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Abstract 
 
Linear prediction (LP) provides a robust, reliable and accurate method for estimating 
the parameters that characterize the linear time-varying system. It has become the 
predominant technique for estimating the basic speech parameters such as formants. 
Linear prediction exploits the redundancies of a speech signal by modelling the 
speech signal as an all-pole filter. The filter coefficients are obtained from standard 
autocorrelation method or covariance method.  
 
In this work, we focus on a new developed method, the Weighted Sum of the Line 
Spectrum Pair (WLSP), which is based on the Line Spectrum Pair (LSP) 
decomposition. In conventional LP, the LSP decomposition is computed to quantise 
the LP information. WLSP utilises the LSP decomposition as a computational tool, 
and it yields a stable all-pole filter to model the speech spectrum. In contrast to the 
conventional autocorrelation method of LP, WLSP takes advantage of the 
autocorrelation of the input signal also beyond the time index determined by the 
prediction order in order to obtain a more accurate all-pole model for the speech 
spectrum. With the help of the spectral distortion method, the experiments results 
show that WLSP can distinguish the most important formants more accurately than 
the conventional LP. 
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Chapter 1  
 
Introduction 
 
 
 
Speech coding is an important aspect of modern telecommunications. Speech coding 
is the process of digitally representing a speech signal. The primary objective of 
speech coding is to represent the speech signal with the fewest number of bits, while 
maintaining a sufficient level of quality of the retrieved or synthesized speech with 
reasonable computational complexity. To achieve high quality speech at low bit rate, 
coding algorithms apply sophisticated methods to reduce the redundancies, that is, to 
remove the irrelevant information from the speech signal. 
 
In addition, a lower bit rate implies that a smaller bandwidth is required for 
transmission. Although in wired communications very large bandwidths are now 
available as a result of the introduction of optical fiber, in wireless and satellite 
communications bandwidth is limited. At the same time, multimedia communications 
and some other speech related applications need to store the digitised voice. Reducing 
the bit rate implies that less memory is needed for storage. These two applications of 
speech compression make speech coding an attractive field of research. 
 
1.1 Speech properties 
 
Before elaborating on speech coding, some speech properties have to be discussed. 
Speech is highly redundant. For example, multiple peak clipping of the speech signal 
(i.e. reducing it to binary waveform) eliminates virtually all amplitude information, 
yet listeners easily understand speech distorted provided that the sampling frequency 
is large enough. Speech signals are non-stationary and at best can be considered as 
quasi- stationary over short segments, typically 5-20 ms. The statistical and spectral 
properties of speech are thus defined over short segments. Speech can generally be 
classified as voiced (e.g., /a/, /i/, etc.), unvoiced (e.g., /s/), or mixed. Time and 
frequency domain plots for voiced and unvoiced segments are shown in Figure 1.1. 
Voiced speech is quasi-periodic in the time domain and harmonically structured in the 
frequency domain while unvoiced speech is noise-like and broadband. In addition, the 
energy of voiced segments is generally higher than the energy of unvoiced segments. 
An important feature in the spectrum is the resonant structure (peaks) known as 
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formants (see the spectrum of the voiced speech of Fig. 1.1. These formants are 
known to be perceptually important in the recognition of speech sounds, particularly 
for vowels.  
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.1 An unvoiced to voiced speech transition, the underlying excitation signal 
and short-time spectra. 
 
 
 
1.2 Speech coding  
 
Over the past few decades, a variety of speech coding techniques has been proposed, 
analyzed, and developed. Here, we briefly discuss techniques, which are used today, 
and those which may be used in the future [45]. Traditionally, speech coders are 
divided into two classes—waveform coders and source coders (also known as 
parametric coders or vocoders). Typically waveform coders operate at high bit-rates, 
and give very good speech quality. Source coders are used at very low bit-rates, but 
tend to produce synthetic quality speech. Recently, a new class of coders, called 
hybrid coders, was introduced which uses techniques from both source and waveform 
coding, and gives good quality speech at intermediate bitrates. Figure 1.2 shows the 
typical behavior of the speech quality versus bit-rate curve for the two main classes of 
speech coders. 
 
1.2.1 Waveform Coders 
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Waveform coders attempt to reproduce the input signal waveform. They are generally 
designed to be signal independent so they can be used to code a wide variety of 
signals. Generally they are low complexity coders producing high quality speech at 
rates above about 16 kbps. Waveform coding can be carried out either in the time 
domain or in the frequency domain. 
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      Figure 1.2 Speech quality versus bit-rate for common classes of coders 
                        

e Domain Coders 

e domain coders perform the coding process on the time samples of the signal 
. The well known coding methods in the time domain are [13, 45]: Pulse Code 
u-lation (PCM), Adaptive Pulse Code Modulation (APCM), Differential Pulse 
e Modulation (DPCM), Adaptive Differential Pulse Code Modulation (ADPCM), 
a Modulation (DM), Adaptive Delta Modulation (ADM), and Adaptive Predictive 
ing (APC). In the following, we briefly describe some important coding schemes 
e time domain.  

