
time.  

Logarithmic sweeps with the desired edge conditions are obtained from the equation 
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where 1ω  is the initial frequency and 2ω  is final the frequency of the sweep of 
duration T (Stan et al., 2002). The magnitude spectrum of a logarithmic sweep is not 
flat; it decreases 3 dB per octave. This is due to the fact that frequency increases by a 
fixed factor per time unit, e.g., doubles each second. Every octave shares the same 
energy but as the bandwidth of an octave increases, the magnitude of each frequency 
component decreases (Müller and Massarani, 2001). 
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It is essential to pad the sweep with zeros. Without zeros, the captured IR will have 
attenuated images of the sweep close to the main impulse that interfere with the 
measurement. The number of zeros inserted in the beginning and the end of the 
sweep is proportional to the ill-sweeps distance from the center.  

5.3.3 Discussion 

Existing methods for frequency response function measurements were reviewed in 
the previous sub-sections. With the exception of the stepped sine method and the 
swept-sine technique, they are only applicable to LTI systems. In addition, all of 
them are formulated in the literature such that the measurement is carried out at a 
fixed sampling rate. In testing of SRC lowpass filters, this is not the case since the 
test signal and the signal under test are inherently at different sampling rates.  

With the SST, the frequency response measurement is potentially achievable in 
multirate systems. The generation of the inverse filter needed in the deconvolution is 
an analytic operation but generalizing it for the measurements of a multirate system 
is not trivial. Therefore, a dedicated measurement method was developed. 

5.4 Frequency response function measurements in sampling rate 
conversions 

In the thesis, the frequency response functions are only computed in the evaluation of 
anti-imaging and anti-aliasing filters used in the sampling rate conversions. The 
requirements are stated for passband width, its flatness (the maximum ripple 
allowed), stopband start, and stopband attenuation. All those should be verified from 
the computed magnitude response. In the method used in this thesis, SST is 
simplified such that the inverse filter is not needed. 

5.4.1 Approach 

The idea is to generate an equalization spectrum that is able to deconvolve the 
excitation signal from the system output and thus yield the frequency response 
function of the filter. In subsection 2.3.2, it was shown that sampling rate expansion 
by a factor of L produces L – 1 additional images of the input spectrum. If we are 
able to generate the sampling rate expanded signal, given by the equation (2.9), from 
the test signal, or alternatively from its discrete-time Fourier transformed counterpart 

 according to equation (2.10), the required equalization is available. After all, 
the rate-expanded signal is the signal that the lowpass filter actually sees.  

)( ωjeY

As in SST, the excitation signal used is a logarithmic sweep ranging from 0 Hz to the 
Nyquist frequency of the input sampling rate. For optimum results, the test sweep 
should be padded with zeros, as is the case with SST. In the analysis, the equalization 
spectrum is generated by replicating the DFT of the test sweep. Replicated spectrum 
corresponds to the spectrum of the expanded signal that by definition is not filtered. 
This equalization spectrum is used to deconvolve the input of the system output. The 
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convolution is realized in frequency domain by dividing the system output spectrum 
by the equalization spectrum.  

5.4.2 Equalization spectrum computation 

The equalization spectrum for conversions by factor L / M, that also suits for 
conversions with integer factor, then M equals one, is generated from the excitation 
signal in the following manner. To get the reference spectrum, an -point DFT is 
computed of the test signal, where  equals  (the length of the excitation signal 
in samples) rounded up so that it is divisible by M. The DFT outcome is repeated 
L / M times to produce the spectral images as would be seen from the sampling rate 
expansion. The length of the replicated spectrum becomes . An equally long DFT 
is computed of the captured system output signal. 

FN
FN EN

RN

In case of interpolation by factor L, it is possible to generate the equalization 
spectrum in time-domain. The test sweep is first expanded by inserting L – 1 zero 
samples between each input sample. Then an LNE ×  –point DFT is computed of the 
expanded signal as well as of the system output signal. With certain ratios, this 
approach permits a computation of considerable shorter DFT of the system output. 
However, for conversions with non-integer ratios, the time-domain expansion is not 
possible, as it would require insertion of a non-integer number of zeros between the 
samples. 

5.4.3 Discussion 

The generation technique of equalization spectrums that are able to deconvolve the 
test sweep from the captured output sweep was described above. Theoretically 
correct equalization spectrums are only available for the integer factor interpolation 
filters. In conversions by a non-integer factor, the technique gives suggestive 
estimates of the system FR function but they are not exact. If expansion and 
compression were done without filtering, the spectrum should have overlapping 
images, as seen in Figure 2.9 c). The summation of images depends on the phase 
relationships between the aliased images and the input spectrum that in practice 
cannot be controlled accurately. In principle, it is possible to generate such signal by 
doing the expansion followed by the compression without any filtering in between. 
However, using the spectrum computed of that kind of signal as an equalization 
spectrum was found out resulting totally misleading responses.  

This technique, or any method that uses wideband signal as an excitation, is not able 
to reveal aliasing. This is because the aliased components are inevitably buried under 
the excitation as they fold down. A steady sinusoidal is the only suitable excitation in 
testing the attenuation of aliased components. 

A suitable end-to-end measurement technique for the evaluation of filter frequency 
response function in upsampling was developed. The FR function is obtained from a 
single measurement and it contains the spectral information up to Nyquist frequency 
of the target sampling rate. The technique has a limitation that it gives exact 



CHAPTER 5. AUDIO SIGNAL ANALYSIS FOR TESTING                                                               
 

46

estimates of the frequency response functions in the conversions by integer factors 
only.  

5.5 Distortion measurements 

Distortion measurements are probably the most common measurements of audio 
devices. Cabot (1992) has presented different non-linear distortions and compared 
existing measurement techniques. 

In a total harmonic distortion (THD) measurement, the system is excited with a 
single pure tone. If the system is linear, the magnitude spectrum of the system output 
has a single impulse on the test frequency. In case of a non-linear system, there will 
be seen additional signal components on the integer multiples of the test frequency, 
i.e. on harmonic frequencies of the fundamental. According to the definition, the 
measured RMS energy proportion of the harmonic components to that of the 
fundamental component is total harmonic distortion (Cabot, 1992). 

