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Abstract

This study focuses on feature selection in paralinguistic analysis and presents recently developed supervised and unsu-
pervised methods for feature subset selection and feature ranking. Using the standard k-nearest-neighbors (kNN) rule
as the classification algorithm, the feature selection methods are evaluated individually and in different combinations in
seven paralinguistic speaker trait classification tasks. In each analyzed data set, the overall number of features highly
exceeds the number of data points available for training and evaluation, making a well-generalizing feature selection
process extremely difficult. The performance of feature sets on the feature selection data is observed to be a poor indi-
cator of their performance on unseen data. The studied feature selection methods clearly outperform a standard greedy
hill-climbing selection algorithm by being more robust against overfitting. When the selection methods are suitably
combined with each other, the performance in the classification task can be further improved. In general, it is shown
that the use of automatic feature selection in paralinguistic analysis can be used to reduce the overall number of features
to a fraction of the original feature set size while still achieving a comparable or even better performance than baseline
support vector machine or random forest classifiers using the full feature set. The most typically selected features for

recognition of speaker likability, intelligibility and five personality traits are also reported.
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1. Introduction

Automatic paralinguistic analysis of speech signals aims
to uncover aspects of speech that are not related to the lin-
guistic content of the signal (Schuller et al., [2013). Typ-
ical problems include the recognition of a speaker’s age,
gender, emotional state and possible altered states such
as sleepiness or intoxication. The two main approaches
to these classification and regression problems are 1) to
design the system specifically for the paralinguistic anal-
ysis task using expert knowledge in the domain or 2) to
generate a large number of suitably high-level features,
typically depicting some aspect of the speech signal over
several seconds or one utterance, and then apply generic
machine learning methods to the high-dimensional feature
data. This study is concerned with the latter approach,
focusing on automatic selection of useful signal features
with the goal of improving classification performance from
a large, non-selective baseline feature set and in order to
gain better understanding of the given paralinguistic anal-
ysis tasks.

In machine learning, high-dimensional feature spaces are
sparsely populated by limited training data since the num-
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ber of data points inside a volume unit decreases with an
increasing feature space dimensionality. This effect, com-
monly referred to as the curse of dimensionality, weakens
the reliability of trained analysis systems (Duda et al.|
2001; Theodoridis and Koutroumbas, [2003) as overfitting
them to the data becomes easier. However, if the com-
plete feature set F' is comprehensive and contains infor-
mative features, then certain feature subsets out of the
vast amount of possible subsets (2! — 1) should define
lower-dimensional feature spaces in which learning is more
reliable with the limited training data. Provided that such
feature spaces can be found, even a basic analysis system
could perform better than a complex system operating in
the complete feature space due to the lessened effect of
the curse of dimensionality. When the high-dimensional
analysis problem is viewed in this way, it becomes one
of finding these feature subsets by means of feature selec-
tion. Therefore, this study investigates a feature-selection
approach to tackle paralinguistic classification of speech
when a large and varied set of high-level features is avail-
able (Schuller et al., [2013). More specifically, the focus is
on a problem of finding a robust subset of features when
the overall number of potential features highly exceeds the
number of data samples available for training and evalua-
tion of the system, making the process of feature selection
highly susceptible to overfitting. The remainder of the in-
troduction discusses issues related to feature selection in
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pattern recognition (Section [1.1) and outlines the specific
aims of the study (Section [1.2)).

1.1. Feature Selection in Pattern Recognition

Feature selection algorithms are often used to reduce
feature space dimensionality in pattern classification and
regression. This study focuses on feature selection for su-
pervised classification, i.e., classification of data patterns
— consisting of the selected features — into predefined cat-
egories that have meaning in the real world. Automatic
feature selection can be formulated as the problem of find-
ing the best possible subset S of features from an initial,
and possibly a very large, set of features F' (i.e., S C F).
The learning of a more compact set of features can induce
some or all of the following benefits (Blum and Langley,
1997; Reunanen, [2003)):

1. Enhanced classification performance due to the re-
moval of noisy or unreliable features.

2. Lower computational costs in the final system due to
reduced dimensionality in feature extraction, model
training and classification.

3. Simpler classifiers with less input variables, which of-
ten leads to better generalization ability towards new
samples.

4. Better hands-on understanding of the classification
problem through discovery of relevant and irrelevant
features.

Since the ultimate goal is to perform classification of
data samples, one could define the optimal subset of fea-
tures as the one that provides the best classification abil-
ity in the given task as measured by a criterion function
G(S,D,M) = ¢, where D denotes the data set used and
M denotes the classification model (with its parameters)
applied in the task. Value ¢ of the criterion function can
correspond to the overall classification performance on D
in the given task (in the so-called wrapper methods) or
be heuristically defined otherwise (as in the filter meth-
ods; [Blum and Langley||1997; |Guyon and Elisseeft] [2003;
Kohavi and John|[1997)). However, the above definition al-
ready contains at least two potential problems. First, the
number of possible feature subsets grows exponentially as
a function of the initial feature pool size, making exhaus-
tive search of the best subset impossible for all but the
simplest selection problems (the search problem). Second,
the value of the criterion function has to be computed from
a finite number of data points D available for the selection
process and there are no guarantees that the locations of
local or global maxima of the criterion function with re-
spect to S will remain the same for previously unseen data,
i.e., when D is replaced by other data (the generalization
or overfitting problem; Reunanen! [2003)). In general, the
more there are features to be considered in F' and the less
there are labeled data D available for the feature selection
process, the higher the risk that the chosen feature set (out

of a very large population of candidate feature sets) per-
forms well on a given small training data set, “by chance”,
but its predictive power generalizes poorly to new data
sets.

In order to tackle the search problem, all practical algo-
rithms apply some heuristics to guide the search process,
either explicitly as with the wrapper methods or indirectly
as with the filter methods (Blum and Langley} [1997)). Se-
quential backward elimination (SBE), originally described
by Marill and Green| (1963)), starts from the complete set
of features and sequentially eliminates the one whose elim-
ination results in the best score G(S, D, M). A feature set
of size d is thus given by

Sa = Sat1 \argmfax G(Sg+1 \ f, D, M). (1)

Sequential forward selection (SFS), proposed by [Whitney
(1971), works in the opposite direction: starting from an
empty set, the feature set is iteratively updated by includ-
ing, in each step, the feature f which results in maximal
score G(S, D, M). Thus, the feature set of size d is given
by

Sqg=841U argm?X G(Sq-1 U f,D, M). (2)

Typically, these methods are used as wrapper feature selec-
tion methods such that the criterion function G(S, D, M)
is evaluated using an actual classifier M which is trained
and evaluated on different parts of the data set D. They
are greedy search algorithms, as they always exclude or in-
clude the most promising feature. Thus, the contribution
of including or excluding a new feature is measured with
respect to the set of previously chosen features using a hill-
climbing scheme in order to optimize the criterion function
G(S, D, M), making these approaches susceptible to its lo-
cal maxima with respect to S (Blum and Langley}, (1997)).
The feature sets found by SFS and SBE are nested, i.e.,
each feature set found by them is a subset of each larger
feature set found earlier or later in the search.

Pudil et al.| (1994)) proposed the improved “floating” ver-
sions of SBE and SF'S, which after exclusion or inclusion of
a new feature, respectively, include or exclude as many pre-
viously excluded/included features as possible without de-
creasing the previous scores G(S4, D, M) associated with
each feature set size. The sequential floating search al-
gorithms do not have the nesting property and are not
strictly greedy, potentially improving their performance
(Pudil et al.l |1994)).

In the family of so-called embedded algorithms (see, e.g.,
Blum and Langley||1997| for a review), feature selection
occurs by the internal mechanisms of the classification
algorithm. For example, decision trees (e.g., CART by
Breiman et al.|[1984) and their variants such as random
forests (Breiman) |2001) carry out recursive partitioning
of the data based on features that are the most useful in
distinguishing between different data classes.



Finally, the filter methods attempt to perform feature
selection by replacing the role of the classifier M in the cri-
terion function G(S, D, M) by a heuristic method to assess
the relevance of features and their combinations, i.e., inde-
pendently of the classifier used. This can be accomplished
by using, e.g., measures of class separability in the feature
distributions such as divergence or Bhattacharyya or Ma-
halanobis distance (Marill and Greenl [1963} |Theodoridis
and Koutroumbas, [2003]).

In the simplest type of filter algorithms, features are
individually assigned scores which are assumed to reflect
their usefulness in the intended classification task. The
features can then be ranked by their importance according
to the score. The ranking can be used to sequentially se-
lect a given number of best features, or the filter algorithm
itself can provide a means to determine the size of the fea-
ture set, e.g., a threshold value for the score above which
the features are considered useful in the task. Other filter
algorithms are feature subset selection algorithms (Kohavi
and Johnl 1997 'Theodoridis and Koutroumbas| 2003), in
that they consider feature subsets jointly using some cri-
terion, but in contrast to the wrapper methods which also
perform feature subset selection, the filter methods do
not evaluate the subsets directly using the target classi-
fier. Examples include correlation-based feature selection
(CFS; Hall|[1999) and the minimal-redundancy-maximal-
relevance (MRMR) approach (Peng et all [2005). CFS
and MRMR analyze correlation and mutual information,
respectively, and attempt to maximize it between the fea-
tures and the class information while simultaneously min-
imizing it between features in the selected feature set. Fil-
ter methods are typically faster to compute than wrap-
per methods, but do not have direct access to the perfor-
mance on the actual classification task and do not take
into account the interaction between the chosen features
and the classifier used. On the other hand, this reduces the
risk that the feature selection overfits to the training data
when used in conjunction with classifiers that themselves
are prone to overfitting. Also, in order to alleviate the
overfitting problem, combinations of different feature se-
lection algorithms have recently been used in some studies
(Pohjalainen et al., [2012; |Saeys et al.l |2008]).

As can be seen from the above discussion, the general-
ization problem is inherently tied to the search problem,
especially in the case of wrapper algorithms. The more the
search relies on sequential steps based on the local maxi-
mum gain in the criterion function, the more important it
becomes that the criterion function of the available data
truly follows the topology of all of the data that the classi-
fier will be applied to. The practical way to alleviate this
problem is to have more data for training and development
sets and to ensure that the division into training and de-
velopment data is performed carefully so that there are no
unrealistic similarities between them (e.g., no same talkers
or identical linguistic content when performing classifica-
tion of spontaneous speech). However, data collection and
labeling is often expensive and ideally the feature selection

algorithms should provide useful results with as little data
as possible.

The practical measure of overfitting is to test the system
on a set of held-out test data (Reunanen, 2003) after the
feature selection and classifier training has been performed
using the training and development sets. However, the use
of an independent test set does not provide help in the se-
lection of good features as such, because any observations
on the test set performance that are propagated back to
the system design will basically endanger the validity of
the test set itself, again leading to the potential problem
of overfitting. Instead, a proper use of held-out validation
set simply shows whether the proposed methods generalize
well or not.

1.2. Aims of the Study

In this study, new feature selection methods based on
various criteria, as well as methods for their combination,
are proposed and applied with a basic nearest-neighbor
classifier in a set of challenging paralinguistic speaker trait
recognition tasks (Schuller et al., 2012). The data is char-
acterized by a very large number of features and a small
number of instances, making the tasks especially critical
for robustness and generalization capabilities of feature se-
lection algorithms. Therefore, the avoidance of overlearn-
ing in the selection phase is a central concern.

The results obtained are compared against various base-
lines in both feature selection and pattern classification.
In feature selection, the goal is to validate the proposed
selection methods as well as to investigate the benefits of
combining different types of selection criteria. In classifica-
tion, the goal is to compare the feature selection approach,
whose basic idea was outlined in the beginning of the in-
troduction, against high-dimensional pattern classification
systems. Moreover, analyses of the types of acoustic fea-
tures selected for binary classification of speaker likability,
intelligibility and the Big Five personality traits are aimed
at uncovering information related to these speech analysis
tasks. The study is a continuation of the authors’ previ-
ous work in the Interspeech 2012 Speaker Trait Challenge
(Pohjalainen et al.| [2012; |Schuller et al., |2012]).