 Coders  

e code modulation is the simplest type of waveform coding. It is essentially just a 
ple-by-sample quantization process. Any form of scalar quantization can be used 
 this scheme, but the most common form of quantization used is logarithmic 
tization. The International Telegraph and Telephone Consultative Committee’s 

ITT) Recommendation G.711 determines 8 bit A-law and µ-law PCM as the 
dard method of coding telephone speech. 

M and ADPCM Coders 
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PCM makes no assumptions about the nature of the waveform to be coded in most of 
the cases, hence it works well for non-speech signals. However, when coding speech 
there is a very high correlation between adjacent samples. This correlation could be 
used to reduce the resulting bit-rate. One simple method to do this is to transmit only 
the differences between each sample. This difference signal will have a much lower 
dynamic range than the original speech, so it can be effectively quantized using a 
quantizer with fewer reconstruction levels. In the above method, the previous sample 
is being used to predict the value of the present sample. The prediction would be 
improved if a larger block of the speech is used to make the prediction. This technique 
is known as differential pulse code modulation (DPCM). Its structure is shown in Fig. 
1.3. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.3 General differential PCM system: coder on left, decoder on right. The 
inverse quantizer simply converts transmitted codes back into a signal u  value. )(ˆ n
 
 
An enhanced version of DPCM is Adaptive DPCM in which the predictor and 
quantizer are adapted to local characteristics of the input signal. There are a number 
of ITU recommendations based on ADPCM algorithms for narrowband (8 kHz 
sampling rate) speech and audio coding e.g., G.726 operating at 40, 32, 24 and 16 
kbps. The complexity of ADPCM coders is fairly low. 
 
 
Frequency Domain Coders 
 
Frequency domain waveform coders split the signal into a number of separate 
frequency components and encode these separately. The number of bits used to code 
each frequency component can be varied dynamically. Frequency domain coders are 
divided into two groups: subband coders and transform coders. 
 
Subband Coders 
 
Subband coders employ a few bandpass filters (i.e., a filterbank) to split the input 
signal into a number of bandpass signals (subband signals) which are coded 
separately. At the receiver the subband signals are decoded and summed up to 
reconstruct the output signal. The main advantage of subband coding is that the 
quantization noise produced in one band is connected to that band. The ITU has a 
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standard on subband coding (i.e., G.722 audio coder [30]) which encodes wideband 
audio signals (7 kHz bandwidth sampled at 16 kHz) for transmission at 48, 56, or 64 
kbps. 
 
Transform Coders 
 
This technique involves a block transformation of a windowed segment of the input 
signal into the frequency, or some other similar, domain. Adaptive Coding is then 
accomplished by assigning more bits to the more important transform coefficients. At 
the receiver the decoder carries out the inverse transform to obtain the reconstructed 
signal. Several transforms like the Discrete Fourier transform (DFT) or the Discrete 
Cosine Transform (DCT) can be used. 
 
 
1.2.2 Source Coders 
 
Source coders operate using a model of how the source was generated, and attempt to 
extract, from the signal being coded, the parameters of the model. It is these model 
parameters which are transmitted to the decoder. Source coders for speech are called 
vocoders, and use the source-filter model of speech production as shown in Fig. 1.4. 
This model assumes that speech is produced by exciting a linear time-varying filter 
(the vocal tract) by a train of pulses for voiced speech, or white noise for unvoiced 
speech segments. Vocoders operate at around 2 kbps or below and yield synthetic 
quality.  
 
Depending upon the methods of extracting the model parameters, several different 
types of vocoders have been developed, viz, channel vocoder, homomorphic vocoder, 
formant vocoder, linear prediction vocoder [26, 45]. 
 
 
1.2.3 Hybrid Coders 
 
Hybrid coders attempt to fill the gap between waveform and parametric coders. 
Waveform coders are capable of providing good quality speech at bit-rates around 16 
kbps; on the other hand, vocoders operate at very low bit-rates (2.4 kbps and below) 
but cannot provide natural quality. Although other forms of hybrid coders exist, the 
most successful and commonly used are time domain Analysis-by-Synthesis (AbS) 
coders. Such coders use the same linear prediction filter model of the vocal tract as 
found in LPC vocoders. However, instead of applying a simple two-state 
voiced/unvoiced model to find the necessary input to this filter, the excitation signal is 
chosen by matching to match the reconstructed speech waveform as closely as 
possible to the original speech waveform. A general model for AbS coders is shown 
in Fig. 1.5. AbS coders were first introduced in 1982 by Atal and Remde with what 
was to become known as the Multi-Pulse Excited (MPE) coder. Later the Regular-
Pulse Excited (RPE), and the Code-Excited Linear Predictive (CELP) coders were 
introduced. Many variations of CELP coders have been standardized, including [7, 
13] G.723.1 operating at 6.3/5.3 kbps, G.729 operating at 8 kbps, G.728 a low delay 
coder operating at 16 kbps, and all the digital mobile telephony encoding standards 
including [7, 18, 22] GSM, IS-54, IS-95, and IS-136. The waveform interpolation 
coder that will be discussed in the subsequent chapters is also a hybrid coder. 
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Figure 1.4 The source-filter model of speech production used by vocoders. 
 