5.5.1 THD+N  

Alternatively, the test frequency is removed from the captured system output and the 
remainder is measured. At low levels of harmonic distortion, the noise level of the 
system contributes to the THD measure (Cabot, 1992). To emphasize the presence of 
contribution of the system noise, the distortion measures obtained with this approach 
are called THD+N. If the magnitude bins of the discrete Fourier transformed output 
signal are , , …, , THD+N in per cents can be computed from the 
equation: 
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As can be seen from the equation (5.10), the only difference between the nominator 
and the denominator is that the noise and distortion term lacks the input signal 
component. Both levels include all harmonic, inharmonic and noise components. 

It should be noted that each DFT bin contains all energy between two harmonics, not 
just the energy of strictly harmonic components. Furthermore, the contribution of all 
bins is included in the sum, except for the dividend, where the missing  refers to 
the removed fundamental frequency of the output signal. Using the coherent 
sampling presented in subsection 5.2.2, the energy of the input signal will be in one 
frequency bin. As the test frequency is known, the input signal can be discarded 
conveniently. 

kH

THD+N can be measured as a function of frequency or amplitude (AES17-1998). In 
order to measure it as a function of frequency, the test frequency is varied. It is 
recommended that the whole frequency range of the filter should be tested  
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(AES-17, 1998). The frequencies of the test signals are chosen roughly in octave 
intervals up to the passband end frequency of the anti-imaging or anti-aliasing filter 
under test. 
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Chapter 6  
 
Design and implementation of test cases 

When the signal is analyzed visually, e.g., by plotting the waveform data or 
magnitude spectrum, features can be recognized from surprisingly complex systems. 
As the goal in this work was to automate the test execution, visual analysis was not 
feasible. When testing is automated, parameter extraction and verification become 
complicated tasks for seemingly simple functionality. Surely, several parameters can 
be estimated from a single measurement. However, it is essential that each test case 
focus on a single functionality at the time. It not only makes the parameter extraction 
easier but also has an advantage that a failing of a test case directly indicates where 
the problems are. This can be achieved by isolating the feature, turning off all 
unnecessarily processing, and keeping test signals as simple and deterministic as 
possible. These aspects were taken into consideration in test design. 

The tested functionalities were mixing, sampling rate conversions, and dynamic 
range compression as presented in Chapter 2. Depending on the functionality under 
test, the number of test cases varies greatly. In testing of interactive API level 
functionality, e.g., mixer controls, parameters had to be varied extensively. On the 
other hand, in case of passive functionality, e.g., sampling rate converters, it was 
possible to limit the number of test cases to the supported conversion ratios. Of 
course, the test signal set must then contain all frequencies. 

As discussed in Section 4.3, automated testing of given functionality requires 
successful completion of three stages:  test parameter selection (including variation), 
parameter estimation from the signal under test, and verification. Aspects from all 
stages are considered in each of the following sections but the emphasis varies a bit. 
In mixer control tests, the focus is on test parameter variation. In the testing of anti-
image filters of sampling rate converters, parameter estimation is highlighted. A case 
study of verification with a test oracle is given in the context of DRC tests. 
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6.1 Tests for the mixer  

EAP mixer supports channel controls and stream controls, as described in Section 
2.2. The channel controls are level, panning, and muting setting. The stream controls 
are level, balance, and muting. Although they are semantically different controls, 
they can be tested quite similarly. In the end, they all affect the signal gain only. 
From analysis point of view, the only difference is that level control is inherently 
logarithmic whereas panning and balance are linear controls. Muting control is a 
special case and it was tested on a logarithmic scale but it might have been analyzed 
on a linear scale as well. In the first sub-section, the focus of testing is on the mixer 
control mechanism and the corresponding static gain calculations. The transitions 
from one value to another are considered in the second sub-section. 

6.1.1 Mixer controls 

The following criterion was considered common for all controls. The control should 
change the signal value exactly (with certain tolerances) as was requested. For 
instance, if a 6-dB level adjustment is requested, the change in the signal should be 
exactly 6 dB. Additionally, for level and muting the control should have an effect on 
the instance it was requested to, and only to that. For example, if a channel level 
change is requested to channel 1 of a stream it should affect the level of the channel 1 
of the stream only. For panning and balance that are stereophonic controls, the 
testing of the latter requirement was considered too laborious from measurement 
point of view and was ignored.  

Assumptions 

It was assumed that the mixer controls are frequency independent, i.e., the output of 
the mixer does not depend on the frequency of the input signal. This assumption is 
considered reasonable as all controls affect the signal gain only. 

Test design and instrumentation  

Tests were designed such that they measure the change in the signal between two 
time instances rather than the absolute values. Change measurement was considered 
more convenient because the expected result need not depend on the input level of 
the test signal. It can even be justified psycho-acoustically as the human ear is more 
sensitive to detect changes than absolute values. In practice, the change measurement 
was realized as follows. To get a reference, test signal is first played back for a 
certain time with the control in its initial state. Then without any interruption in 
playback, the control change is requested. To get the changed value in the output 
signal, the signal is yet played for a certain time. With this approach, the stored 
signals have to be at least twice as long as with the absolute value measurement. 
However, this was not considered a critical issue. As the change measurement 
applies the control twice during the execution of SUT, it might even reveal system 
state related errors. For instance, if the muting control had an implementation failure 
that once channel is muted it stays muted, the change measurement would tell it. 
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In order to test whether level and muting controls are applied to the correct instance, 
two-channel streams are used in the tests. In channel control tests, both channels of 
the stream contain the same signal but the adjustment is requested for one of the 
channels only. In stream control tests, two stereo streams are used. The other stream 
has the test signal in its left channel and the other in its right channel. The adjustment 
is requested for one of these streams only. With this setup, the signal in one of the 
EAP output the channels should always remain intact. Assuming the frequency 
independency of mixing controls, the test waveform can be chosen quite freely. A 
full-scale 200-Hz sine that has a duration of 2 seconds at 48 kHz sampling rate was 
used. 