2. Material

As the source of evaluation material, this study uses
three databases, which are briefly described.

The Speaker Likability Database (SLD; Burkhardt et al.
2011)) is a subset of the German Agender database origi-
nally recorded to study automatic age and gender recogni-
tion from telephone speech (Burkhardt et al., 2010). The
speech has been recorded over fixed and mobile telephone
lines using a sampling rate of 8 kHz. A set of 800 speak-
ers, each speaking one utterance, comprises the SLD sub-
set. The speaker population has been balanced for age and
gender and 18 utterance types are included. In the genera-
tion of the labelings, listeners judged the likability of each



speaker on a seven-point scale and the likability of each ut-
terance was established using evaluator-weighted estima-
tor (EWE; |Grimm and Kroschel|[2005) which weights the
reliability of each listener based on the cross-correlation of
his or her ratings with ratings averaged over listeners. The
EWE rating was discretized into two categories, herein re-
ferred to as “likable” and “not-likable”, based on the over-
all median EWE rating.

The “NKI CCRT Speech Corpus” (NCSC; [van der
Molen et al.|2012) was used as material in recognizing
speaker intelligibility. The corpus contains recordings of
utterances spoken in Dutch by 55 speakers (45 male and
10 female) who underwent concomitant chemo-radiation
treatment (CCRT) for inoperable tumors of the head and
neck. Recordings were made both before and after CCRT.
Thirteen expert listeners rated the intelligibility of each
recording on a seven-point scale and, similarly to the lik-
ability data, EWE ratings were computed and discretized
to “intelligible” and “not-intelligible” categories based on
the global median.

The “Big Five” or “OCEAN” personality characteris-
tics — openness to experience, conscientiousness, extraver-
sion, agreeableness and neuroticism — were recognized us-
ing the “Speaker Personality Corpus” (SPC; | Mohammadi
and Vinciarelli|2012) as material. The corpus consists of
640 speech audio clips, with a single speaker in each clip of
approximately 10 seconds, randomly extracted from news
in French broadcast by Radio Suisse Romande, the Swiss
national broadcast service, during February 2005. The
total number of speakers is 322 with the most frequent
speaker appearing in 16 clips. The personality assessment
was performed by 11 judges, each of whom listened to all
the clips, by filling the BFI-10, a 10-item personality as-
sessment questionnaire (Rammstedt and John| 2007). In
order to generate the data labelings for each of the five
personality traits, each clip was labeled as representing a
personality trait if at least six judges (the majority) gave
it a score that was higher than their personal average score
for the same trait. Otherwise the clip was labeled as not
representing the trait.

For each utterance in each of the three databases, 6125
long-term, utterance-level features have been extracted by
the organizers of the Interspeech 2012 Speaker Trait Chal-
lenge (Schuller et al., [2012)) using the openSMILE feature
extractor (Eyben et al., [2010)). For the present work, only
these data sets consisting of 6125 features per utterance
and the associated class labelings of the data instances
(utterances) were used.

Each of the three databases was partitioned in the
Speaker Trait Challenge into three data sets: a training set
(denoted by Train), a development set (denoted by Devel-
opment) and a test set (denoted by Test). The grounds for
partitioning the utterances of each of the three databases
into the Train, Development and Test sets are given by
Schuller et al.| (2012). Table [If shows the number of in-
stances for each such subset in the likability, intelligibility
and personality data.

Table 1:  Number of instances in Train, Development (Devel) and
Test sets in Likability, Intelligibility and Personality data.

Data set
Database Train Devel Test | Total
Likability 394 178 228 | 800
Intelligibility | 901 746 739 | 2386
Personality 256 183 201 | 640

The problem in each task is to automatically classify
data points, representing speech audio clips, with respect
to traits X € {likable, intelligible, open, conscientious,
extraverted, agreeable, neurotic} as either “X” or “not-
X7 i.e., whether the trait is present or not. Evaluation
of the system is performed by comparing the generated
hypotheses against the ground truth labelings associated
with the data sets.

3. Methods

In this study, the nearest-neighbor classification rule
(Section is used in combination with different feature
selection algorithms and their combinations. The feature
selection algorithms are divided into two main categories:
subset selection algorithms (Section that provide a
feature set as an output, and scoring algorithms (Section
that provide a scalar value of feature usefulness for
each candidate feature (easily converted to a ranking of
features). The scoring methods require a way to deter-
mine the size of the final feature set and solutions to this
problem are presented in Section[3.4] Different approaches
for combining multiple feature selection methods are de-
scribed in Section [3.5] Finally, computational costs of in-
dividual feature selection methods are analyzed in Section
0.0l

8.1. Classification Algorithm

K nearest neighbors (kNN) is applied as the classifica-
tion rule in the current study (Duda et al. 2001): the
hypothesized class label for each test instance is deter-
mined as the one that is seen most frequently among the
k labeled training instances that are closest to the sam-
ple in terms of the Euclidean distance. Despite being
conceptually simple and easy to implement (barring com-
putational efficiency issues), it is nevertheless a powerful
pattern classification method that, given enough training
data, can model complex nonlinear decision boundaries in
the feature space (Theodoridis and Koutroumbas), [2003)).
However, kNN is known to be susceptible to the effects of
the curse of dimensionality (Duda et al.| [2001; [Theodor-
idis and Koutroumbas| 2003). From another viewpoint,
kNN in its basic form does not have any internal mech-
anism to deal with feature relevance. This is in contrast
to classifiers such as support vector machines and random
forests, which are better able to handle high dimension-
alities and irrelevant features. These things justify the
choice of kNN for the purpose of the present study: being



a capable, nonlinear pattern classification method whose
performance, however, is relatively highly dependent on
the quality of the feature set, it is particularly suitable
for comparing the performance and robustness of different
feature selection approaches.

Prior to kNN classification, each feature in both the
training and evaluation dataset is normalized to have zero
mean and unit variance within the corresponding data set
(in the evaluation phase, this corresponds to the system
having been in operation long enough to have these nor-
malization statistics of the observed features available).
When making a decision on an input vector based on its
k nearest neighbors according to the Euclidean distance,
the counts of different classes within the k-neighborhood
are scaled by dividing them by the frequencies of occur-
rence of the same classes in the training data in order to
compensate for potentially biased class distributions.

The number of neighbors k£ is chosen in the present work
by first selecting the best-performing value kg, from a given
range of values, in the classification of a development set
DpgvgL using training data Dtrain. In classifying the
test data DrgsT, the development set is included in the
training material. In order to maintain the size of the ko-
neighborhood in terms of the Euclidean distance despite
the increased sample density of the extended training set
Drrainy U DpgvEeL, the final value of the parameter is de-
termined as

D ubD
b — {k()' TRAIN DEVEL|—‘ ’ 3)
| DrrAIN|

where |...| denotes rounding to an integer.

3.2. Feature Subset Selection Algorithms

These methods return a subset of features based on an
intrinsic determination of the feature set size. They in-
clude a well-known wrapper method, sequential forward
selection, a more recently proposed filter method, minimal-
redundancy-maximal-relevance, and two new approaches,
namely feature set selection as Set Covering Problem
(SCP) and Random Subset Feature Selection (RSFS).

3.2.1. Sequential Forward Selection (SF'S)

Sequential forward selection (SFS; Whitney|[1971)) was
chosen as the baseline method for feature selection, as it
is well known and widely used in practice. In addition,
Reunanen| (2003) found this simple algorithm to often per-
form competitively to sequential floating forward selection
(SFFS; [Pudil et al.|1994])), which is widely regarded as one
of the state-of-the-art feature selection algorithms. While
its good performance level was not disputed in (Reuna-
nen| 2003, it was argued that the intensive search strat-
egy of SFFS causes it to more effectively overfit the fea-
tures to the feature selection data set and may have led
researchers to overestimate its performance if additional
validation data have not been used. In addition to these

considerations, the computational cost of SFFS (the orig-
inal version proposed by [Pudil et al./[1994) was found to
be too high for the large initial feature pool used in the
current study. In most cases, SFFS failed to converge to a
stable feature set of a specific size nor was it able to reach
the predefined maximum feature set size of 500 features
in a reasonable computation time, in the order of weeks,
on machines with four Xeon E3-1230 3.2 GHz CPUs and
8 GB of memory. In several previous studies that have
evaluated SFFS, the algorithm has not been run until fea-
ture sets of such size leading to very large search spaces
(Reunanen) [2003)), not even in recent paralinguistic anal-
ysis studies (Batliner et al., [2010). In the few cases where
SFFS did manage to reach feature set sizes stipulated for
the algorithms in this study, it was found to perform worse
than SFS. The computational cost of SFS, on the other
hand, was feasible, although still noticeably high in com-
parison to all the new feature selection algorithms evalu-
ated. Therefore, SF'S was an obvious choice for the feature
selection baseline in the present study.

SFS is implemented according to Eq. [2]with the function
G(S4, D, M) evaluated by means of kNN classification of
a subset of the data D while using the remainder of D
as training observations. The value of G(Sq4, D, M) is the
maximum unweighted average recall (UAR) over a range
of k values k € {5,10,...,150}. UAR is the class-specific
correct classification rate averaged over the actual classes.
SF'S is run until 500 features, the predefined maximum, is
reached and the feature set finally chosen as

S = argimax G(Sq, D, M). (4)

8.2.2. Minimal-Redundancy-Maximal-Relevance
(MRMR) Feature Subset Selection

Minimal-redundancy-maximal-relevance (MRMR) is a
filter-based feature selection approach proposed by [Peng
et al.| (2005). It analyzes the mutual information between
discretized features and class labels to maximize the fea-
ture relevance while simultaneously considering the mutual
information among the discretized features in the selected
feature set to minimize redundancy. To use this method,
each of the continuous-valued features is quantized to three
levels by placing the quantization boundaries at pu £ o
where p and o denote the feature’s estimated mean and
standard deviation. This yields a set of discretized fea-
tures y(f), f € F. Features are then selected, one at a
time, using the rule

Si = Sa-aargmax | 1(£),2) ~ 775 Y 16(9).(9)|
9€Sa—1
o)

where I denotes mutual information (see Eq. and z is a
categorical variable containing the class labeling. In choos-
ing the feature set size, G(Sq, D, M) is evaluated with a



kNN classifier (k = 40) for 1 < d < 500 and the final
feature set chosen, as with SF'S, according to Eq.

3.2.3. Feature Set Selection as Set Covering Problem
(SCP) of Correct Classifications

The SCP (Set Covering Problem) approach to feature
selection is based on first classifying an evaluation set using
each single feature separately and then selecting enough
features to “cover” the set with correct classifications. The
single-feature classifications are based on either supervised
or unsupervised discrimination between two classes using
Gaussian mixture models (GMMs) to model the unidimen-
sional probability distributions.

With the goal of classifying utterances as either “X”
or “not-X” (where, in this study, X is one of the seven
speaker traits), unidimensional GMMs Ax and \yo.x are
trained separately to represent each feature. In the first
supervised training step, for each feature, five iterations
of EM (expectation-maximization; Dempster et al.|[1977)
re-estimation for GMMs (Xu and Jordan, [1996) are car-
ried out using class-specific data to train each of the two
GMNMs. Before training, the mixture weights of the GMMs
are initialized by uniform distributions and the variance
parameters of each component by 0.1 times the global vari-
ance of the feature. The mean parameters of each compo-
nent are initialized by feature values selected by the heuris-
tic approach described in (Katsavounidis et al., [1994)). In
classification, the class decision for each observation is
based on the logarithmic likelihood ratio L = Lx — Lyot-x,
where Lx and Lyt x are the logarithmic likelihoods of the
observation having been produced by each GMM. Class
X is decided if L > T, where T is the decision threshold
adjusted on the training data set according to the equal
error rate (EER) criterion typically used in detection ap-
plications. The EER threshold corresponds to equal mis-
classification rate for both classes.