 
 
1.2.4 Performance criteria of speech coding 
 
There are different dimensions of performance of speech coders. To judge a particular 
speech coder certain performance criteria should be considered. Some of the major 
performance aspects of speech coders are discussed below: 
 
• One of the major criteria is speech quality. Speech coders tend to produce the least 
audible distortion at a given bit rate. Naturalness and intelligibility of the produced 
sounds are important and desired criteria. The speech quality can be determined by 
listening tests, which compute the mean opinion of the listeners. The quality of speech 
can also be determined in some cases in terms of the objective measures such as SNR, 
prediction gain, log spectral distortion. Speech coders strive to make the decoded or 
synthesized speech signal as close as possible to the original signal. 
 
• Another important issue is bit rate. The bit rate of the encoder is the number of bits 
per second the encoder needs to transmit. The objective of the coding algorithm is to 
reduce the bit rate but maintain the high quality of speech. 
 
• Speech coding algorithms are typically implemented on DSP chips. These chips 
have limited memory (RAM) and speed (MIPS-million instructions per second). 
Consequently, speech coding algorithms should not be so complex that their 
requirements exceed the capacity of modern DSP chips. 
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Figure 1.5 Analysis-by-Synthesis (Abs) coder structure. (a) encoder and (b) decoder. 
 
 
 
 
• Often, speech coding algorithms process a group of samples together. If the number 
of samples is too large, it introduces an additional delay between the original and the 
coded speech. This is undesirable in the case of real time transmission, but it is 
tolerable to a larger extent in the case of voice storage and playback. 
 
• Bandwidth of the speech signal that needs to be encoded is also an issue which 
should be taken into account. Typical telephony requires 200–3400 Hz bandwidth. 
Wideband speech coding techniques (useful for audio transmission, tele-conferencing 
and tele-teaching) require 7–20 kHz bandwidth. 
 
• The speech coding algorithms must be robust against channel errors. Channel errors 
are caused by channel noise, inter-symbol interference, signal fading. 
 
• While speech signals are transmitted in real applications, they are distorted by 
different types of background acoustic noises such as street noise, car noise, and 
office noise. Speech coding algorithms should be capable of maintaining a good 
quality even in the presence of such background noises. 
 
 
1.3 Objective of this research 
 
Linear prediction analysis of speech is historically one of the most important speech 
analysis techniques. The traditional linear prediction exploits the redundancies of a 
speech signal by modelling the speech signal as a linear filter. The basis is the source-
filter model where the filter is constrained to be an all-pole linear filter. The filter 
coefficients are derived in such a way that the energy at the output of the filter is 
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minimized. However, the conventional linear prediction has some limitations. As we 
will see late, it cannot detect the formants very precisely. In this work, we will focus 
on a new method developed by T. Bäckström and P. Alku [1, 2, 4], the Weighted Sum 
of the Line Spectrum Pair (WLSP), which is based on the LSP decomposition. WLSP 
has good properties and behaviours comparing the traditional linear prediction with 
the same order. We perform WLSP in both the clean and noisy speech.  
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Chapter 2  
 
Linear Prediction 
 
 
 
During the past two decades, LPC has become one of the most prevalent techniques 
for speech analysis. In fact, this technique is the basis of all the sophisticated 
algorithms that are used for estimating speech parameters, e.g., pitch, formants, 
spectra, vocal tract and low bit representations of speech. The basic principle of linear 
prediction states that speech can be modelled as the output of a linear, time-varying 
system excited by either periodic pulses or random noise.  
 
 
2.1 Linear prediction modelling 
 
The most general predictor form in linear prediction is the autoregressive moving 
average (ARMA) model where a speech sample  is predicted from p past 
predicted speech samples ,…, 
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model since the output is a weighted average of the  prior inputs. Conversely, when 
 for 1  )  reduces to an all-pole or autoregressive (AR) model in 

which case the transfer function is simply as  

q
0=lb ,ql ≤≤ (zH

(nu

(nu

 
 
 
 
 
 
Figure 2.1 shows the two r
 
 
 
 
 

zH ( 
) 

 
 
                                           
   
 

∑
=

p

k
k sa

1

× 

 
 
 

) 
 
 
 
 
 
 
                                           
 
                        

Figure 2.1. Two represen
                   

 
 
2.2 Estimation of linear p
 
There are two widely used
 
• Autocorrelation. 
• Covariance. 
Both methods choose the L
is minimized. The classica
 
In the following sections, 
of LP. 