Parameter estimation and verification 

Both the signal analysis and verification is straightforward in these tests. RMS 
energy is estimated from both SUT output channels before and after the control 
change using equations (5.2) and (5.3). The analyzed data is extracted with 100-ms 
rectangular windows.  

In case of level and muting controls, the signal energy values are converted to 
decibels relative to the amplitude of a full-scale sine, and signed level changes are 
computed for both channels. In the verification phase, the measured level change is 
compared against the required level change. In the case of the muting setting, the 
required level change is ∞−  for mute on and ∞  for mute off control. Test case is 
passed if the measured level change does not deviate from the required value more 
than the specified error tolerance. Typical error tolerance in these tests is 0.001 dB. 

For panning and balance, the linear signal gains that would be required for the 
measured change in the channel energies are estimated. The verification is done 
similarly as for level and muting.  

Parameter variation 

With black-box testing approach, the only means of assuring that no errors are 
present in any of the mixer control mechanisms and their corresponding signal gain 
calculations is to derive so many test cases that they would set all possible control 
parameters values – not forgetting the illegal values. As stated earlier it is not 
reasonable even try to. Using equivalence partitioning presented in subsection 3.2.1, 
it is possible to derive an equally effective set of tests. In order to find those sets for 
each of the controls, similar inputs and similar outputs were partitioned. Especially, 
boundary and sub-boundary conditions, and invalid data conditions were considered.  

As an example, Figure 6.1 depicts input and output relations for a) panpot and b) 
balance controls. Both controls have boundary conditions on both ends of their input 
value ranges. For balance, there is an additional sub-boundary condition at input 
value zero. Deriving a test case for each of the boundaries and just above and below 
them (e.g. 0.995 and 1.005 in case of boundary condition at 1.0) results six test cases 
for panpot and nine for the balance. Rest of the possible inputs are partitioned into 
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Figure 6.1 a) Boundary conditions in panpot. b)Boundary conditions (solid bars) 
and sub-boundary conditions (dashed bar) in balance control. 

two classes that represent “typical” positive and negative input values. In addition, 
remembering that the tests were designed to measure the change in the gain, which 
means that each point is tested using two different reference points, yields in total 16 
test cases for panpot and 21 test cases for balance. 

6.1.2 Gain signal generators 

The gain signal generators that are responsible of producing smooth level, pan, and 
balance transitions were tested. The focus is on verification of correct gain function, 
ramp duration, and on the smoothness of the realized ramp. In addition, the correct 
level change is required and they should be tested from both output channels. 
Panning and balance ramps should be linear and level ramps should be logarithmic. 
The shape of the ramp is verified from the amplitude envelope of the signal.  

Assumptions 

Gain signal generators are a part of the same mixer controls already tested, with the 
addition of only the time dependency. Therefore, it can be assumed that each control 
affects the requested instance and the generators are frequency independent. 

Test design and instrumentation 

Linear and logarithmic gain signal generators are tested by ramping panning, balance 
and level controls from one value to another with different ramp durations. In all 
cases, the response consists of three sections: onset, ramp, and set-value. 

A 200-Hz full-scale sine at 48 kHz sampling rate was used as the test signal. The 
duration of the test signal depends on the desired transition duration; it is always 
about two seconds longer than the tested ramp to leave sufficient onsets and set-
values.  

Parameter estimation and verification 

Amplitude envelope of a signal is computed with the technique presented in 
subsection 5.1.3. In Matlab, it is obtained with the following line of two nested 
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commands y=abs(hilbert(x_w)), where x_w is the channel output half windowed 
from both ends to suppress the discontinuation effects. In case of panning and 
balance ramps, the values are normalized to the range [0, 1]. Level ramps are first 
converted to decibel scale and then normalized to 0 dB. Once level ramps have been 
brought to a logarithmic scale, they appear linear. Panning and balance ramps appear 
inherently linear on a linear scale. With this scaling, level ramps and panning ramps 
can be inspected further similarly on linear fashion. 

Initial and final gains or levels are first estimated from the long time average values 
of the onset and the set-value of the envelope. The beginning and the end of the ramp 
are detected. A line is fitted to the ramp section of the response in a least-squares 
sense and the limits for the ripple on each section of the response are derived. Test 
case is passed if the measured amplitude envelope does not violate the limits of error 
tolerance in any section. 

In Figure 6.2 is plotted a) captured EAP channel data and b) estimated amplitude 
envelope with error tolerance margins in a level ramp test. The amplitude envelope 
appears precisely on high signal levels but on low levels, the quantization distortion 
interferes with the measurement, which requires the error tolerance to be 
substantially higher. 

Parameter variation 

The boundary conditions of the gain signal generators are readily available as 
specified minimum and maximum ramp lengths. A more interesting measure of 
algorithm performance can be obtained from the sub-boundary conditions. They are 
determined by the slope of the ramp and are tested when the slope of the ramp 
approaches zero and . In practice, as the former would require an infinitely long 
ramp and the latter an infinite level change, such slopes are not realizable. Table 6.1 
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Table 6.1: The values used to test the sub-boundary conditions in gain signal 
generators. 

Slope Level change Pan / balance Ramp duration 

<< 1 0.1 dB -0.01 -> 0.01 5 s 
>> 1 60 dB -1.0 -> 1.0 100 ms 

presents the selected parameter values for testing sub-boundary conditions with level 
ramps and panning and balance ramps. 

 

6.2 Tests for the sampling rate converters 

EAP audio output is typically at 48 kHz sampling rate. In addition to the main 
sampling rate, it supports several additional input sampling rates as presented in 
Section 2.3. All supported sampling rate conversions are tested in terms of 
conversion accuracy, anti-imaging and anti-aliasing filtering, and overall distortion.  

The equivalence partitioning approach does not suit very naturally the test case 
selection problem in case of passive audio functionality because the properties of the 
test signal are the only parameters that can be varied. Surely, each conversion can be 
considered its own equivalence class and for each of them there are boundary 
conditions at frequencies 0 Hz and Nyquist frequency but finding the sub-boundary 
conditions is not as evident as in case of interactive functionality. 