After the initial supervised training, mixture-based
classification using individual features is also performed
with unsupervised learning. The parameters of two J-
component GMMs are joined to form one composite GMM
with 2J components and the component weight parame-
ters are multiplied by 0.5. The composite GMM is trained
with further five iterations of modified EM training where
the sums of the J weight parameters belonging to the X
and not-X classes are both normalized back to 0.5 before
each “expectation” step (E step; Dempster et al.|[1977).
This modification to the EM algorithm ensures that the
prior probabilities of the two classes remain equal in the
E step. Otherwise, the GMM parameters are allowed to
freely adapt to the complete data set consisting of observa-
tions from both classes. After this unsupervised training,
the sub-GMMs belonging to the two classes are again sep-
arated and the EER decision threshold T is determined
based on the training data. EM, which is used to find
maximum likelihood parameter estimates for models with
latent variables, is guaranteed to converge towards at least
a local, if not a global, maximum of the likelihood func-

tion (Dempster et al., |1977). Therefore, the unsupervised
method should lead to good classifications with features for
which solutions that discriminate between the two classes
are close in likelihood to a local maximum or a saddle point
of a natural clustering solution of the training data.

Classifications of another held-out data set are obtained
using both of the above methods, i.e., by supervised and
unsupervised learning in the training phase. For both
cases, matrices are constructed where rows correspond to
audio clips, columns correspond to features, and the value
is 1 if the clip in question has been correctly classified by
the feature in question and 0 otherwise.

We make the following observation. Our goal to select a
subset of features can be formulated as an Integer Linear
Programming (ILP) problem. In particular, we map our
problem to the well-known Set Covering Problem (SCP;
Cormen et al.|[2001)). The decision version of the set cov-
ering problem is one of Karp’s 21 NP-complete problems
as was shown in 1972 (Karp, [1972)). In the SCP prob-
lem, we are given a finite set U := {1,...,m} of items, a
family F' = {Uy,...,U, C U} of subsets of U, and a cost
function ¢ : I — R™. The objective is to find a subset
S C F such that > g c(U;) is minimized. The SCP
has numerous practical applications such as crew schedul-
ing for airlines or railway companies (Caprara et al., [1997;
Hoffmann and Padberg, [1993; [Housos and Elmoth, 1997)),
location of emergency facilities (Toregas et al., 1971}, and
production planning in various industries (Vasko and Wolf,
1987)). In our formulation, the set of items consists of data
points (audio clips) and the family of sets corresponds to
individual features, each associated with a binary vector
indicating the correct and incorrect classifications of the
data points. For each feature we attribute a cost of one,
that is, we are dealing with the so-called unicost SCP. Fi-
nally, our objective is to cover all the data points using
the minimum number of features.

As explained above, before solving this ILP, each feature
has been evaluated on each data point, or speech audio
clip, and it has been noted whether the data point can be
classified correctly using that feature. This yields knowl-
edge about which items (data points) are covered in which
sets (features). Then, our formulation can be written as:

ZSEF Ls

ZsEF:eGs Ls Z 1
zs € {0,1}

Minimize
YVeeU
VseF (6)

The decision variables xg denote whether the feature s is
selected while the first constraint ensures that we consider
every data point. Our goal is to select a subset of features
(this is the feature reduction aspect in our case) such that
all the items (audio clips) are covered (can be identified)
with at least one feature. This observation has an imme-
diate bearing on our problem. We can leverage general
techniques for solving ILP’s; namely using a branch-and-
bound algorithm based on linear relaxation of the original
problem where the integer decision variables =, € {0,1}



are replaced with z; € [0,1]. While this algorithm solves
the problem to optimality, in general, finding the minimum
set cover is NP-hard (Nemhauser and Wolsey, [1988)).

In order to solve the resulting SCP models, we employed
IBM TIlog CPLEX solver (IBM, [2009)), the state-of-the-
art mathematical programming solver. Unfortunately, the
SCP instances corresponding to our feature selection prob-
lem could not be optimally solved due to the huge num-
ber of binary decision variables in the ILP formulation.
We found the memory requirement of solving the SCP to
optimality to be prohibitive in practice. In most of the
cases, we hit the memory limit when using a Dell Pow-
erEdge M610s with 16 Xeon 2.4 GHz CPUs and 16GB of
memory.

When optimal solutions cannot be computed efficiently,
it is possible to trade optimality with efficiency. One al-
ternative is to use a simple and fast greedy algorithm to
obtain an approximate solution. The other alternative is
to go beyond greedy algorithms and use sophisticated lo-
cal search methods and meta-heuristics that are specifi-
cally designed for the SCP problem. We tried both of
these options and found the following. The greedy algo-
rithm selects a set that covers the most items using the
least cost at each step until all items are covered (Chvatal,
1979)). In essence, it resembles sequential forward selec-
tion. This algorithm achieves an H, factor approxima-
tion algorithm for the minimum set cover problem, where
H, =1+1/2+ ..+ 1/n (Vazirani, 2001). However, we
noticed that very dense sets exist in our SCP representa-
tion, i.e., there are some features which are able to cor-
rectly classify most of the audio clips. As a result, the
greedy algorithm is able to find a covering by selecting
as few as three to six sets. This results in an undesir-
able, overlearning-prone feature selection approach which
favors very few features. We next employed a powerful
local search SCP solver from (Kadioglu and Sellmann)
2009) which is based on the dialectic search paradigm.
Dialectic search was shown to perform well on the chal-
lenging SCP instances from the Operations Research Li-
brary (Beasley, [1990) and outperformed the previously
best local search approaches based on Tabu Search and
Iterated Local Search that are specifically tuned for solv-
ing the unicost SCP. We found out that local search ap-
proaches are also subject to the previous problem. They
are trapped in a local optimum obtained by using very few
sets. As was the case for the greedy algorithm, the neigh-
borhood selection operators also favor the dense sets.

We noticed that unlike finding the integer optimal solu-
tion, solving the linear relaxation at the root node of the
branch-and-bound tree can, in practice, be performed effi-
ciently without being subject to the aforementioned mem-
ory issues. Moreover, linear relaxation is not subject to
the problem of favoring very few sets, as it yields fractional
values for a considerable subset of the decision variables.
Hence, in this work, we used the well-known approxima-
tion technique for solving the SCP problem which first
solves the linear relaxation to optimality and then uses the

rounding-up method to obtain an integral solution (Vazi-
rani, 2001)).

Depending on whether the SCP was based on classifi-
cations using GMMs trained in a completely supervised
or a partially unsupervised manner, the feature selection
method is termed supervised- or unsupervised-training
SCP (SSCP or USCP, respectively). In the experiments
of this study, the SSCP method uses J = 8 components
in each GMM and the joint GMM in USCP has 2J = 16
components. This choice is based on the considerations
of having as many components as possible in the GMMs
to accurately represent the probability density functions
and possibly complex-shaped cluster structures while at
the same time also having enough training data to reli-
ably estimate each component.

3.2.4. Random Subset Feature Selection (RSFS)

Random Subset Feature Selection (RSFS) is a feature
selection algorithm that aims to discover a set of features
that perform better than an average feature of the avail-
able feature set. The set of “good” features is obtained by
repetitively choosing a random subset of features from the
set of all possible features and then classifying the data
with a kNN classifier using these features. During each
iteration, the relevance of each feature is adjusted accord-
ing to the classification performance of the subset that the
feature participates in. As more iterations are performed,
the quality of the feature set gradually improves as random
components in the selection process become averaged out.
In this manner, each feature becomes evaluated in terms
of its average usefulness in the context of many other fea-
ture combinations. Also, since the relevance values are not
dependent on the previous choices in the selection process
but are a result of many independent trials, RSF'S should
not be susceptible to a locally optimal solution like the
greedy hill-climbing-based feature selection methods (see
also Rasanen and Pohjalainen[2013)).

The RSFS is based on the idea of Random Forests
(Breiman, [2001)) and Random kNN (RKNN; |Li et al.[2011])
where the classification task is split into a set of classifiers
that use random subsets of features, and where the quality
of each individual feature can be evaluated according to its
participation in correct classifications. The main difference
of RSFS to RKNN is that the final feature selection pro-
cess in RSFS is based on a statistical comparison against
random walk statistics. In contrast, RKNN performs two
subsequent stages with the first stage computing the rel-
evance of each feature using a fixed number of random
subset classifiers and the second stage performing back-
ward elimination of the least relevant features in order to
find the feature set with the best classification performance
(Li et al., |2011). In RSFS, the random subset classifica-
tion is performed as many times as is necessary in order
to distinguish good features from features that simply ap-
pear useful due to the random components of the process.
Thus, no greedy backward elimination steps are required.



In RSFS, each true feature f; from a full set of features
F' has a relevance value r; € (—o0,00) associated with it.
In addition, a set of dummy features z; € Z with related
relevances g; is also defined.

During each iteration i, the RSFS algorithm performs
the following steps:

1. Randomly select a subset S; of n features (|S;| = n)
from the full set F' by sampling from a uniform dis-
tribution.

2. Perform kNN classification on the given data set using
S; and compute the value of a desired criterion func-
tion ¢; which measures classification performance.

3. Update relevances r; of all used features f; by replac-
ing them with

i =1+ ¢ — E{c}, (7)

where ¢; is the value of the criterion function for the
current iteration ¢ and E{c} is the expected value
of the criterion function (in the current work, this
corresponds to the average of ¢; across all previous
iterations).

4. Repeat the process from 1) with a new random subset.

In parallel to updating feature relevances, a similar pro-
cess is performed for the dummy features by always se-
lecting a random subset of m dummy features and then
updating the relevance values of these features according
to Eq. [7] but using the criterion function value of the true
features from the same iteration. The dummy features are
never used in the actual classification process (i.e., they
have no values for any data sample) but their relevances
are still accumulated across trials similarly to the true fea-
tures. Thus, the relevance ¢; of any dummy feature z;
essentially becomes a random walk process with no corre-
spondence to any actual classification performance. In this
manner, the relevance of the dummy features provides a
baseline level r;.,q that should be exceeded by a true fea-
ture in order to be considered as useful in the classification
task.

Finally, in order to find the set of features S C F' that
truly exceeds the dummy features’ relevance ratings, a sta-
tistical test is performed. More specifically, it is required
that the relevance r; of a true feature f; satisfies

p(rj > Trand) > 9, Vfj € B,F, (8)
where r.4nq is the relevance of a non-useful feature and &
is a user-set threshold for probability. The random base-
line level r45q 18 modeled as a normal distribution of the
dummy relevances g; and thereby the probability that a
feature is more relevant than a dummy feature is obtained
from the cumulative normal distribution

1 /_Tj eXp(L“g)de 9)

S>> an —
p(r; > rrand) P~ 202

where 11, and o, are the mean and standard deviation of
the dummy feature relevances g¢; across all dummy fea-
tures. In practice, the statistical testing can be performed
between each iteration of the RSFS and the feature selec-
tion process can be stopped when the number of features
exceeding the random baseline no longer increases, or the
algorithm can simply be run for a fixed number of itera-
tions that is preferably much higher than the total number
of features in F'.