 

11

(z

.
)1

)(

1

Aza
zH p

i

k
k

=
−

=

∑
=

−

                                    (2.3)   

epresentations of all-pole model. 

G

∑
=

−−
= p

k

k
k za

1
1

)
)(ns

          

Σ )(ns
−n(

      
tatio

red

 met

P c
l lea

we 
+

-

G

k)
Linear Predict
of Order p 

     
ns of discrete all-pole mo

iction coefficients 

hods for estimating the LP

oefficients { } in such a
st square technique is used

ka

will go through the major 

16
or 

del 

 coefficien

 way that t
 for that pu

issues relat
ts: 

he residual energy 
rpose. 

ed to computation 



 
2.2.1 Windowing 
 
Speech is a time varying signal. In signal analysis, one typically assumes that the 
properties of a signal usually change relatively slowly with time. This allows for 
short-term analysis of a signal. The signal is divided into successive segments, 
analysis is done on these segments and some dynamic parameters are extracted. The 
signal  is multiplied by a fixed length analysis window  to extract a 
particular segment at a time. This is called windowing. The simplest analysis window 
is a rectangular window of length N:  
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 has an abrupt discontinuity at the edge in the time domain. As 
rge side lobes and undesirable ringing elects in the frequency 
s problem, the Hamming window was used in this research. It is 
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window with length N, we get a windowed speech segment 
Then the energy in the residual signal is minimized. ).()( nwns=
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where initially   and )0()0( RE = 0)0( =a . At each iteration, the mth coefficient 
 for  describes the optimal mth order linear predictor; and the 

minimum error  is reduced by a factor 
)(mam m,,2,1 K

)(mE
k =

( )2)(1 mk− . Since  (squared error) 
is never negative, | . The details of the Levinson-Durbin (LD) algorithm are 
shown in the following Table. 
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            Table 1 Levison-Durbin algorithm for solving a Toeplitz system 
 
 
Input: Predictor order p , Autocorrelation coefficient ,K . )0(R )(, pR
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Decomposition Method: the covariance method 
 
The decomposition method is generally used for solving the covariance equations. 
Due to the symmetric and positive definite nature of the covariance matrix φ , it can 
be decomposed as (the Cholesky decomposition) 
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This equation can be written as
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These can be used to found the elements of the lower triangular matrix . Solution 
for  can then be found by using forward elimination and backward substitution. 

C
a

 
 
2.2.5 Stability 
 
A causal all-pole filter is stable if all its poles lie inside the unit circle. The poles of 

 are simply the roots of , where  and  are defined in equation 
(2.3). Using the autocorrelation method, if the coefficients  are positive definite, 
the solution of the autocorrelation equation (2.10) gives predictor parameters which 
guarantee that all the roots of  lie inside the unit circle [3, 29]. In other words, 
the filter 1  is stable. 
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)(/ zA
 
However, using covariance method, the predictor parameters from the solution of the 
equation (2.15) cannot in general be guaranteed to form a stable all-pole filter. The 
computed filter tends to more stable as the number of signal samples N is increased. 
 
Comparing autocorrelation method and covariance method, the covariance method is 
quite general and can be used with no restrictions. The only problem is that of 
stability of the resulting filter, which is not a severe problem generally. In the 
autocorrelation method, on the other hand, the filter is guaranteed to be stable, but the 
problems of parameter accuracy can arise because of the necessity of windowing the 
time signal. This is usually a problem if the signal is a portion of an impulse response. 
 
 
2.2.6 Computing the gains 
 
Levinson-Durbin's algorithm gives the gain as )()0( / pEEG = .  This may also be 
calculated as:  
 p1
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r (LSP) decomposition was first introduced by Itakura in 1975 
 as a convenient representation of Linear Prediction Coding 
ome other representations of LP parameters, such as reflection 
correlations (AC), log area ratios (LAR), arcsine of reflection 
pulse response of LP synthesis filter (IR). The Line Spectrum 

ition has advantageous properties over others [41]. In this 
 phase predictor polynomial computed by the autocorrelation 

diction is split into a symmetric and an antisymmetric 
 proved that the roots of these two polynomials, the LSPs, are 

he unit circle, if the original LP predictor is minimum phase 
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[29]. Furthermore, it has been shown that LSPs behave well when interpolated [5]. 
Due to these properties, the LSP decomposition has become the major technique in 
quantisation of LP information and it is used in various speech coding algorithms. 
 