Magnitude response tests for anti-imaging filters were done with a sweep 
measurement. The rest of the measurements, that are, conversion accuracy, anti-
aliasing, and THD+N measurements utilize coherent sampling technique. Since the 
last-mentioned tests have common test method, they share a considerable number of 
other aspects, too. Test signals, assumptions, test design and instrumentation, and 
parameter variation are common for all these tests and thus are described only once. 

6.2.1 Test signal generation for the measurements using coherent sampling 

Sinusoids are used as the test signals in most of the SRC tests. Being the most 
accurate method in frequency domain measurements of periodic signals coherent 
sampling (sub-section 5.2.2) was selected as a measurement technique. 

In order to find the test frequencies, the DFT length K is selected first. In case of 8-
kHz family of converters, K = 6156 is used in the analysis. The value was selected 
such that it is divisible by interpolation factors L = 2, 3, and 6. For 44.1-kHz family, 
K = 5120 is used. In this case, K is divisible by both the common decimation factor 
M = 147 and the interpolation factors L = 160, 320, and 640 related to the rate 
conversions from 44.1 kHz, 22.05 kHz, and 11.025 kHz, respectively. 
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After that, the test frequencies can be selected. The following standard guidelines 
were followed in the test frequency selection. 1) Frequencies were selected to cover 
the whole passband of the anti-imaging (anti-aliasing) filter under test in octave 
intervals as recommended in the AES standard (AES-17, 1998). 2) The IEEE 
guideline of optimal test frequency selection in coherent sampling was followed 
(IEEE-1241, 2001). The optimal frequencies are used when J has no common factors 
with K. That being said exact octave intervals are not always possible, but that was 
not considered critical. Additionally, a few exceptions were made in 2). The 
fundamental frequency and first harmonic (i.e., J equals 1 and 2) were included in 
order to get test signal coverage also in lower frequencies.  

Finally, the actual test signals can be computed. Applying equation (5.6) to the 
sinusoidal equation gives a formula for the test signal generation 

[ ] [ ] )n2cos(n S
in

F
K
JtAx π= ,                      (6.1) 

where  is the discrete time vector,  the input sampling rate, and [ ]nt SF MKLKin /=  
is the length of the DFT window as seen at the input sampling rate, e.g., = 1026 
at 8 kHz input rate. 

inK

The divisibility of K by L and M is not mandatory for most of the tests. However, it 
was found out that when it is followed, perfect accuracy is also guarantied for the 
expected images and aliased components. This is illustrated in Figure 6.3. The rate 
conversion was computed with the Matlab built-in resample(x,L,M) function. In 
Figure 6.3 b) is plotted the magnitude spectrum of a sinusoid interpolated by a factor 
of 6. The DFT length was chosen as K = 8198, that is not divisible by 6. Being a 
power-of-two number this selection is otherwise desirable but only the fundamental 
frequency (i.e., the test signal) fits in the DFT. The frequencies of the image 
components do not meet the condition for coherent sampling and thus appear 
inaccurate in both frequency and magnitude and are affected by the spectral leakage. 
In Figure 6.3 a), K is selected such that  is also an integer. Accurate frequency 
and amplitude are now observed in image components, too.  

inK

Table A.1 in Appendix A summarizes the test frequencies used in the tests that 
employ the coherent sampling technique. In the same table, are also given passband 
and stopband frequency specifications for each filter. Frequencies of the test signals 
cover only the passband of the filter. Extending test frequencies up to Nyquist 
frequency of the input sampling rate is not justifiable, as the transition band of the 
filter is not specified in the requirements. 
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Figure 6.3: The effect of DFT length (K) selection in a sampling rate conversion 
from 8 kHz to 48 kHz (L = 6) done with Matlab built-in resample function when a) 
K = 6156 is divisible 6, and b) K = 8192 is not divisible by 6. In both cases, the 
frequency of test sine is 475.6 Hz (J=61). 

6.2.2 Rate conversion accuracy  

The fundamental properties of a signal should not change in a sampling rate 
conversion. In case of sinusoids, it means that the frequency and the amplitude 
should remain unchanged in the rate conversion. Deviations from constant amplitude 
implicate that the filter passband is not flat. In rate conversion accuracy tests, the 
immutability of frequency and amplitude of sinusoids were tested. The amplitude 
accuracy was assumed independent of the amplitude of the input signal. Thus, the 
amplitude of the test signal was not varied in the tests. 

Test design and instrumentation 

Rate conversion accuracy was tested with the coherent sampling technique. Each 
conversion is tested with several sinusoids that have their frequencies as specified in 
Table A.1. A one-channel stream having one of those sinusoids as a source is opened 
at correct input sampling rate and played for two seconds at a time. As the frequency 
and the amplitude of the test sinusoid are known it is straightforward to verify the 
measured values against them.  

Testing the frequency accuracy of a given converter with several frequencies is 
somewhat exaggeration. Expressed in samples the frequency immutability means 
that the outcome of rate conversion by ML  should have MLN ×  samples, where 
N is the number of samples in the input signal. It does not depend on the frequency 
of the input signal.  
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Parameter estimation and verification 

A DFT of length K is computed of the output signal and scaled to dB FS. The highest 
peak in the magnitude spectrum is interpreted as the test signal. Its bin index k and 
amplitude A are determined. If k equals to J, the frequency is exact and if the 
determined amplitude deviates from – 6.0206 dB FS level5 less than the required 
error tolerance the rate conversion is considered accurate at the test signal and test is 
passed.  

It is noted that the tester cannot claim that a given converter is amplitude accurate by 
a single passed test case. All test cases for the converter must be passed in order to be 
able to say that with reasonable confidence. However, this is not a big problem in 
automated testing. As all test cases are run the judgment is pronounced in the 
summary of results available in the test report. 