In this study (see also [Rasanen and Pohjalainen|/2013)),
the unweighted average recall (UAR) was used as the cri-
terion function ¢ in Eq. [7] and the probability threshold
was set to § = 0.99. The number of features used in clas-
sification during each iteration was set to n = 78 ~ \/|F|
according to [Li et al|(2011)). In a similar vein, a total of
50 dummy features were created and their relevances were
updated on each iteration. The sampling process was re-
peated for 300 000 iterations before selecting the final set
of features according to Egs. [§land 0] As for the kNN
used as the criterion function, the number of neighbors &
in the voting was always fixed to k = 2, as a small value
of k was suggested to be used in the context of the RKNN
algorithm (see |Li et al.|[2011)).

8.8. Feature Scoring Algorithms

In contrast to the subset selection methods, feature scor-
ing algorithms provide only a score value for each feature
to reflect its usefulness. In order to use these feature scor-
ing methods for subset determination, additional consid-
erations are needed to determine the size of the subset (see
Section [3.4)).

3.8.1. Statistical Dependency (SD) Between Features and
Labels

The goal of the Statistical Dependency (SD) method
is simply to measure whether the values of a feature are
dependent on the associated class labels, or whether the
two simply co-occur by chance. Each feature value is first
quantized into one of Q)s levels, where the feature-specific
quantization scale is adaptively determined such that each
bin will contain roughly an equal amount of samples over
the entire data set. The bins are chosen in this way, instead
of a conventional uniform quantization scale, in order to
lend some statistical validity to the occurrence of different
quantization levels. The statistical dependence between
the discretized feature values y and the class labels z is
evaluated according to the formula

SD=>" Zp(y&)w- (10)

S5 p(y)p(2)

The larger the SD, the higher is the dependency between
the feature values and the class labels. In the case that the
feature is fully independent of the class labels, the SD will
obtain the minimal value of 1. Note the similarity of this
measure with mutual information (MI), which is given by



MI = Z Zp(y7z) log (p(y,z)) . (11)

22 P()p(2)

The formula in Eq. which omits the logarithm, has
been found preferable to the conventional MI measure (Eq.
in assessing statistical dependence in problems like the
present one (Pohjalainen et al.,|2012)). This may be due to
the fact that the SD is more sensitive to individual highly
informative quantization levels due to the absence of loga-
rithmic compression of MI. Nevertheless, the MI measure
is also included in the experiments of this study for com-
parison purposes. The SD and MI methods both result
in a scoring and ranking of features, according to which a
chosen number of features having the highest values can
be selected.

Denoting the feature selection data set by Dgg, the num-
ber of quantization levels for both methods was experimen-
tally chosen as Lg = ||Dpg|/10], i.e., each bin will contain
approximately 10 data samples on the average.

3.3.2. Distribution Alignment and Matching (DAM) Be-
tween Training and Test Data

So far, we have considered methods that base the fea-
ture selection on labeled data. In contrast to these con-
ventional “offline” approaches, we would also like to in-
vestigate whether it is possible to select features “online”
by comparing the observed sample distributions of each
feature between the training data and a test data set, on
which the predictor is being used.

Assuming that various random effects can cause local
or global stretching, compacting or shifting of one sam-
ple distribution of a feature relative to another, we can
attempt to compensate for these effects by warping the
random variable’s value axis in one of the sample distri-
butions to better correspond to the other. Furthermore,
we can attempt to compensate for the effect of different
class membership distributions between the two data sets
by normalizing according to the mean of the warped distri-
butions. The motivation is that if these two distributions
of the feature value become similar after trying to elimi-
nate out local differences in feature value distributions and
possibly different class distributions in the two data sets,
the feature is more likely to be helpful in classification.
On the other hand, if the distributions of some feature
can not be easily matched between training and test data,
even though both should consist of the same classes, it
suggests that the feature does not behave systematically
across different data sets with respect to the classes. The
Distribution Alignment and Matching (DAM) feature scor-
ing method is fully unsupervised as it does not make use
of the class labels at all. Therefore, while it is reasonable
to anticipate that its performance by itself may not be the
best of the methods evaluated, it may have the potential
to effectively complement conventional, supervised feature
selection algorithms.

This approach is implemented as follows.

1. Given the training dataset Dprain consisting of N

observations of the features in F), i.e., fi(n), 1 <i <
|F|, 1 <n < Njp, and the testing dataset DrggT con-
sisting of Ny observations of the same features, i.e.,
gi(n), 1 < i < |F|, 1 < n < N, histograms of fea-
ture values with Qp bins are constructed separately
for each feature in both datasets. The bins of the
histogram for a feature f; € Drrain cover the range
of values of f; over the training data set while the
bins of the histogram for the corresponding feature
g; € Drggr cover the range of values of g; over the
test data set. After this, each histogram is individu-
ally normalized to have a peak value of 1. Let us de-
note the normalized training and test set histograms
as H(f;,7) and H(g;,j), respectively, with 1 < ¢ < |F|
and 1 < j < Qp.

. Next, in order to compensate for small deviations in

the feature distributions between the two data sets,
the training data histograms H (f;, j) are aligned with
the test data histograms H(g;, j) using dynamic pro-
gramming. The alignment of the distributions is ac-
complished using an implementation of the dynamic
time warping (DTW) method which is usually ap-
plied to time alignment of feature vector sequences
(O’Shaughnessy, 2000). This algorithm finds the
minimum-cost path through a grid of Qp x @p nodes,
where @p is the number of bins in both histograms
and each node (m, n) corresponds to a pair of training
and test histogram bins (H(f;,m), H(gi,n)) and has
the associated cost d(m,n) = (H(f;,m) — H(g;,n))>.
The constrained-endpoints version of DTW is used,
i.e., the path is required to start at node (1,1) and
end at node (Qp,Qp), and the local continuity con-
straints on the permitted paths dictate that any grid
node (m,n) can be reached by one move only from one
of the nodes (m—1,n), (m,n—1) or (m—1,n—1), ex-
cept at grid boundaries where m = 1 or n = 1. In ad-
dition, at most two consequtive moves from (m,n—1)
to (m,n) are permitted, except at the grid boundary
where m = @p. For each training data histogram
H(f;,7), the alignment procedure gives a new version
H'(f;,j) which has been aligned with the correspond-
ing test data histogram H(g;, j).

. After step 2, the training histograms H'(f;,j) have

been optimally aligned (according to the chosen DTW
constraints) with the test histograms H(g;, 7). Thus,
the remaining disagreement between the histograms
should be primarily due to the class distributions that
may be different between Drtran and Drggr. The
exact effect of changes in the class distribution on
each feature value distribution is generally not known.
However, the aggregate effect of the class distribu-
tion is manifested in the mean of the feature value
distributions. Thus, as the following step, an at-
tempt is made to compensate for the effects of dif-
ferent class distributions by subtracting Hypan(j) =
(1/|F|) >, H'(fi,7), i.e., the mean of the aligned his-



tograms across each feature, from each test histogram
H(gi,7) to yield H"(gi, ) = H(gi,j) — Hypan (4)-
Step 2 is repeated to align the original training his-
tograms H(f;,j) with the corrected test histograms
H"(gi,7) to yield the alignment cost C; for each fea-
ture.

5. A score for the similarity of the matched training and
test distributions of each feature is obtained as 1/C;.

For the experiments, the number of histogram bins was
chosen as Qp = 8. It is worth pointing out that DAM
requires a certain amount of analysis data to already be
available in order to estimate the feature value distribu-
tions as histograms with sufficient reliability. In practice,
this is not likely to present a problem except in a scenario
where the statistical properties of the analyzed data have
very recently changed.

3.4. Determination of the Size of the Feature Set for the
Feature Scoring Methods

The feature subset selection algorithms (RSFS, SSCP
and USCP) discussed in this study each use an intrinsic
criterion to determine the subset size: for RSFS, this is de-
termined by statistical comparison of the relevance values
of features against those of dummy features, and for the
SCP-based methods, by the approximation level allowed
in obtaining a suboptimal solution which covers the data
set with more than the minimal number of features.

The feature scoring methods proposed in this study, SD
and DAM, only provide a scoring and associated ranking
of features, using different criteria. The size of the feature
set selected by using these methods has to be estimated
using some additional algorithm. Two methods for accom-
plishing this are considered. For both, the following steps
are first performed:

1. Rank the features according to their scores. The fea-
ture scores are sorted in best-first order to obtain a
ranking order for the features o;, 1 < i < |F|, where
01 is the index of the feature with the best score, oo
is the index of the second best score, etc.

2. Evaluate each sorted feature set {oi,...,04} up to

a maximum allowed size (500 features in this study)

in classification using a range of classifier parameter

values (for kNN, the value of k € {5,6,...,150}) and
record the best classification score for each number of
features ¢. Denote this score as u;, 1 <i < |F|.

Obtain R random permutations of features and for

each permutation, evaluate each allowed size of fea-

ture set ¢ in classification by taking the ¢ first fea-
tures from the permutation. For each ¢, average the
obtained classification scores over the R permutations
and denote this score by v; ,1 < i < |F|. In the ex-
periments, R = 10 random orderings are considered.

Apply a smoothing filter over the number of features

7 to both u; and v; in order to make the subset size se-

lection less exact and less susceptible to local maxima
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(with respect to the features chosen) of the classifi-
cation score, which may be specific to the evaluated
data set. The motivation is thus to reduce the risk
of overfitting. This step, which was included in an
earlier study (Pohjalainen et al [2012), is performed
using a three-tap moving average filter.

The first method of dimensionality determination di-
rectly chooses the number of features giving the highest
(smoothed) score on the optimization data:

d = argmax(u;). (12)
K3
The second method was motivated by the concern that
choosing one particular subset of features based on just
one data set may be prone to overlearning. However, the
amount of data is limited in problems like the present ones.
Thus, we work on the hypothesis that perhaps the data
set contains more class-specific structure in subspaces of
particular dimensionalities than in subspaces of other di-
mensionalities. However, we also want to utilize the in-
formation about a suitable dimensionality provided by the
actual feature ordering that we are working with, like in
the first approach. Thus, we combine the first criterion,
i.e., choosing the dimensionality based on the classification
performance of subsets based on the ordering provided by
the score function, with another criterion, where the suit-
able dimensionality is assessed based on the averaged clas-
sification performance of randomly selected subsets. This
approach was successfully used by [Pohjalainen et al.| (2012,
the present authors) in the Interspeech 2012 Speaker Trait
Challenge (Schuller et al.;|2012). The feature space dimen-
sionality is thus determined as
d = argmax(au; + bv;), (13)
3
where a and b are weighting constants. In this study, a = b
such that the score-based ranking and the random permu-
tations are given equal weight in choosing the feature set
size.

8.5. Combining the Selection Methods

Some recent studies have found the combination of fea-
ture selection algorithms to help resist overlearning (Poh-
jalainen et al., 2012; [Saeys et al., 2008). In this section,
some methods of combining different types of feature selec-
tion algorithms are briefly described. The algorithms are
combined differently depending on whether they result in
a feature subset or feature-specific scores.

3.5.1. Combination of subset and scores

In this combination approach, we take as starting point
a complete feature set, such as one provided by SSCP,
USCP or RSFS, and use a feature scoring method, such
as SD or DAM, to further select features within the sub-
set using one of the dimensionality determination methods
discussed in Section More formally:



1. Given an initial subset S consisting of features f;,
S ={fi}, apply a feature scoring method to get scores
w; for each feature.

2. Sort the scores in the best-first order in order to obtain
a ranking order of the features.

3. Choose the d best features according to the ranking,
with d given by one of the algorithms described in
Section [3.41

3.5.2. Combination of subsets

Given subsets of features determined by a complete sub-
set selection algorithm, such as SSCP, USCP or RSFS, we
investigate two methods of combining their results: union
and intersection. Union straightforwardly expands the
feature set to take into account each feature selected by
the different algorithms. While intersection may result in
small feature sets that are sub-optimal for classification,
especially when subsets obtained using different feature
selection criteria are combined, it can nevertheless provide
us insight on two issues: firstly, which features seem so
useful that they are selected using different criteria, and
secondly, what would the classification performance level
be like using a minimal feature set which can however be
considered to be of high quality?