 
2.3.1 Line spectral pair polynomials 
 
Consider the conventional LP polynomial with order p , 
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LSP polynomials  and Q  of order p+1 as )(1 zPp+ )(1 zp+
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f the unit circle property and the intra-model interlacing 
es depict the zeroes of the original LPC polynomial A(z), 
are the zeroes of LSP polynomials P(z) and Q(z), 
w how the zeroes are transformed in LSP decomposition. 
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It is easy to see that LSP polynomials  and Q  are symmetric and 
antisymmetric, respectively; and trivially,  

)(1 zPp+ )(1 zp+

 
 
 
 
 
 
 
2.3.2 The root properties of LSP polynomials 
 
The LSP polynomials have the following properties. 
 
Property 1 (Unit circle property) Zeroes of the LSP polynomials  and Q  
are on the unit circle. 
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Property 2 (Intramodel interlacing property) Zeroes of the LSP polynomials  
and Q  are separated and interlaced if the zeroes of polynomial  are inside 
the unit circle. 

)(1 zPp+
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Figure 2.2 demonstrates the first two properties. 
 
Property 3 (Stability of reconstructed polynomial) If the zeroes of the LSP 
polynomials  and Q  are separated and interlaced on the unit circle, then 
the zeroes of the reconstructed polynomials  are inside unit circle 
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Property 4 (Intermodel interlacing property) The zeroes of the LSP polynomial 

 are interlaced with the zeroes of the polynomial , and the zeroes of the 
LSP polynomial Q  are interlaced with the zeroes of the polynomial Q . 

)(1 zPp+ )(zPp

)(1 zp+ )(zp

 
Property 5 (Roots loci property) 
Consider  and  as members of the family of polynomials )(zPp )(zQp
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Where  and cMgc =0 .,,1, Mkg kMk L== −  
 
Soong and Juang [41] proposed a numeric method by converting )(ωY  to a 
polynomial in ωcos=x  using multi-angle relations to find the roots of )(ωY , while 
Kabal and Ramachandran used Chebyshev polynomials [23]. 
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Chapter 3  
 
Distortion measurements 
 
 
 
 
A distortion measure is an assignment of a nonnegative number to an input/output 
pair of a system. The distortion between an input or original and an output or 
reproduction represents the cost or distortion resulting when that input is reproduced 
by that output. To be useful, a distortion measure must possess to a certain degree the 
following properties [15, 16]:  
 
• It must be subjectively meaningful in the sense that small and large distortion  
   correspond to good and bad subjective quality, respectively;  
• It must be tractable in the sense that it is amenable to mathematical analysis and  
   leads to practical design techniques;  
• It must be computable in the sense that the actual distortions resulting in a real  
   system can be efficiently computed. 
 
Distortion measures have a wide variety of applications in the design and comparison 
of systems. It plays an important role in speech coding. One use of the distortion 
measures is to evaluate the performance of speech coding system. In this chapter, we 
will summarize the most often used distortion measures. 
 
 
3.1 Time domain measures 
 
The signal-to-noise ratio (SNR) and the segmental SNR (SNRseg) are the most 
common time-domain measures of the difference between original and coded speech 
signals. 
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Signal-to-Noise Ratio 
 
The signal-to-noise ratio (SNR) can be defined as the ratio between the input signal 
power and the noise power, and is given in decibels (dB) as: 
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 are the end-times for the m frames, each of which is length 
entation of the SNR permits the objective measure to assign equal 
d and soft portions of the speech. In some cases, problems might arise 

mental SNR measure if frames of silence are included, since large 
 values bias the overall measure of SNRseg. A threshold can be used to 
rames that contain unusually high or low SNR values. An extension to 
 SNR is the frequency weighted segmental SNR measure and it can be 
 the listener’s perception of quality. It has the following form: 
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3.2 Spectral envelop distortion measures 
 
A spectral distortion measure is a function of two spectral densities,  and f f
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example, which assigns a nonnegative number ),( ffd
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efine the lower and upper frequency limits of integration. Ideally, 
 and  corresponds to half the sampling frequency. uw
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The Itakura-Saito distortion measure 
 
The Itakura-Saito measure generally corresponds better to the perceptual quality of 
speech. Also known as likelihood ratio distance measure, it measures the energy ratio 
between the residual signal that results when using the quantized LP filter and the one 
that results when using the unquantized LP filter. It is defined as follows: 
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with  being the set of ik p  reflection coefficients and ik

)
 their quantized counterpart. 

 
The Cepstral distance 
 
The  cepstral distance is defined as: 2L
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Using Parseval’s equality and the fact that nn cc −=  and 00 =c . 
 
The log spectral distortion measure suffers from the drawback that Fourier transform 
and logarithm computations are required for each point in the summation. The 
cepstral distance can be computed efficiently by truncating the summation to a finite 
number terms , usually three times the order of the LP analysis filter: N
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The introduction of a weighting term in the cepstral distance has been investigated by 
several researchers: 
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where the weighting term can be: 
• , called quefrency weighted cepstral distance [29]. 2)( nnw =
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The Weighted Euclidean LSF distance measure 
 
The Euclidean distance measure between two vectors is simply as: 
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relationship to the shape of the spectral envelope, we associate them with this 
measure. 
 