6.2.3 Anti-imaging filtering 

Upsampling requires a lowpass filter that removes the spectral images (refer 
subsection 2.3.2 for details). Magnitude responses of the anti-imaging and anti-
aliasing filters were tested in terms of the width and the flatness of the passband, 
stopband start, and the stopband attenuation. The flatness of the passband is specified 
as a maximum ripple allowed. All input rates were tested. 

Test design and instrumentation 

The equalization spectrum technique, described in section 5.4 was used. The 
excitation signal is a logarithmic sweep ranging from 0 Hz to the Nyquist frequency 
of the input sampling rate at 0-dB FS level. Logarithmic sweeps according to 
equation (5.9) were generated with Matlab built-in function chirp. The length of the 
sweep was chosen 8 seconds, which gives very high resolution for the frequency 
response function. The sweep was padded with 0.5 seconds of zeros to the both ends.  

Parameter estimation and verification 

The magnitude spectrum of the filter is computed using the equalization spectrum 
technique described in section 5.4.  

Upper and lower limit lines for the passband ripple and a line for the minimum 
attenuation required in the stopband were defined. The magnitude of the convolved 
filter response is verified against these lines. Both the lower and the upper limit lines 
begin from the passband start frequency. The lower limit ripple line reaches the 
specified passband end frequency while the upper limit line extends up to the 
stopband start frequency.  

 
5 The value is one half in decibels and is resulted when a one-channel full-scale sine is panned center. 
Refer section 2.2.2 for details. 
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In Figure 6.4, is plotted the obtained magnitude spectrum and the lines according to 
required filter specifications. Magnitude of the filter frequency response function is 
checked against the defined lines. If no violations are found the test is passed. In case 
of failure, the test is able to report the realized width for passband the start frequency 
for the stopband.  

6.2.4 Anti-aliasing filtering 

As presented in subsection 2.3.4, upsampling by a rational factor is prone to aliasing 
artifacts. If the anti-alias filtering is not done correctly, aliased components can be 
heard on audio band. Criterion in the tests is that the magnitude response of the EAP 
output should only have one frequency peak (i.e., the test signal) above the stopband 
attenuation requirement of the anti-aliasing filter under test. However, aliased 
components are allowed above the audio band, e.g., 20 kHz. This is taken on note 
with the upper frequency limit. 

Test design and instrumentation  

Each conversion that operates on rational factor is tested with several sinusoids that 
have their frequencies as specified in Table A.1. Coherent sampling technique 
(subsection 5.2.2) is used in the measurements.  

Parameter estimation and verification 

Magnitude of DFT of length K is computed of the output signal and scaled to dB FS. 
The magnitude spectrum is searched for peaks  that are above the minimum kH
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Figure 6.4: The magnitude response of the anti-imaging filter in a conversion from 
16 kHz to 48 kHz. Note: The error tolerance for passband ripple is exaggerated for 
clarity. 
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stopband attenuation requirement. Components above 20 kHz are ignored. If more 
than one peak is found the test is failed and the frequencies corresponding to  are 
reported. 

k

In Figure 6.5, is plotted the magnitude spectrum of the SUT output in SRC from 32 
kHz to 48 kHz. With 14,4 kHz test frequency, the strongest spurious components 
produced by the sampling rate converter are an image at 17,6 kHz and an aliased 
component at 1,6 kHz. Amplitude levels of all distortion components are below the 
required 60-dB attenuation. 

 

6.2.5 THD+N 

The overall distortion produced by SRC was evaluated with the Total Harmonic 
Distortion and Noise (THD+N) measurement described in section 5.5.1. The 
THD+N was evaluated as a function of frequency. 

Test design and instrumentation  

Each conversion is tested with several 0-dB FS level sinusoids that have their 
frequencies as specified in Table A.1. Coherent sampling technique (subsection 
5.2.2) was used in the measurements. For better perceptual relevance, the distortion 
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Figure 6.5: Test for anti-aliasing filter in 32 to 48 kHz SRC. The highest peak at 
14,4 kHz is the test frequency. The Dashed line at –60 dB level indicates the 
attenuation required of aliased components. 
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and noise components were weighted with a standard A-weighting filter. 

Parameter estimation and verification 

At first, the magnitude of the DFT of length K is computed of the output signal. 
Components above 20 kHz are discarded from the spectrum. The resulted signal is 
the divider of equation (5.10). To get the distortion and noise, the test signal is 
cancelled from the spectrum. As the frequency (J) of test sinusoid is known, the 
cancellation is obtained when  is set to zero.  JH

The distortion and noise signal is filtered with A-weighting function. As the 
distortion and noise components are already in a frequency domain, the weighting is 
most conveniently carried out in frequency domain. The frequency response function 
of the A-weighting filter (equation (4.1)) is evaluated at the DFT-points. The 
weighting is obtained as the distortion and noise signal is multiplied pointwise by the 
weighting function.  

In Figure 6.6, is plotted the A-weighted distortion and noise in rate conversion from 
44.1 kHz to 48 kHz. The magnitudes of the distortion components are well below  
–100 dB FS level. A-weighted THD+N according to equation (5.10) is obtained 
when the A-weighted distortion and noise is divided by the above-computed divider. 
The test is passed if the computed THD+N does not exceed the allowed value. 

6.3 Tests for DRC static parameters 

Dynamic range controller was tested. The focus of testing is on static parameters, 
especially the compression curve. Test oracle is used in the verification. It is assumed 
that processing is frequency independent, i.e., DRC boosts all frequencies equally. 
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Figure 6.6: A-weighted distortion and noise originating from a 1,2 kHz sinusoid in a 
rate conversion from 44.1 to 48 kHz. 
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Being a full-band DRC this assumption is relevant. 

Test design and instrumentation 

In order to simulate dynamic variations of natural sounds, the input signal is made 
having ascending and descending level steps. Actually, the test signal has constant 
level but the steps are generated with (already tested) EAP level controls. This is 
possible as the mixing takes place before the DRC processing. To make analysis 
simpler it is essential that the DRC output reaches its static condition before the next 
input level change takes place. Thus, the lengths of the level steps were selected at 
least as long as the attack and release times of tested preset. The values for the 
compression curve turning points are read from the same configuration file that EAP 
uses. Thus, new test cases for later added compression curves can be derived without 
need for calculating expected output levels for each curve. 