When combining subsets and scorings according to Sec-
tion [3.5.1] a combination of subsets can straightforwardly
be used as the initial feature set from which features are
further selected using feature scores.

3.5.83. Combination of scores

To combine feature scores, either as the primary feature
selection method or as a refinement to a subset according
to Section two methods are investigated: the scores
are either multiplied or added together. Before this, each
individual score is normalized to the range of (0,1).

3.6. Computational Costs

Since the applicability of feature selection algorithms
does not only depend on the overall quality of the chosen
feature sets, but also on the computational resources re-
quired to perform the selection process, the time complex-
ities of the individual feature selection algorithms studied
in this work were also analyzed.

Sequential forward selection (SFS) performs up to d —1
iterations, if d here denotes the total number of candidate
features. During the kth iteration, d — k + 1 feature sets
are evaluated. Therefore, it is straightforward to show that
the number of total feature set evaluations is O(d?). The
time complexity of evaluating one feature set using kNN
classification is O(N2d), where N is the number of data
points approximately equally divided between the train-
ing and testing sets. However, by storing in memory the
squared Euclidean distance components of previously se-
lected features it becomes O(N?). Therefore, with efficient
implementation, SFS with kNN is O(N?2d?).

Minimum-redundancy-maximum-relevance ~ (MRMR)
feature selection begins with the quantization operation
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which for @ quantization levels is O(NQd). Being a
nested-subset method like SFS, MRMR requires up to
d — 1 iterations. Computation of the mutual information
between quantized features and C class labels is O(NCQ)
and computation of the mutual information between the
quantized features is O(NQ?). Therefore, this method
is O(NQ?d?) for Q@ > C and O(NCQd?) for Q < C.
In this study, the choice of the feature set size is per-
formed by evaluating the feature set of each size in kNN
classification, a procedure which is O(N2d).

The time complexity of both the statistical depen-
dency (SD) and mutual information (MI) methods is
O(NCQd) (quantization O(NQd) and SD/MI computa-
tion O(NCQd)). However, the time complexity of the sub-
sequent, independent dimensionality determination step
applied in this study consists of sorting the feature scores
using an efficient sorting algorithm (O(dlogd)), evaluat-
ing approximately G different variants of each feature set
size in kNN classification (O(GN?d)), smoothing the ob-
tained scores by a moving average filter (O(d)) and find-
ing the optimal size (O(d)). With typical values of d such
that logd < GN?, dimensionality determination is thus
O(GN?2d) and overshadows the actual cost of the feature
scoring algorithm.

Distribution alignment/matching (DAM) first computes
the histogram for each feature, which can be obtained
as a by-product of quantization to @ histogram bins
(O(NQd)). This is followed, for each feature, by dy-
namic time warping (DTW) to find the minimum-cost
path through a @ x @ grid, an algorithm which is known to
be O(Q?). Therefore, for d features the DTW is O(Q?d).
As in practice N > @ always, in practical implementa-
tions this method is therefore O(NQd). In the present
study, similarly to the SD and MI methods, this method
is complemented with the dimensionality determination al-
gorithm whose complexity was found above to be clearly
larger than this.

As for the RSFS, the time complexity estimation is more
complex as the algorithm does not terminate automati-
cally but converges to relatively stable set of features after
I iterations. The cost of the kNN classification during each
RSFS iteration is O(N?v/d) since RSFS uses a subset of
features whose size is the square root of the full feature
pool size. The algorithm is run for I iterations, yielding
a total cost of O(N2VdI). However, the number of it-
erations needed to evaluate the relevance of each feature
increases with the size of the original feature pool d as the
number of possible feature subsets increases. In theory, the
number of different subsets is bounded from above by the
growth of binomial coefficient. In practice, the algorithm
is never run this many iterations, as the idea is to approx-
imate the relevance of each feature by random sampling
and not to perform exhaustive evaluation over all possible
feature combinations. The number of required iterations
in RSFS was empirically tested by varying the feature set
size d and finding the minimum number of iterations re-
quired for the convergence in the feature set size. Conver-



gence point was defined as the iteration number at which
the size of the chosen feature set had had a maximum of
+1 % variation in size during the last 2000 iterations. As
a result, the increase in the number of required iterations
I was found to be linearly increasing with d (p = 0.92,
Pearson correlation). Since I = ad where « is a constant,
the overall complexity of RSFS is O(N2d'®) when used
with the kNN classifier.

The training of the scalar GMM classifiers for SSCP
and USCP is O(JNd), the cost of the EM iteration, where
J is the number of GMM components. The same cost
applies to using the GMM classifiers to generate labelings.
Solving SCP to optimality is an NP-hard problem. As
described in Section we have tried both complete
and incomplete algorithms. The runtime of the exact ILP
formulation is exponential in the number of sets (features)
and in the worst case it has to (implicitly) generate each
one of the 2/F! possible subsets. The greedy algorithm, on
the other hand, runs in quadratic time in the number of
sets. Nevertheless, it yields undesirable results from the
point of view of feature selection, favoring sets of only a
few features (less than 5 in all our datasets). This means
that even if solving the exact problem was within practical
limits, proving the optimality of covers with a few dense
sets would not improve our accuracy. As we proposed,
solving the linear relaxation at the root node of the ILP
formulation can be done in polynomial time in the general
case. In practice, the simplex algorithm and the advances
in off-the-shelf mixed-integer programming solvers allow
finding a relaxation very fast. In all of our experiments,
solving a relaxation of the exact SCP formulation took
under a few minutes.

In summary, all the proposed methods can be expected
to be clearly faster than methods such as SF'S (or the even
more complex SFFS) when dealing with large numbers of
original features. This was also empirically encountered
in our simulations where the proposed methods generally
finished within minutes while SFS required days to finish
each task.

4. Experimental Results

4.1. Test Procedure

The described methods were evaluated in binary classifi-
cation of presence or absence of seven speaker traits: lika-
bility, intelligibility, openness, conscientiousness, extraver-
sion, agreeableness and neuroticism. This was done using
the following procedure:

1. Feature selection: The Train and Development sets
are used together for feature selection. When kNN
classification is performed in connection to SFS or
MRMR for feature subset evaluation and/or subset
size determination, the Train set is used for training
and the classification results on the Development set
are used to compute the score. The SCP methods ap-
ply the data sets in both directions in producing the
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single-feature classifications: train using the Train set
to classify the Development set and vice versa. SCP
is then performed over the combined Train and De-
velopment set. RSFS uses the Train set for training
and the Development set for evaluating the criterion
in Eq. [] SD and MI assess feature relevance us-
ing the combined data and labels from the Train and
Development sets. The unsupervised DAM method
matches the aligned feature value distributions of the
combined Train and Development set with the corre-
sponding distributions from the Test set, making no
use of the class labels.
2. Parameter optimization: Use the Train set for train-
ing and the Development set for evaluation in order to
determine the best value kg for the number of neigh-
bors in kNN (see Section[3.I]). The number of features
to select is also determined in this stage; see Sec-
tions for the nested-subset methods SFS
and MRMR and Section [3.4] for the scoring methods
MI, SD and DAM.
Classification: The Train and Development sets are
used together for training in order to classify the Test
set. Unless otherwise noted, the parameter k for kNN
classification is determined according to Eq. |3| with
ko € {5,6,...,150}. With subset methods, the best
ko value for Development set classification is chosen.
In the case of scoring methods, kg is chosen so as to
provide the best Development set classification perfor-
mance averaged over each evaluated feature set size.
. Bvaluation: Evaluate the classification performance
by using unweighted average recall (UAR) as the mea-
sure.

4.2. Performance of Individual Methods

Table [2[ shows the classification performance (UAR) of
a kNN classifier with different feature selection methods
on the Development and Test sets. Each of the feature
selection methods described in Section 3l was evaluated in-
dividually. The performance of three classifiers without
feature selection, using the full set of 6125 features, is also
shown: kNN, linear-kernel support vector machine (SVM)
and random forests, the latter two of which were the base-
line algorithms of the Interspeech 2012 Speaker Trait Chal-
lenge (Schuller et al., [2012)). In this and each subsequent
classification result table, the best feature selection score
for both the Development and Test sets of each subtask is
indicated by boldface. In addition, the best scores within
a selected set of feature selection methods are shown near
the bottom of each table.

The two methods of dimensionality determination, given
by Egs. and were evaluated. While direct opti-
mization of d based on the Development set classification
score (Eq. unsurprisingly gave better Development set
scores, the randomized version (Eq. produced better
scores on the held-out Test data and was thus selected for
further evaluations.



Table 2:

Classification performance (UAR %) on the Test sets and Development sets (in parentheses) using kNN with different individual

feature selection methods and by itself without feature selection. The Train and Development sets have been used as feature selection data.
The number of neighbors for kNN classification and the number of features for MI, SD and DAM have been optimized on the Development

set.

Two methods of choosing the feature set size have been evaluated. The baselines from the Interspeech 2012 Speaker Trait Challenge

obtained using SVM and random forest classification are also shown (Schuller et al |2012). The subtasks are Likability (L), Intelligibility
(I), Openness (0), Conscientiousness (C), Extraversion (E), Agreeableness (A) and Neuroticism (N).

Feature | Method of
Classification selection | dimensionality
method method | determination | L I O C E A N Mean
kNN none 57.3 67.9 54.2 76.2 71.4 57.5 59.8 63.5
(55.6 ) | (66.3) | (59.8) | (73.6 ) | (81.4) | (57.9) | (69.3) | (66.3)
SFS 52.1 60.2 52.6 71.7 76.1 51.3 62.5 60.9
(79.5) | (80.1) | (84.2) | (88.1) | (98.4) | (86.6) | (86.8) | (86.2)
MRMR 59.3 66.2 52.0 78.6 75.1 53.9 65.6 64.4
(57.7) | (63.1) | (62.3) | (76.7) | (84.7) | (69.2) | (71.1) | (69.3)
SSCP 59.0 67.8 59.3 77.0 68.6 57.2 64.5 64.8
(61.6 ) | (66.3) | (59.5) | (74.8 ) | (81.4) | (61.6) | (72.1) | (68.2)
USCP 54.2 68.2 54.6 77.6 71.7 52.4 63.1 63.1
(61.5) | (634) | (62.3) | (76.8) | (85.2) | (62.2) | (70.3) | (68.8)
RSFS 58.5 64.9 59.5 76.1 75.6 59.2 60.3 64.9
(75.2) | (77.1) | (77.9) | (76.1) | (86.3) | (75.5) | (75.4) | (77.6)
MI ranking 61.1 66.3 58.0 78.6 72.0 56.7 62.0 65.0
(65.4) | (71.0) | (66.9) | (77.6) | (85.8) | (71.8) | (73.1) | (73.1)
SD ranking 59.7 67.6 58.8 77.1 75.3 56.4 63.1 65.4
(63.7) | (71.1) | (65.3) | (786 ) | (85.2) | (734 ) | (73.8) | (73.0)
DAM ranking 53.9 62.8 57.2 75.1 70.9 57.1 58.6 62.2
(58.7) | (69.3) | (61.6 ) | (74.1) | (82.0) | (60.5) | (70.8 ) | (68.1)
MI randomized 61.1 67.5 57.8 77.6 71.5 55.9 59.9 64.5
(65.4) | (70.5) | (66.6 ) | (76.1) | (86.3) | (71.9) | (73.5) | (72.9)
SD randomized 62.5 67.6 59.0 79.6 75.1 58.6 59.4 65.9
(62.6) | (71.1) | (66.5) | (75.8") | (83.0) | (72.7) | (73.1) | (72.1)
DAM randomized 54.6 62.8 57.2 75.1 71.3 57.0 59.4 62.5
(58.3) | (68.3) | (61.6) | (74.5) | (80.9) | (60.8) | (69.4) | (67.7)
Development set best method 58.5 64.9 59.5 77.1 75.6 59.2 60.3 65.0
(MRMR,SSCP,USCP,RSFS,SD,DAM) (75.2) | (77.1) | (77.9) | (78.6) | (86.3) | (75.5) | (75.4) | (78.0)
Test set best method 62.5 68.2 59.5 79.6 75.6 59.2 65.6 67.2
(MRMR,SSCP,USCP,RSFS,SD,DAM) (62.6 ) | (63.4) | (77.9) | (75.8 ) | (86.3) | (75.5) | (71.1) | (73.2)
SVM none 55.9 68.4 57.8 80.1 76.2 60.2 65.9 66.4
(58.5) | (61.4) | (60.4) | (74.5) | (80.9) | (67.6) | (68.0) | (67.3)
Random forests | none 59.0 69.6 58.8 80.1 75.3 64.2 64.5 67.4
(57.6) | (65.1) | (57.7) | (74.9) | (82.8) | (67.2) | (68.9) | (67.7)