The Euclidean distance measure allocates equal weights to individual components of 
the LSF vector. Spectral sensitivities can be taken into account with a weighted 
Euclidean distance, which is defined as: 
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g schemes have been given by Paliwal and Atal [36], and Laroia et al 

31



 
 
 
 
 
 
 
 
 
 
 
 

Chapter 4  
 
Weighted Sum of the Line Spectrum 
Pair 
 
 
 
 
Since the criterion of optimisation in the conventional LP analysis is the minimization 
of the residual energy, all the frequencies of the input signal are treated equally. In 
other words, the all-pole model computed by the conventional LP favors high-energy 
regions of signal spectrum regardless of at which frequencies these occur. This equal 
treating of the frequencies of the input signal is inconsistent with, for example, the 
properties of human hearing, which is known to be frequency dependent (i.e, the 
spectral resolution decreases towards higher frequencies) [12]. Therefore, linear 
predictive methods have been developed that utilize frequency selectivity of human 
hearing [40, 42]. The equal treating of the input frequencies embedded in the 
conventional LP analysis is also inconsistent from the point of view of speech 
production, because the most important formants, the first and second formant, are 
typically located at frequencies below 2 kHz. Hence, both from the speech 
production’s and perception’s point of view it would be desirable to obtain all-pole 
models of speech with improved resolution on the frequency range where the lowest 
two lowest formants are located rather than modelling high-energy regions over the 
entire frequency range of the input signal (see Figure 4.1). 
 
In this chapter, we focus on the algorithm of the Weighted-sum of the Line Spectrum 
Pair (WLSP), which is a newly developed linear predictive algorithm by T. 
Bäckström and P. Alku [1, 2, 4]. WLSP yields an all-pole filter of order m to model 
the speech spectrum. In contrast to the conventional autocorrelation method of LP, 
WLSP takes advantage of the autocorrelation of the input signal also beyond time 
index m in order to obtain a more accurate all-pole model for the speech spectrum. 
WLSP utilises the LSP decomposition in a manner different from that typically used 
in speech coding: the LSP decomposition is not computed in order to quantise the LP 
information but rather as a computational tool, using which stable all-pole filters with 
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the proposed autocorrelation matching property are defined. WLSP method could 
distinguish these perceptually most important formants more accurately than 
conventional LP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1 Illustration of the failure of the conventional LP in modelling of the second 
formant (marked F2). The FFT spectrum of the input signal (vowel /a/) is depicted by 
thin line and the all-pole spectrum of the conventional LP (m = 16) is depicted by 
thick line. 
 
 
4.1 Weighted Sum of the LSP Polynomials 
 

The conventional LP predictor of order m is given by  The 
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expected value of correlation E{xxT}, and the residual energy is σ2 = aTRa.  
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The WLSP method is based on the predictor polynomial ),( λzD , which is defined as 
[35] 
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an write the following expression for the residual energy 
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Vector )(λd corresponds to the LP predictor of order 1+m  if λ is chosen such that 
the last row in Eq. 4.6 becomes equal to zero, that is, 
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This is, in fact, one iteration step of the split Levinson-Durbin recursion [11, 28]. 
 
Incrementing the predictor order in LP decreases the energy of the residual. Thus, the 
residual energy for the model order  should be greater than or equal to the residual 
energy for the model order  (Eq. 7), that is, 
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Figure 4.2 Root tracks of ),( λzD  for R∈λ , an example with m = 10. Small circles 
inside the unit circle correspond to the roots of the LP polynomial , and small 
circles outside the unit circle correspond to their mirror image partners (i.e. roots of 

). The LSP polynomials roots are at the intersections of the unit circle and the 

)(zAm

)( 1−zAm

),( λzD  root tracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Model performance (m = 10) in the autocorrelation domain. Dotted line is 
the original autocorrelation (male vowel /a/). Autocorrelation functions given by LP 
and WLSP, are denoted by dashed and solid line, respectively. The arrow indicates 
the interval used in the optimisation of λ. 
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Apart from being continuous, the root tracks of ),( λzD  can be proved to form closed 
paths, that is, their ending points coincide. In fact, when λ goes to infinity (either 
positive or negative), then roots of ),( λzD

)(zAm

 will become roots of   (i.e., the 
mirror image partners of the roots of ). That is, 

)( 1−zAm

 
)()1()(),( −+ zQzPzD λλλ 

 
 
 
 
Concluding, po
function of λ. T
otherwise unsta

order m-1 and λ

 
4.2 Algorithm 
 
Given an inpu
comprises the 
denoted by i). 
 