Parameter estimation and verification 

Parameter under test is a signal level after each level step. Level steps are detected 
from EAP output and measurement points are selected at the end of each step. Same 
measurement points are used throughout the analysis. Level estimation is computed 
using equations (5.2) and (5.3). 

Expected parameter values are computed with a simplified DRC model. It models 
those signal processing blocks in EAP DRC algorithm (subsection 2.4.4) that 
contribute to the static parameter behavior. They are input signal level estimation, 
compression curve computation, and gain multiplication. The test signal and the level 
adjustments applied in the test are fed to the model. Expected output levels 
corresponding to the predefined compression curve are obtained. Error, i.e., the 
difference of expected and realized levels is computed and a verifier compares it 
against test case specific error tolerance. If measured error in each level step is less 
than the tolerance, the test case is considered passed. Implementation of analysis and 
its essential helper functions are given in the code listings available in Appendix 0. 

Figure 6.7 a) illustrates compression curve used in a DRC test. It has ET – 70 dB, CT 
– 30 dB, and CF 20 dB. With the presented curve, DRC does not perform any noise-
gating or limiting. Correctness of CT is tested with an input level sequence – 35 dB, 
– 20 dB, – 15 dB, – 20 dB, – 35 dB. The corresponding output energy level sequence 
and error tolerances are plotted in Figure 6.7 b). In order to give overall view of the 
test, the amplitude envelope of the output signal is aligned with energy levels. 
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Figure 6.7: Figure plots from a DRC test. a) Compression curve b) EAP output and 
the error tolerances. Note: for the clarity, the energy averaging windows are 
presented significantly longer and the error tolerance is doubled. 

b) 

a) 

Parameter variation 

Input levels for a single test case are chosen around one of the compression curve 
turning points. Each curve has four turning points in maximum. All turning points of 
various compression curves are tested. 
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Chapter 7  
 
Conclusions and future work 

The purpose of this work was to design and implement automated tests for the core 
functionality in the EAP audio platform.  

In order to familiarize the reader with the object to be tested, core functionalities of 
EAP were presented. In addition to the operation and applications, the necessary 
theoretical background of audio mixing, sampling rate conversions, and dynamic 
range compression was studied. To solve the addressed problem from software point 
of view, the conventional software testing methodology was reviewed. The most 
important findings from software testing literature were the systematic methods for 
test case selection problem and the concept of automated test oracles.  

On the other hand, audio testing and audio quality aspect had to be considered. The 
existing methodology in audio testing was found to be audio reproduction system 
oriented. On the audio quality side, measurement methods based on the physical 
signal representation and on the hand, perceptually motivated parameters were 
shortly reviewed. Recent research results strongly recommend the latter approach. 
However, as the focus in EAP testing is in functional testing, and more importantly, 
as the current quality requirements stated for EAP are measured in Hertz and 
decibels, the conventional quality measurement methods were considered sufficient 
for the time being. 

To find sufficient methods for functionality testing, audio signal analysis techniques 
were studied. The necessary methods needed in testing the mixing and DRC 
functionalities were otherwise basic but a clever technique for amplitude envelope 
computation came by. In case of mixer controls, essential part of the functional 
testing was the control parameter variation. The equivalence partitioning method 
commonly used in software testing was found valuable for that. However, in case of 
passive functionality, e.g., sampling rate conversion, where the test frequency is the 
only parameter that is varied, traditional “octave step recommendations” were found 
more natural. 
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The most challenging part of the work, in audio signal processing sense, was to find 
suitable measurement techniques for the sampling rate converters. As measured end-
to-end, testing the anti-imaging and anti-aliasing filters was not easy. In the 
measurements for anti-aliasing, it turned out that the classical stepped sine method 
was the only applicable method. In case of rate conversion accuracy and THD+N 
measurements, the discrete Fourier transform was found to give the most accurate 
results when used with coherent sampling — a practical technique found from the 
literature concerning analog-to-digital converter measurements. 

For system frequency response function measurement, several techniques were 
considered but apart from the stepped sine technique, none of them directly suited to 
a multirate system. To work out the problem, a sine sweep based measurement 
method was derived from the upsampling theory. In the method, a reference 
spectrum computed from the test sweep is used to deconvolve the test sweep from 
the system output. The derived equalization spectrum method has its limitations but 
precise magnitude spectrums are obtained in interpolations by an integer factor. It 
took a while to have confidence in the method as it first showed strange high-energy 
peaks in the magnitude spectrums measured from EAP. After a careful inspection, it 
turned out that the peaks actually originated from a minor rounding mistake in the 
EAP code. As a bug was found that any other test hardly would have found, 
developing the method was worth the effort. 

Unfortunately, also the test system itself is exposed to bugs. In fact, they lurk behind 
every corner: in compilation time and runtime configurations of EAP, in the test 
design, in test case specification, and in the Matlab analysis code. Before a single 
real bug can be found, all bugs on the way have to be eliminated. One way to prevent 
bugs in the test parameter variation phase is to use automated test oracles. Test oracle 
concept is getting attention in software testing and it was experimented in DRC tests. 
As the input-output pairs need not be computed in the test case specification phase, it 
has an advantage in testing complicated systems. Given the input parameters and 
error tolerance, the oracle is able verify the functionality. 

The expected disadvantage of automated audio testing is that only objective 
evaluation is possible. Unless perceptual models are used, it is difficult to find 
methods that acquire subjectively relevant measures. One of the tasks in the future is 
to consider perceptually motivated quality measures. An interesting task that was 
actually close to its resolution during the thesis work would be to generalize the 
swept sine technique for sampling rate converter measurements.  

To conclude, testing EAP through the API was found to be possible but it cannot be 
considered a trivial task. Testing algorithms separately on a lower level would be 
more efficient. However, it does not dispense with system level testing. The end-user 
of the system listens to a black box, too! 
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Appendix A   
 
Test frequencies 

Table A.1 gives the test frequencies that were used in the tests for sampling rate 
converters. The frequencies are rounded to the four most significant digits. 