In the individual evaluation of the proposed methods,
the “fully supervised” methods SSCP, RSFS and SD show
improvement in the averaged score upon standard kNN
using the full feature set, while the partially unsupervised
USCP and the fully unsupervised DAM come close to its
performance level. These two unsupervised methods still
outperform SFS which shows obvious effects of overlearn-
ing. SFS achieves the best Development set score in each
task but, with the exception of the extraversion task, this
performance does not carry over to the held-out Test sets
where SFS is generally the worst of the methods evalu-
ated. The previously published MRMR method (Peng
et al., 2005) performs on approximately similar level as
the methods proposed in the current study.
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4.8. Performance of Combined Methods

Table shows the kNN classification performance
(UAR) with combinations of subset selection methods as
well as the highest classification baseline obtained with
either SVM or random forests using the full feature set.
MRMR was included as a representative of earlier meth-
ods, as it clearly outperformed SFS in the individual evalu-
ations. The best scores obtained in each task according to
Development data (used for feature selection itself as well
as for the optimization of the & parameter) and Test data
(a held-out data set) are also shown. As MRMR is found
to give quite compact feature sets (see Section , it is
not combined with other methods by intersection. Also
the intersections of feature sets given by SSCP, USCP and
RSFS are relatively small, especially when RSFS is com-




bined with the SCP methods. The set unions are corre-
spondingly larger than the average feature set. In terms of
classification performance, set union generally gives higher
scores. MRMR generally does not offer advantage to the
proposed methods by feature set fusion.

Task-specific features selected by at least two of SSCP,
USCP and RSFS are listed in the Appendix.

Table[d]shows the classification performance with combi-
nations of scoring and subset selection methods. Addition
appears to be a more effective way of combining the SD
and DAM scores than multiplication. Therefore, addition
is used for combining these scores whenever they are used
for feature ranking in order to refine some initial subset.

The performance of the baseline classification methods
is exceeded in most of the tasks by at least one combined
feature selection method when used together with the sim-
pler kNN classifier. Again, the Development set classifi-
cation scores of different methods are not reliable indica-
tors of Test set performance; the method that appears to
perform best on the Development set is generally not the
actual best method on the Test set, as shown near the
bottom of both tables.

4.4. Sizes of Feature Sets

The sizes of feature sets given by different feature selec-
tion methods are shown in Table |5} The scoring methods
had a maximum allowed feature set size of 500 features
while the subset methods did not have a hard limit. SFS
was likewise run until a maximum feature set size of 500,
which is larger than that eventually selected by the major-
ity of the evaluated approaches in any task (the only ex-
ceptions being RSFS in the extraversion task and the set-
union combined methods). It can be noticed that, apart
from combinations obtained solely by set union or intersec-
tion, the methods generally return feature sets of roughly
the same size which is close to 5 % of the total number
of features. Of the individual methods, MRMR produces
the most compact sets, a result that could be expected on
the basis of the fundamental principle of MRMR, to avoid
feature redundancy.

5. Discussion

All the proposed feature subset selection algorithms
(RSFS, SSCP and the partially unsupervised USCP) and
feature scoring algorithms (SD as well as DAM, the un-
supervised method) outperformed conventional sequential
forward selection (SFS) when kNN was used as the clas-
sification rule. In classification of the Development data
sets used in the feature selection process itself, however,
SFS achieved the best score of all the methods in each of
the seven classification tasks but this did not carry over to
the held-out Test sets. This result clearly demonstrates,
once again, the pitfall of overlearning in feature selection
optimized on a single data set (Reunanenl 2003} 2012 |Smi-
alowski et al.||2010), which is particularly dangerous when
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the number of features greatly exceeds the number of in-
stances and the number of potential feature sets is huge.
The proposed methods were thus shown to be more resis-
tant against overlearning in such sparse high-dimensional
problems than the conventional, greedy hill-climbing for-
ward selection, which is widely used today. In comparison
to SFS, MRMR generalizes better to new test data and
leads to compact feature sets. However, despite its higher
computational complexity, it does not surpass in perfor-
mance the feature selection methods proposed in the cur-
rent study.

The proposed methods, when used by themselves, man-
aged to reduce the feature space dimensionality on the
average to between 2.0 % and 6.2 % of the maximum
dimensionality of 6125 features (see Table [5). In any
practical paralinguistic analysis application, e.g., using
a simple classifier such as the kNN used in the present
study, this means a huge improvement in terms of both
the computational load and memory requirements of the
system. At the same time, classification performance was
preserved or improved: the new methods achieved com-
parable or better performance on the Test sets than kNN
using the full feature set. Moreover, despite being con-
fined to basic kNN classification, the individual feature
selection methods managed to exceed the performance
of the baseline high-dimensional classifiers, namely SVM
and random forests, in certain cases. The results show
promise for building simple and efficient classifiers using
various classification methods. Since simpler classifiers of-
ten lead to better generalization (Duda et al., [2001)), vari-
ous classification systems employing the proposed feature
selection methods can be expected to have better general-
ization ability than the corresponding higher-dimensional
ones would have. A logical next step would be to eval-
uate the feature selection methods in combination with
other, potentially more robust classifiers, such as SVM, in
paralinguistic analysis tasks. However, the classification
baseline results of the current study already seem to point
out that different tasks are most easily solved by different
classifiers, as seen in the differences between kNN, SVM
and random forests in many of the tasks. Indeed, a single
best generic classification approach for these types of par-
alinguistic analysis tasks probably does not exist (cf. the
No Free Lunch Theorem; Duda et al.|2001)).

One general trend in the results is the variability of al-
gorithm performance across different tasks. In addition to
the differences between classification methods across the
seven analysis tasks, none of the studied individual fea-
ture selection approaches perform clearly better than the
others. Instead, the best results in the seven tasks are ob-
tained by five different feature selection algorithms. Also,
some algorithms that perform well in some tasks fall far
below the classification baseline in others (for example,
USCP is the best in the intelligibility task and the sec-
ond worst in the agreeableness task). These observations
may reflect the large differences in nature and complex-
ity among the analysis tasks, as already evidenced by the



Table 3:  Classification performance (UAR %) on the Test sets and Development sets (in parentheses) using combinations of feature
subset selection methods. The Train and Development sets have been used as feature selection data. Union of subsets is denoted by +
and intersection by X. Also shown are the official baselines of the Interspeech 2012 Speaker Trait Challenge obtained using SVM and

random-forest classification (Schuller et all, |2012).

Subset selection

MRMR | SSCP | USCP | RSFS L I (0] C E A N Mean

X X 58.4 66.2 50.2 64.9 73.4 54.4 62.0 61.3
(59.5) | (624 ) | (54.1) | (70.5) | (84.7) | (64.5) | (73.6) | (67.0)

X X 50.7 63.2 54.9 67.6 71.8 52.4 65.4 60.9
(68.1) | (70.6 ) | (61.4) | (77.4) | (86.3) | (74.0) | (76.8) | (73.5)

X X 51.5 62.8 57.1 72.1 73.3 56.3 63.9 62.4
(69.7) | (67.8) | (62.4) | (77.4) | (84.7) | (73.0) | (75.8) | (73.0)

X X X 47.6 59.8 54.0 62.5 74.8 53.6 58.9 58.7
(60.9) | (61.7) | (55.6 ) | (71.4) | (85.3) | (71.4) | (73.3) | (68.5)

+ + 50.4 68.1 52.6 77.6 71.4 55.0 60.6 62.2
(61.2) | (66.5) | (61.3) | (75.1) | (84.1) | (61.9) | (71.2) | (68.8)

+ + 59.8 66.2 53.9 78.6 73.3 61.5 61.9 65.0
(77.4) | (75.1) | (72.7) | (784 ) | (86.9) | (72.1) | (77.9) | (77.2)

+ + 56.2 67.0 56.4 78.1 73.8 64.5 60.9 65.3
(74.7) | (76.0) | (69.9) | (79.2) | (86.9) | (74.8) | (74.7) | (76.6 )

+ + + 56.8 67.4 56.8 78.6 72.2 62.1 61.4 65.1
(74.0) | (75.2) | (67.9) | (79.5) | (87.4) | (69.3) | (76.2) | (75.6)

+ + 61.4 67.0 58.0 77.2 72.6 55.8 61.8 64.8
(59.9) | (66.9) | (61.8) | (75.8 ) | (85.2) | (64.5) | (72.2) | (69.5)

+ + 54.3 69.1 53.0 75.2 71.3 57.5 62.5 63.3
(60.7) | (65.1) | (61.6) | (74.8) | (85.2) | (63.2) | (71.2) | (68.8)

+ + 57.7 66.4 55.5 76.1 76.8 59.1 60.3 64.6
(75.1) | (74.5) | (75.4) | (78.7) | (85.8) | (74.8) | (74.8) | (77.0)

+ + + 56.7 68.2 55.2 75.7 70.7 53.4 62.5 63.2
(60.5) | (67.1) | (60.8) | (74.8) | (84.7) | (60.7) | (70.7) | (68.5)

+ + + 56.4 66.8 51.8 78.1 73.4 62.2 61.5 64.3
(76.2 ) | (73.2) | (72.5) | (77.5) | (87.4) | (72.2) | (78.4) | (76.8)

+ + + 58.1 68.4 54.1 77.6 74.3 61.6 60.9 65.0
(74.2) | (73.9) | (69.0) | (76.3) | (86.4) | (74.3) | (75.1) | (75.6)

+ + + + 57.4 68.0 51.8 78.1 74.8 60.9 61.4 64.6
(73.8) | (72.7) | (66.5) | (78.2) | (86.9) | (68.7) | (76.2) | (74.7)

Development set best method 59.8 67.0 55.5 78.6 73.4 64.5 61.5 65.8
(MRMR,SSCP,USCP,RSF'S combinations) | (77.4) | (76.0) | (75.4) | (79.5) | (87.4) | (74.8 ) | (784 ) | (784 )

Test set best method 61.4 69.1 58.0 78.6 76.8 64.5 65.4 67.7
(MRMR,SSCP,USCP,RSFS combinations) | (59.9 ) | (65.1) | (61.8 ) | (79.5) | (85.8) | (74.8 ) | (76.8) | (71.9)

Best of SVM, random forests 59.0 69.6 58.8 80.1 76.2 64.2 65.9 67.7
(57.6) | (65.1) | (57.7) | (74.9) | (80.9) | (67.2) | (68.0) | (67.3)

differences among their baseline or average classification
scores.