1. Calculate LP
autocorrelation 

 
2. Construct the

 
3. Identify the f
Define I as the 

 
4. Define an all
the all-pole filt
between the a
autocorrelations
equals m.) See F
 
 
 
 
 
 
 
 
 
 

 

).(2
1

)()12()(
lim

1
lim

1
lim

1
1

11

11

−−
−

−−−

±∞→

−±∞→−±∞→

=
+
−+

=

+
=

+

zAz
z

zAzzA
zz

m
mm

m
m

λ
λ

λλ

λ

λλ (4.9) 

lynomial ),( λzD  is well-behaved and in the root space a continuous 
he all-pole filter  is stable in the open interval ),(1 λzD − )1,0(∈λ  and 
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Chapter 5  
 
Experiments 
 
 
 
 
In this chapter, we apply WLSP to clean and noisy speech and compared it with the 
linear prediction. As a distortion measurement, rms log spectral distortion [15, 16] 
was used to analysis the behaviours of WLSP and conventional linear prediction. 
 
5.1 WLSP with clear speech 
 
Conventional LP might result in poor modelling of those formants of wide-band 
speech that are close to each other at low frequencies, see Figure 4.1. Therefore, we 
aimed at analysing whether the WLSP method could distinguish these perceptually 
most important formants more accurately.  
 
The Finish vowels /a/, /e/, /i/, /o/, /u/ and /y/ with five male and female speakers were 
studied by using linear prediction and WLSP. The two linear predictive analyses were 
computed using a prediction order m = 10, a 20 ms Hamming window and a sampling 
frequency of 8kHz. The spectra of vowels /a/, /e/, /i/, /o/, /u/ and /y/ are shown in 
Figure 5.1 to 5.6. 
 
Comparing the spectra of LP and WLSP for the Finnish male vowel /a/, as seen in 
Figure 5.1, we found that the WLSP detects the first four formants, but, the 
conventional linear prediction cannot find the formants as clear as WLSP, especially 
for the second formant. The same phenomenon happened when analysing Finnish 
male vowel /e/, /y/ and /i/ (see Figure 5.3-5.6). Figure 5.2 shows the spectrum of the 
Finnish male vowel /o/, the conventional linear prediction cannot find the second 
formant while WLSP detects it. 
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Figure 5.1 The FFT spectrum of a male vowel /a/ together with all-pole spectra of LP 
and WLSP. The order is 10 and Hamming window is 20 ms. 
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n

gure 5.2 The FFT spectrum of a male vowel /o/ together with all-pole spectra of LP 
d WLSP. The order is 10 and Hamming window is 20 ms. 
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igure 5.3 The FFT spectrum of a male vowel /e/ together with all-pole spectra of LP 
nd WLSP. The order is 10 and Hamming window is 20 ms. 

i
n

gure 5.4 The FFT spectrum of a male vowel /y/ together with all-pole spectra of LP 
d WLSP. The order is 10 and Hamming window is 20 ms. 
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Figure 5.5 The FFT spectrum of a male vowel /i/ together with all-pole spectra of LP 
and WLSP. The order is 10 and Hamming window is 20 ms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5.6 The FFT spectrum of a male vowel /u/ together with all-pole spectra of LP 
and WLSP. The order is 10 and Hamming window is 20 ms. 
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We further compared the behaviours of LP and WLSP in modelling of formants by 
using the following procedure. For a given all-pole spectrum (in dB), we define the 
formant peak as a local maximum of the spectrum, and the spectrum valley as a local 
minimum of the spectrum following this peak. The level difference of these two 
spectral components is denoted by Ldif, which was computed to characterize the 
dynamics of the all-pole spectrum in the vicinity of the corresponding formant. We 
subtract Ldif given by LP from Ldif yielded by WLSP for all the formants extracted. 
This difference ∆L = Ldif,LP - Ldif,WLSP is negative in case WLSP models a formant 
with larger dynamics than LP.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                         (a) 

 
                                      (b) 

Figure 5.7 Model performance (m = 10) in the frequency domain. Difference between 
formant to valley ratios (∆L) in LP and WLSP (L = 20). (a) Male speaker, (b) Female 
speaker. 
 
 
The value of ∆L is shown in Figure 5.7 for 5 vowels with male and female speakers 
analysed. It can be noticed from this figure that WLSP yields in general all-pole 
spectra where peaks of the upper formants become more distinguished in comparison 
to formants modelled by LP. Value of ∆L averaged over all vowels and formants was 
–1.65 dB for the male subject and –1.52 dB for the female. Statistical treatment 
revealed that the value of ∆L differed significantly from the zero level for both 
genders. This effect can be seen in an example depicted in Figure 5.5, which shows 
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the FFT spectrum of a male vowel /i/ together with the all-pole spectra given by LP 
and WLSP. 
 
 
5.2 WLSP with noisy speech 
 
In this section, WLSP was compared to conventional LP in noisy speech. Finnish 
vowels /a/ produced by different male speakers were analysized. Speech signals were 
degraded by Gaussian noise with a signal-to-noise rate of 15 dB. The two linear 
predictive analyses were computed using a prediction order m = 10, a 20 ms 
Hamming window and a sampling frequency of 8kHz. Noisy all-pole spectra given by 
LP and WLSP were compared to clean all-pole spectra given by LP by using a spectra 
distortion measure, rms log spectral distortion as described in [15, 16].  
 