Table A.1: Filter specifications and test frequencies in sampling rate conversions. 

Input rate 
(kHz) 

Passband 
end (kHz) 

Stopband 
start (kHz) 

Test 
frequencies (Hz) 

8 3.5 4.4 7.797, 15.59, 23.39, 54.58, 132.6, 241.7, 
475.6, 1006, 2004, 3485 

11.025 4.5 6.0 9.375, 18.75, 28.13, 65.63, 159.4, 290.6, 
571.9, 1209, 2409, 4490 

16 7.0 8.8 7.797, 15.59, 23.39, 54.58, 132.6, 241.7, 
475.6, 1006, 2004, 4000, 6994 

22.05 9.0 12.1 9.375, 18.75, 28.13, 65.63, 159.4, 290.6, 
571.9, 1209, 2409, 4809, 8990 

24 10.0 13.2 7.797, 15.59, 23.39, 54.58, 132.6, 241.7, 
475.6, 1006, 2004, 4000, 7977, 9988 

32 14.4 17.6 7.797, 15.59, 23.39, 54.58, 132.6, 241.7, 
475.6, 1006, 2004, 4000, 7977, 

 4101.439×

44.1 18.0 26.4 9.375, 18.75, 28.13, 65.63, 159.4, 290.6, 
571.9, 1209, 2409, 4809, 9590, 

 4101799×
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Appendix B   
 
Implementation  

This appendix introduces Matlab source code for selected part of the work. 

B.1     Analysis of DRC 

B.1.1 test_drc.m  

Test_drc.m is the Matlab entry point in the analysis part of test cases for full-band 
DRC as defined in Section 6.3. Script takes filenames of the test signal and the signal 
under test; DRC control parameters, and test criteria from Matlab workspace. It reads 
signals from files and passes them and the criteria to a test oracle that verifies the 
signal under test. Finally it reports the results and handles figure plotting if requested. 

%test_drc(data_file_name,input_file_name, sample_rate_out, ... 
%         number_of_output_channels, step_dur_seconds, ... 
%         in_level1,in_level2,in_level3,in_level4,in_level5, ... 
%         ccurve_inlevels, ccurve_outlevels, preset_id, ... 
%         error_tolerance_db_pp, figure_plotting) 
% 
% Analysis script for full-band DRC. 
% 
% Uses find_drc_mspoints.m (not listed), drc.m, rawread.m (not      
% listed), cat_report.m (not listed), and standard Matlab functions 
 
% initialize output variables 
ok = 0; 
report = ''; 
tolerance = ''; 
 
% assign input values to short variables 
fs_out = sample_rate_out; 
numch = number_of_output_channels; 
steplen = step_dur_seconds*fs_out; 
etol_db = error_tolerance_db_pp /2; 
curve_in = ccurve_inlevels; 
curve_out = ccurve_outlevels; 
 
% collect level adjustments into array 
numsteps = 5; 
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inlevels = zeros(1,numsteps); 
inlevels(1) = in_level1; 
inlevels(2) = in_level2; 
inlevels(3) = in_level3; 
inlevels(4) = in_level4; 
inlevels(5) = in_level5; 
 
% read EAP numch-channel output from raw audio file 
[eap_output, numsamples] = rawread(data_file_name,numch); 
% strip leading and trailing zeros from the output 
eap_out=stripzeros(eap_output,numch);  
 
% read test signal from raw audio file 
[test_signal, i] = rawread(input_file_name,numch); 
 
% compute amplitude envelope from left channel (for visualization) 
peak_envel=20*log10(abs(hilbert(eap_out(1,:)))/(2^15-1)); 
 
wlen= 24000; % length of the measurement window 
 
% pick measurement points from the amplitude envelope 
ms_points = find_drc_mspoints(peak_envel,fs_out, ... 
                              numsteps,steplen,wlen); 
 
% verify  
[ok,levels] = drc(test_signal, eap_out, inlevels, ms_points, ... 
                  curve_in, curve_out, etol_db, figure_plotting); 
 
levels_realized = levels(1,:); 
levels_expected = levels(2,:); 
error = levels(3,:);  
tolerance = [num2str(error_tolerance_db_pp) ' dB pp']; 
 
% report results 
report=cat_report(report,['DRC preset ' num2str(preset_id) '.\n']); 
report=cat_report(report,['Compression curve in levels: ' ... 
                           num2str(curve_in) ' dB.\n']);  
report=cat_report(report,['Compression curve out levels: ' ... 
                           num2str(curve_out) ' dB.\n']);  
report=cat_report(report,['EAP input levels: ' ... 
                           num2str(inlevels) ' dB.\n']);  
report=cat_report(report,['Expected output levels: ' ... 
                           num2str(levels_expected) ' dB.\n']);  
report=cat_report(report,['Measured output levels: ' ... 
                           num2str(levels_realized) ' dB.\n']);  
report=cat_report(report,['Error (Lexpected - Lmeasured): ' ... 
                           num2str(error) ' dB.\n']);  
if ok == 1 
    report=cat_report(report,['Analysis passed.']); 
else 
    report=cat_report(report, ['Analysis failed.']); 
end 
 
% for debug mode, plot measured and expected levels 
if figure_plotting == 1 
    figure; 
     
    % plot amplitude envelope of the output to get the overall view 
    Ny = length(peak_envel); 
    time_axis=linspace(0, Ny/fs_out, Ny); 
    plot(time_axis, peak_envel); 
    hold on; 
     
    % scale energy levels to peak amplitude levels 
    dBFS_offset1 = 3.9318; % offset for energy level of a FS sine 
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    levels_realized = levels_realized + dBFS_offset1;  
    levels_expected = levels_expected + dBFS_offset1;  
     