The performance on the development set was generally
a poor indicator of algorithm performance on the held-out
test set. This not only shows the importance of measur-
ing the ultimate generalization with an independent test
set (cf. Reunanen|2003)), but also indicates, on a related
note, how strict optimization of development set perfor-
mance may guide the system to a highly overfitted solu-
tion. While this very obviously happened with sequential
forward selection, which makes no attempt to avoid it, it
was also observed in varying degrees with some of the pro-
posed methods, despite the various attempts to avoid the
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most distinct local maxima in the criterion function. These
included stochastic sampling, adapted quantization scales,
unsupervision, randomized dimensionality determination,
computation of the criterion function across various values
of k in kNN etc.

Even though it proved to be difficult to predict the per-
formance of any selection method on the held-out test
sets, the results show that the combination of multiple
feature selection criteria has the potential to improve fea-
ture selection performance and even to exceed the perfor-
mance level of state-of-the-art high-dimensional classifiers,
i.e., SVM and random forests, using the simple nearest-
neighbor classification rule. The performance of these clas-




Table 4: Classification performance (UAR %) on the Test sets and Development sets (in parentheses) using combinations of feature subset
selection and scoring methods. The Train and Development sets have been used as feature selection data. Union of subsets is denoted by
+ and intersection by x. For combining scoring methods, the same symbols refer to addition and multiplication. When combining subset
methods with scoring methods, the latter are used as a refinement to the former according to Section [3.5.1} Also shown are the official

baselines of the Interspeech 2012 Speaker Trait Challenge obtained using SVM and random-forest classification (Schuller et al.l |2012).

Subset selection Scoring

SSCP | USCP | RSFS | SD | DAM | L I 0 C E A N Mean

X X 56.8 65.2 49.9 78.5 75.4 62.8 59.7 64.1
(63.3) | (70.0) | (63.7) | (76.7) | (84.7) | (66.0) | (72.3) | (71.0)

+ |+ 55.8 65.5 56.5 79.5 76.4 60.8 61.8 65.2
(64.0) | (70.7) | (62.5) | (76.4) | (83.6) | (67.6) | (72.9) | (71.1)

X X 61.2 66.5 57.2 72.6 74.5 53.1 62.8 64.0
(61.6 ) | (674 ) | (66.5) | (77.6) | (84.1) | (65.4) | (75.1) | (71.1)

X X 51.4 68.0 55.7 74.6 71.6 55.4 65.3 63.2
(68.0) | (67.9) | (62.3) | (78.2) | (85.8) | (69.9) | (75.9) | (72.6 )

X X 58.7 64.3 56.6 74.6 75.3 58.3 58.9 63.8
(78.7) | (78.1) | (79.0) | (78.0) | (87.4) | (75.5) | (75.9) | (78.9)

+ + + X 58.4 66.3 56.8 76.1 75.4 55.8 59.8 64.1
(72.9 ) | (74.5) | (70.2)) | (77.7) | (86.3) | (71.9) | (75.8) | (75.6)

X X 59.8 66.6 53.9 76.5 714 55.3 64.4 64.0
(61.6 ) | (67.3) | (64.8) | (77.2) | (85.2) | (64.2) | (76.1) | (70.9)

X X 51.1 70.4 53.0 79.1 72.1 52.4 60.8 62.7
(67.0) | (66.1) | (64.3) | (76.8 ) | (86.9) | (62.2) | (74.4) | (71.1)

X X 57.5 64.1 58.9 74.1 76.8 59.4 60.4 64.4
(77.8) | (778 ) | (77.9) | (79.8) | (88.5) | (75.5) | (78.0) | (79.3)

+ + + X 59.5 66.3 55.7 75.6 73.3 59.4 62.4 64.6
(74.8) | (76.1) | (71.4) | (79.2) | (88.0) | (70.6 ) | (76.8) | (76.7)

X + |+ 57.5 67.1 51.2 77.1 72.0 56.7 62.0 63.4
(63.9) | (673 ) | (67.1) | (77.4) | (85.2) | (65.0) | (75.4) | (71.6)

X + |+ 51.6 69.8 52.0 79.1 71.5 56.5 62.2 63.2
(61.5) | (69.4) | (64.6) | (76.8) | (85.8) | (69.2) | (73.3) | (71.5)

X + |+ 55.9 65.7 60.5 75.1 73.8 57.4 61.5 64.3
(76.3) | (78.0) | (784 ) | (77.4) | (86.9) | (76.1) | (75.9) | (78.4)

+ + + + |+ 61.4 66.0 54.7 77.1 74.8 60.4 59.1 64.8
(75.1) | (75.6 ) | (74.6 ) | (78.1) | (86.3) | (70.9) | (74.5) | (76.5)

Development set best method 58.7 64.3 56.6 74.1 76.8 57.4 61.5 64.2
(all combined methods, Tables (78.7) | (78.1) | (79.0) | (79.8 ) | (88.5) | (76.1) | (78.4) | (79.8)

Test set best method 61.4 70.4 60.5 79.5 76.8 64.5 65.4 68.4
(all combined methods, Tables (75.1) | (66.1) | (78.4) | (76.4) | (88.5) | (74.8) | (76.8) | (76.6)

Best of SVM, random forests 59.0 69.6 58.8 80.1 76.2 64.2 65.9 67.7
(57.6) | (65.1) | (57.7) | (74.9) | (80.9) | (67.2) | (68.0) | (67.3)

sifiers was exceeded in most cases (11 out of 14) using at
least one (combined) feature selection method. This sug-
gests another potential direction for future research: study
the use of another held-out validation data set in order
to select a suitable combined feature selection method for
each analysis task. It would be interesting to investigate
whether the benefit of an additional validation data set,
used solely for selecting a feature selection method, would
outweigh the cost of having a smaller portion of the data
available for the feature selection process itself.

The most effective combination methods were the union
of sets and refinement of subsets by score-based ranking,
whereas intersection of multiple feature sets led to very
compact but still reasonably well performing systems, also
revealing the most relevant features for each analysis task.
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Combination of supervised and unsupervised feature selec-
tion criteria showed promise, as the best-performing com-
bined method in five out of seven analysis tasks included
the fully unsupervised DAM method based on matching
feature value distributions between data sets.

6. Conclusions

Classification of high-dimensional paralinguistic speaker
trait data was approached with a special focus on fea-
ture selection. Several new feature selection algorithms
with different supervised, partially supervised and unsu-
pervised selection criteria were presented, as well as meth-
ods for combining the algorithms. These were evaluated
and compared against widely used baseline methods from



Table 5:

The size of feature set returned by different (individual and combined) feature selection methods; see captions of Tables for

details. For the scoring methods SD and DAM, the ranking-based and randomized methods of feature set size determination (see Section
are denoted by 1) and 2), respectively. The randomized method of size determination is used with the combined selection algorithms.

Subset selection Scoring
SSCP | USCP | RSFS | SD | DAM | L I O |C |E A | N | Mean
X 406 | 318 | 297 | 287 | 273 | 322 | 312 | 316
X 423 | 347 | 314 | 293 | 291 | 337 | 320 | 332
X 263 | 454 | 205 | 378 | 649 | 315 | 402 | 381
x 1) 75 | 425 |81 |13 | 129 |15 |99 | 120
x1) 185 | 396 | 447 | 350 | 297 | 367 | 495 | 362
x2) 278 | 425 | 83 | 369 | 422 | 50 | 414 | 292
x2) 97 | 463 | 447 | 349 | 497 | 314 | 375 | 363
X X 123 | 67 85 | 65 | 72 78 |75 |81
X X 22 | 27 19 | 26 | 34 25 |39 |27
X X 26 | 21 23 | 22 |51 21 | 43 |30
X X X 7 2 5 8 16 7 12 8
+ + 706 | 598 | 526 | 515 | 492 | 581 | 557 | 568
+ + 647 | 745 | 483 | 639 | 888 | 612 | 675 | 670
+ + 660 | 780 | 496 | 649 | 889 | 631 | 679 | 683
+ + + 928 | 1006 | 694 | 853 | 1072 | 857 | 889 | 900
X X 375 | 482 | 421 [ 173 | 110 | 181 | 389 | 304
+ |+ 150 | 490 | 231 | 375 | 442 | 68 | 344 | 300
X X 406 | 301 |11 [ 105 | 162 | 226 | 173 | 198
X X 71 | 86 314 | 183 | 200 | 91 | 64 | 157
X X 209 | 450 | 199 | 348 | 480 | 315 | 233 | 319
+ + + X 458 | 497 | 399 | 349 | 427 | 418 | 447 | 428
X X 406 | 301 | 116 | 190 | 150 | 143 | 144 | 207
X X 376 | 280 | 151 | 293 | 284 | 337 | 159 | 269
X X 224 | 452 | 205 | 162 | 259 | 315 | 373 | 284
+ + + X 432 | 421 | 315 | 326 | 314 | 412 | 323 | 363
X + |+ 123 [ 306 | 46 | 132 ] 148 | 274 | 249 | 183
X + |+ 423 | 143 | 193 {293 | 290 | 72 | 223 | 234
X + |+ 260 | 449 | 202 | 280 | 408 | 314 | 169 | 297
+ + + + |+ 494 | 488 | 454 | 287 | 370 | 215 | 487 | 399
SFS 165 | 162 | 456 | 453 [ 304 | 368 | 119 | 290
MRMR 10 [ 328 [ 28 [233]112 [12 |5 104

the perspective of both feature selection and pattern clas-
sification. In addition, combined selection methods were
used to identify the most relevant features for the seven
analysis tasks consisting of speaker likability, intelligibility
and the Big Five personality traits.

The results demonstrate five things: 1) the proposed
methods are more resistant against overlearning in fea-
ture selection than conventional, hill-climbing forward se-
lection; 2) a huge reduction of feature space dimensionality
is achieved without sacrificing performance on the held-
out test data, indicating potential computational savings;
3) furthermore, the nearest-neighbor classification perfor-
mance is improved by many individual and combined fea-
ture selection methods, suggesting a potentially improved
ability of classifiers to generalize with limited training data
when using the proposed methods for feature selection; 4)
due to different amounts of overfitting generally shown by
different feature selection algorithms, the performance of
any given method is difficult to predict without indepen-

dent evaluation data; and 5) by combining supervised and
unsupervised feature selection methods and a basic classi-
fier, the performance of state-of-the-art high-dimensional
pattern classification methods can be reached. In future
research, potential directions suggested by the results are
automatic selection of a feature selection method using in-
dependent evaluation data and the application of the pro-
posed methods to various practical analysis problems with
different classifiers.
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Appendix A. Discovered Features for Likability,
Intelligibility and Personality Traits

Table A.6: Features selected for Likability from the Speaker Trait
Challenge feature set (Schuller et al., |2012) by each of the subset
selection methods SSCP and RSFS (Test set UAR 55.0%).

Likability
pcm_ RMSenergy_ sma_ kurtosis
audSpec_ Rfilt_ sma[3]_ downleveltime75
mfcc_ smal[4]- quartile3
mfcc_ smal5]- Ipcl
mfcc_ smal5]- Ipc2
mfce_ sma[7]- Ipgain
[
[

mfcc_ smal8]- falltime

mfcc_ sma[ll]_ IpcO

mfcc_ sma[13]- iqr2-3

audSpec_ Rfilt_ sma_ de[1]- minPos
audSpec_ Rfilt_ sma_ de[2] iqr2-3
audSpec_ Rfilt_ sma_ de[16]- quartile2
audSpec_ Rfilt_ sma_ de[22]_ downleveltime75
pcm_ Mag_ psySharpness_ sma_ de_ Ipc3
mfcc_ sma_ de[10]- 1pcO

FOfinal_ sma_ minPos

FOfinal_ sma_ percentilel.0
voicingFinalUnclipped_ sma_ skewness
audSpec_ Rfilt_ sma[0]_ linregcl
audSpec_ Rfilt_ sma[6]_ peakRangeRel
mfcc_ smal9]- peakDistStddev

mfcc. sma_ de[5]- posamean

Our approach of selecting features based on different
criteria permits us to single out certain features that
tend to be favored across different feature selection cri-
teria. Because of the generally good performance shown
by the complete subset selection methods SSCP, USCP
and RSFS in combination with each other as well as with
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Table A.7:  Features selected for Intelligibility from the Speaker
Trait Challenge feature set (Schuller et al., |2012) by each of the
subset selection methods USCP and RSFS (Test set UAR 63.5 %).