Consider two spectra S(ω) and S’(ω). The difference between the two spectra is 
defined by 
 
                                   )('log)(log)( ωωω SSV −=               
 
and the rms log spectral distortion measure is given by 
 

                                   ∫
−

=
π

π π
ωωδ

2
|)(|)',( 2 dVSSD                    

 
Figure 5.8 (a) shows an example of all-pole spectra obtained by LP and WLSP in the 
analysis of a noisy vowel /a/. It can be seen that WLSP detects the first two formants, 
while LP only finds the first one. The differences of both the LP spectrum and the 
WLSP spectrum of noisy speech to the LP spectrum of clean speech are shown in 
Figure 5.8 (b). The distortion measure shows that the distance between the WLSP 
spectrum of noisy speech and the LP spectrum of clean speech is smaller than the 
distance between LP spectrum of noisy speech and that of clean speech. Table 1 gives 
the distortion measure values of the Finnish vowel /a/ produced by four male 
speakers, which confirms that WLSP provides better distortion measurement results 
than the conventional LP. 
 
In our earlier studies, we have noted that with WLSP in clean speech, formant peak 
models might become narrower than what is desirable. On the other hand, in the 
current study, it can be seen that the bandwidth of formants is not a problem in noisy 
speech. Indeed, in noisy speech WLSP seems to be significantly better than LP 
especially in finding the two first formants. Therefore, we suggest that in speech 
coding it might be advantageous to interpolate between LP and WLSP models (which 
can be done straightforwardly in the coefficient space) as a function of some SNR-
estimate. The LP model would then be dominant for clean speech and WLSP in noisy 
speech. 
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                                                     (a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                     (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.8. Model performance (m = 10) in the frequency domain for male vowel /a/ 
with sampling frequency 8kHz. (a) spectra of WLSP and LP  (b) difference of WLSP 
spectrum and LP spectrum of noisy speech to LP spectrum of clean speech.  
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          Table 1 Rms log spectra distortion measure (Eq. 4) in dB, for the 
difference of clean LP to noisy LP (upper row) and the difference of clean LP 
to noisy WLSP (lower row). Analysis was computed for the vowel /a/ 
produced by four male speakers (M1-M4). 

 
M1 M2 M3 M4 

Clean LP – noisy LP 16,8 9,4 15,9 19.8 

Clean LP – noisy WLSP 16,2 7,2 15,6 18.9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.9  
vowel /a/ w
 
 
 
 
 
 
 
 

 

 

Model distortion performance (m = 10) in the frequency domain for male 
ith sampling frequency 8kHz. 
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Furthermore, to evaluate the most important formants, the distortion measurements 
were used in the areas of the first two formants, which include the region from the 
peaks going down 3 dB, as shown in Figure 5.9. Data obtained for both formants in 
Figure 5.10 reveals that WLSP models formant structure more accurately than 
conventional LP of the same prediction order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 Dis
and LP spectra.
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Chapter 6 
 
Conclusions 
 
 
 
 
In Chapter 1, we presented some background information about speech coding, which 
included the properties of speech signals and the basic aspects of speech coders. The 
objective and the motivation of our research were outlined. Chapter 2 presented a 
review of linear prediction analysis of speech and an estimation of linear predictive 
coefficients. Other alternative representations of LP coefficients such as line spectral 
frequencies, reflection coefficients, log area ratios, autocorrelation functions were 
discussed. In Chapter 3, we described a number of variations of objective distortion 
measures and subjective distortion measures. 
 
Chapter 4 presents the Weighted Sum of the Line Spectrum Pair method (WLSP), 
which utilizes the advantages of LSP decomposition. The main characterizations of 
WLSP are as following: 
 
• The WLSP predictor polynomial is defined based on the LSP polynomials as 
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• The filter based on WLSP predictor polynomial is stable if )1,0(∈λ , and otherwise  
   unstable.  
 
In chapter 5, we did some experiments comparing the behaviours of linear prediction 
and WLSP with clear and noisy speech. The results can be summarized as follows: 
 
• In clean speech, the spectra of WLSP and LP of Finnish vowels show that WLSP 
detects the first four formants, it can find the formants more clearly than LP. 
Specially, WLSP can find the second formant while LP cannot for vowel /o/. 
 
• Moreover, WLSP models a formant with larger dynamics than LP in clean speech.  
 
• In noisy speech, the spectra of WLSP and LP show that WLSP detects the formants 
more precisely than linear prediction of the same order. 
 
• Moreover, the distortion measurement shows that WLSP models formant structure 
more accurately than conventional LP of the same prediction order. 
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