    % compute time axis, realized level lines and error tolerance  
    % lines for each level step 
    t=ones(1,2); 
    ms_points_sec = ms_points / 48000; 
     
    t1 = linspace(ms_points_sec(1,1)-1,ms_points_sec(2,1),2); 
    level1=t*levels_realized(1); 
    max1 = t*(levels_expected(1)+etol_db); 
    min1 = t*(levels_expected(1)-etol_db); 
 
    t2 = linspace(ms_points_sec(1,2)-1,ms_points_sec(2,2),2); 
    level2=t*levels_realized(2); 
    max2 = t*(levels_expected(2)+etol_db); 
    min2 = t*(levels_expected(2)-etol_db); 
     
    t3 = linspace(ms_points_sec(1,3)-1,ms_points_sec(2,3),2); 
    level3=t*levels_realized(3); 
    max3 = t*(levels_expected(3)+etol_db); 
    min3 = t*(levels_expected(3)-etol_db); 
     
    t4 = linspace(ms_points_sec(1,4)-1,ms_points_sec(2,4),2); 
    level4=t*levels_realized(4); 
    max4 = t*(levels_expected(4)+etol_db); 
    min4 = t*(levels_expected(4)-etol_db); 
 
    t5 = linspace(ms_points_sec(1,5)-1,ms_points_sec(2,5),2); 
    level5=t*levels_realized(5); 
    max5 = t*(levels_expected(5)+etol_db); 
    min5 = t*(levels_expected(5)-etol_db);     
 
    % plot error tolerances and estimated output level 
    plot(t1,max1,'r--',t2,max2,'r--',t3,max3,'r--',t4,max4,'r--',... 
         t5,max5,'r--'); 
    plot(t1,min1,'r--',t2,min2,'r--',t3,min3,'r--',t4,min4,'r--',... 
         t5,min5,'r--'); 
    plot(t1,level1,'k',t2,level2,'k',t3,level3,'k',t4,level4,'k',... 
         t5,level5,'k'); 
    hold off; 
     
    title([ 'EAP DRC output; curve ' num2str(preset_id) ... 
            ', [' num2str(inlevels) '] dB input ']); 
    xlabel('Time/ s'); 
    ylabel('Level/ dB'); 
    legend('Amplit. envelope','Error tolerance',0); %0=best position 
end 
 
B.1.2 drc.m  

Drc.m is the test oracle in full-band DRC tests. It estimates energy levels of system 
output y in given windows and verifies them against the expected values. Expected 
levels are obtained from the input signal x with a simplified DRC model. 

function [ok, levels] = drc(x, y, level_adjust, ms_points, ... 
                            ccurve_in, ccurve_out, etol_db, ... 
                            figure_plotting) 
% Test oracle for DRC. 
%  
% Uses compressor.m and standard Matlab functions 
 
Ny=length(y); 
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num_steps = length(level_adjust); 
 
% measure realized levels at the end of each level step 
levels_real=zeros(2,num_steps); 
 
for i = 1:num_steps 
    % calculate energy estimate and normalize level to 0 dB 
    levels_real(1,i)=20*log10( ... 
        mean(sqrt(y(1,ms_points(1,i):ms_points(2,i)).^2))/(2^15-1));  
    levels_real(2,i)=20*log10(... 
        mean(sqrt(y(2,ms_points(1,i):ms_points(2,i)).^2))/(2^15-1));          
end 
 
% Compute expected output levels for each input level with a  
% simplified DRC model. 
levels_exp=zeros(2,num_steps); 
 
for i=1:num_steps 
    % boost input signal at measurements points according to level 
    % adjustments 
    step_level_linear = 10 ^(level_adjust(i)/20); 
    x_a = x_(:,ms_points(1,i): ms_points(2,i)).* step_level_linear; 
   
    % input level estimation     
    x_a_summed = sum(abs(x_a),1); 
    inlevel = 20*log10(mean(x_a_summed) ./ (2^15 -1))  
         
    % compute output level from input level and compression curve 
    outlevel = compressor(inlevel,ccurve_in,ccurve_out, ... 
                          figure_plotting) 
    % compute drc gain 
    drc_gain_log = outlevel - inlevel; 
    drc_gain = 10 ^ (drc_gain_log/20)       
     
    % apply linear drc gain to input signal     
    y_exp = x_a .* drc_gain; 
     
    % compute expected levels 
    levels_exp(1,i)= 20*log10(mean(sqrt(y_exp(1,:).^2)')/(2^15-1))'; 
    levels_exp(2,i)= 20*log10(mean(sqrt(y_exp(2,:).^2)')/(2^15-1))'; 
end     
 
% create matrix of realized, expected and error levels 
levels=zeros(3,length(level_adjust)); 
levels(1,:)=levels_real(1,:); 
levels(2,:)=levels_exp(1,:); 
levels(3,:)=levels_exp(1,:)-levels_real(1,:); 
 
% verification of results 
ok = 1; 
error = levels(3,:); 
for i = 1:steps 
    if abs(error(i)) > etol_db 
        ok = 0; 
    end 
end 
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B.1.3 compressor.m 

Calculates the output level y for the input level x according to compression curve 
relation f(curve_in, curve_out). 

 
function y = compressor(x, curve_in, curve_out, figure_plotting) 
 
% add -100 db point in the curves 
curve_in = [-100,curve_in]; 
curve_out = [-100,curve_out]; 
 
N=length(curve_in); 
 
% find linear section of a compression curve for given input level 
for i=1:N-1 
    if x > curve_in(i) & x <= curve_in(i+1) 
        % compute the output level from the line equation y=y0+k*x 
        a=(x-curve_in(i))/(curve_in(i+1)-curve_in(i)); 
        b=curve_out(i+1)-curve_out(i); 
        y=curve_out(i)+a*b; 
        break; % level found, no need to seek further 
    end 
end 
 
% for debug mode, plot compression curve 
if figure_plotting 
    plot(curve_in,curve_out) 
    hold on; 
    plot([-100,0],[-100,0],'k--'); 
    hold off 
    title('Compression curve 3'); 
    xlabel('Input level / dB'); 
    ylabel('Output level / dB'); 
    grid on; 
end 