Intelligibility

pcm_ RMSenergy_ sma_ de_ lpc2

audSpec_ Rfilt_ sma[0]- percentile99.0

pcem- Mag_ spectralSkewness_ sma_ range

pcem_ Mag_ spectralSkewness_ sma_ pctlrange(-1
pcm_ Mag_ spectralKurtosis_ sma_ stddev

mfcc_ smal[4]. quartile3

mfcc_ smal[9]. iqr2-3

mfcc_ sma[ll]_ upleveltime50

pem_ Mag_ spectralSkewness_ sma_ de_ percentilel.0
mfcc_ sma_ de[3]- quartilel

mfcc_ sma_ de[9]- pctlrange0-1

mfcc_ sma_ de[14]_ iqrl-3

shimmerLocal_ sma_ de_ quartile3
shimmerLocal_ sma_ de_ stddev

shimmerLocal_ sma_ de_ Ipgain

audSpec_ Rfilt_ sma[0]_ flatness

pem_ Mag_ fband250-650_ sma_ qregc3

pem_ Mag_ spectralFlux_ sma_ peakRangeAbs
mfcc_ sma[l2]_ linregc2

shimmerLocal_ sma_ amean

pem_ Mag_ spectralRollOff50.0_ sma_ de_ flatness

other methods (see Tables , we chose to study the
features that were selected by at least two of them in
a given classification problem. To select the best com-
bination for each task, intersections of subsets given by
these methods were evaluated in kNN classification with
k optimized on the Development set according to Eq.
with ko € {5,10,15,...,150}. Tables show
the features that were selected by the best intersection-
combination of these methods, as found by the described
procedure (which differs from those of the previous sec-
tions in the allowed values of k), in the likability, intelli-
gibility and personality classification tasks. The abbrevi-
ations have been given by the organizers of the Speaker
Trait Challenge and explanation on their meaning can be
found in the paper on the challenge (Schuller et al., [2012)).

Overall, the popular features are based on various dif-
ferent low-level descriptors (LLDs), including energy and
zero-crossing rate (ZCR; Rabiner and Schafer||1978)), spec-
tral skewness and kurtosis, spectral flux and roll-off points
(Scheirer and Slaney, 1997, mel-frequency cepstral coef-
ficients (MFCCs; [Huang et al.[|2001; Mermelstein||1975)),
pitch (FO0) estimates (Hess, [1983) and psychoacoustic
sharpness (Zwicker and Fastl, [1990). It can also be ob-
served that the compact feature sets selected for different
tasks are very distinct. In fact, no features were selected by
the described combined method for more than two tasks
and only nine features were selected for two tasks. De-
pending on the analysis task, different long-term function-
als appear effective in modeling the time behavior of the



Table A.8: Features selected for Openness from the Speaker Trait
Challenge feature set (Schuller et al., |2012) by each of the subset
selection methods USCP and RSFS (Test set UAR 57.1 %).

Opennness

audspec_ lengthLlnorm_ sma_ de_ risetime
audSpec_ Rfilt_ smal8]_ Ipc0

audSpec_ Rfilt_ sma[23]_ skewness

pcem_ Mag_ spectralVariance_ sma_ Ipc2
pcm_ Mag_ psySharpness_ sma._ iqr2-3
mfcc. smal[3]- Ipcl

mfcc_ smal[5]- iqrl-3

mfcc_ smal[5]- upleveltime90

mfcc_ sma[10]- upleveltime90

mfce_ sma[12]- maxPos

mfcc_ sma[l3]- upleveltime75

audSpec_ Rfilt_ sma_ de[0]- upleveltime25
audSpec_ Rfilt_ sma_ de[25]_ upleveltime90
pcem_ Mag_ fband1000-4000_ sma_ de_ upleveltime90
pcem_ Mag_ spectralRollOff75.0_ sma_ de_ maxSegLen
mfce_ sma_ de[2]- IpcO

mfcc_ sma_ de[3]- Ipcl

mfcc_ sma_ de[6]_ downleveltime75

mfcc_ sma_ de[9]- Ipgain

audSpec_ Rfilt_ sma[19]_ peakDistStddev
pem_ Mag_ fband1000-4000_ sma_ qregc2
mfcc. smal[5]- meanPeakDist

mfcc_ smal[5]_ linregerrQ

LLDs and their delta features (Furui, [1986; [Huang et al.,
2001) to yield the utterance-level features.

The feature sets listed in Tables worked rea-
sonably well in the classification tasks; their average UAR

Table A.9:  Features selected for Conscientiousness from the Speaker
Trait Challenge feature set (Schuller et al., |2012) by each of the
subset selection methods USCP and RSFS (Test set UAR 74.6 %).

Conscientiousness

audSpec_ Rfilt_ sma[25]_ quartilel

pem_ Mag_ spectralFlux_ sma_ quartile3
mfcc_ sma[l]_ downleveltime25

mfcc_ smal6]- risetime

mfcc_ sma[l1]- falltime

audSpec_ Rfilt_ sma_ de[4]- iqr2-3

audSpec_ Rfilt_ sma_ de[18]. downleveltime25
audSpec_ Rfilt_ sma_ de[20]_ quartile3

pem_ Mag_ fband250-650_ sma_ de_ lpcd
pcem- Mag_ spectralEntropy- sma- de_ iqrl-3
pcm_ Mag_ spectralSkewness_ sma_ de_ iqr2-3
pcm_ Mag_ spectralKurtosis_ sma_ de_ iqrl-3
mfcc_ sma_ de[3]- iqr2-3

pem_ zer_ sma_ meanPeakDist

pem_ Mag_ spectralFlux_ sma_ meanPeakDist
pcm_ Mag_ spectralKurtosis_ sma_ peakMeanRel
mfcc_ sma[7]- meanPeakDist

audspec_ lengthLLlnorm_ sma_ de_ flatness
audSpec_ Rfilt_ sma_ de[14]_ flatness
audSpec_ Rfilt_ sma_ de[19]_ flatness
audSpec_ Rfilt_ sma_ de[22]- flatness

mfcc_ sma_ de[1]. flatness

was 64.0 %, i.e., roughly the same as that of the com- ,

lete feat t. In addition. the featur ntained in Table A.10:  Features selected for Extraversion from the Speaker
plete lea u.re Set. & ; on, € leatures conta .e Trait Challenge feature set (Schuller et al., |2012) by each of the
them were independently picked by at least two algorithms subset selection methods SSCP, USCP and RSFS (Test set UAR
based on very different considerations (SCP and RSFS).  74.8 %).
Finally, as mentioned above, the features selected seem
rather specific to the task — there are no generic features
selected for most tasks. Therefore, these features can jus-
tifiably be assumed to have at least some relevance in the
paralinguistic analysis tasks they were selected for.

Extraversion

peme zer- sma_ segLenStddev

pcm- RMSenergy_ sma_ de_ skewness
audSpec_ Rfilt_ sma[23]_ upleveltime75
audSpec_ Rfilt_ sma[25]_ quartile3

pem_ Mag_ spectralFlux_ sma_ upleveltime25
mfce_ smal[l]- quartile2

mfce_ sma[l]- risetime

mfcc. smal7]- iqrl-2

mfcc_ sma[ll]_ Ipcl

mfcc_ sma[12]_ IpcO

pcem- Mag_ spectralFlux_ sma_ de_ quartile3
mfce_ sma_ de[14]- 1pc2
voicingFinalUnclipped_ sma_ de_ quartile2
audspec_ lengthL1norm_ sma_ peakDistStddev
pcem_ Mag_ spectral Variance_ sma_ qrege3
mfcc_ sma_ de[3]- rqmean
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Table A.12:  Features selected for Neuroticism from the Speaker
Trait Challenge feature set (Schuller et al., |2012) by each of the
subset selection methods SSCP and RSFS (Test set UAR 64.8 %).

Neuroticism

audspec_ lengthL1norm_ sma_ upleveltime90
audspec_ lengthL1lnorm_ sma_ de_ iqrl-2
pcm- RMSenergy_ sma_ de_ quartile3

pcm_ zer_ sma_ de_ iqrl-3

audSpec_ Rfilt_ sma[4]_ quartile3

audSpec_ Rfilt_ sma[9]_ upleveltime25
audSpec_ Rfilt_ sma[22]_ downleveltime25

Table A.11:  Features selected for Agreeableness from the Speaker
Trait Challenge feature set (Schuller et al) |2012) by each of the
subset selection methods USCP and RSFS (Test set UAR 58.4 %).

Agreeableness

audspec_ lengthLLlnorm_ sma_ de_ Ipc4
audSpec_ Rfilt_ sma[10]_ Ipc4

pcem_ Mag_ fband250-650_ sma_ iqr2-3
pem_ Mag_ spectralRollOff90.0_ sma_ iqrl-2
mfcc- small]- iqrl-3

mfce_ sma[l]- Ipgain

mfcc_ smal[3]. range

mfcc_ smal7]- IpcO

mfcc_ smal8]- IpcO

mfcc_ sma[12]- Ipc3

audSpec_ Rfilt_ sma_ de[3]- meanSegLen
audSpec_ Rfilt_ sma_ de[3]_ segLenStddev
pcem_ Mag_ spectralKKurtosis_ sma_ de_ Ipcl
mfcc_ sma_ de[2]- maxSegLen

FOfinal_ sma_ quartilel

FOfinal_ sma_ percentilel.0

logHNR._ sma_ de_ range

audspec_ lengthL1norm_ sma_ meanFallingSlope
pem_ zer_ sma_ de_ flatness

pcem_ Mag_ spectralVariance_ sma_ de_ flatness
pcm_ Mag_ psySharpness_ sma_ de_ flatness
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pem- Mag_ spectralRollOff25.0- sma_ skewness
pcem_ Mag_ spectralFlux_ sma_ upleveltime50
pcem- Mag_ spectralSkewness_ sma_ quartilel
pcem_ Mag_ spectralKKurtosis_ sma_ quartilel
mfcc_ smal[l]_ quartile3

mfcc_ smal6]- pctlrange0-1

mfcc. smal8]- Ipgain

mfcc_ sma[l4]. skewness

audSpec_ Rfilt_ sma_ de[11]- upleveltime25
pcm- Mag_ fband1000-4000- sma._ de_ percentile99.0
mfcc_ sma_ de[l]- percentile99.0

mfcc_ sma_ de[12]- quartile3

mfce_ sma_ de[12]- iqrl-2

mfcc_ sma_ de[13]- quartile3

mfcc_ sma_ de[14]_ Ipgain

FOfinal_ sma_ quartilel

FOfinal_ sma_ downleveltime25

logHNR_ sma_ Ipc0

logHNR_ sma_ de_ risetime

audspec_ lengthL1norm_ sma_ meanFallingSlope
audspecRasta_ lengthL1norm_ sma_ peakRangeRel
pcem_ zer_ sma_ meanPeakDist

pcm_ Mag_ spectralFlux_ sma_ amean

pcem_ Mag_ spectralFlux_ sma_ peakRangeAbs
pcem_ Mag_ spectralFlux_ sma_ linregc2

pcem_ Mag_ spectral Variance_ sma_ peakMeanRel
pcem_ Mag_ psySharpness_ sma_ meanPeakDist
mfcc_ sma[12]. gregerrQ

shimmerLocal_ sma_ amean

pcem_ zer_ sma_ de_ flatness

pcm_ Mag_ psySharpness_ sma_ de_ flatness
mfcc_ sma_ de[12]- rqmean
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