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Abstract

This study focuses on handling high-dimensional clas-
sification problems by means of feature selection. The
data sets used are provided by the organizers of the In-
terspeech 2012 Speaker Trait Challenge. A combina-
tion of two feature selection approaches gives results that
approach or exceed the challenge baselines using a k-
nearest-neighbor classifier. One of the feature selection
methods is based on covering the data set with correct
unsupervised or supervised classifications according to
individual features. The other selection method applies
a measure of statistical dependence between discretized
features and class labels.
Index Terms: pattern recognition, feature selection,
high-dimensional data, speaker characteristics

1. Introduction

The Interspeech 2012 Speaker Trait Challenge provides
6125 utterance-level features (functionals of low-level
acoustic descriptors) which can be used in binary speech
classification tasks [1]. In each of the seven subtasks,
the goal is to identify the presence or absence of speaker
traits [1]: openness, conscientiousness, extraversion,
agreeableness, neuroticism, likability and intelligibility.

Pattern classification with such high-dimensional
data is complicated by the phenomenon referred to as
the curse of dimensionality [2] [3]. Large amounts of
training data are required to avoid overlearning in a high-
dimensional, sparsely populated feature space.

The diversity of the available utterance-level acous-
tic features suggests that there may exist low-dimensional
subspaces in which the classes are separable using simple
pattern recognition methods. In order to test this assump-
tion, the approach chosen in the present study is to treat
the problem as that of feature selection. The main prac-
tical problem is the number of possible feature subsets
which is 26125 − 1. Because this number is intractable,
informed feature selection methods are required.

We present two differently based approaches for fea-
ture selection, analyze their performance individually and
together and compare the obtained results to the chal-
lenge baselines.

2. Methods
2.1. Feature selection based on classification

The first approach to feature selection is based on super-
vised or unsupervised discrimination between two classes
using Gaussian mixture models (GMMs) to model the
probability distributions of individual features. A feature
set is constructed based on the classifications.

In the task of classifying speaker trait T as present
or not present, unidimensional GMMsλT and λNT

are initially trained in the normal fashion, using class-
specific data of a feature variable, with five itera-
tions of expectation-maximization (EM) re-estimation
for GMMs [4]. Before initial training, the mixture
weights of the GMMs are initialized by uniform distri-
butions. The variance parameters of each component are
initialized by0.1 times the global variance of the feature.
The initial mean parameters of each component are given
by the heuristic approach described in [5]. In applying the
GMMs to unseen data in a conventional supervised man-
ner, the class decision for each observation is based on
the logarithmic likelihood ratioL = LT −LNT, whereLT

andLNT are the logarithmic likelihoods of the observa-
tion having been produced by each GMM. The decision
threshold is adjusted on the training data set according
to the equal error rate (EER) criterion typically used in
detection applications. It corresponds to equal misclassi-
fication rate for both classes.

The mixture-based class discrimination for individual
features is also evaluated using unsupervised learning af-
ter the initial supervised training. In this method, the pa-
rameters of twoJ-component GMMs are joined to form
one composite GMM with2J components while multi-
plying the component weight parameters by0.5. EM it-
eration is now applied to training the composite GMM,
with one modification: the sums of theJ weight param-
eters belonging to the T and NT classes are both normal-
ized back to0.5 before each expectation step (E step) of
the EM iteration, thus ensuring that the prior probabilities
of the two classes stay equal in the E step. Otherwise,
the GMM parameters are allowed to freely adapt to the
complete data set which includes observations from both
classes. After five iterations, the sub-GMMs belonging
to the two classes are again separated and used to classify



the data using a decision threshold that has been set ac-
cording to the EER criterion in the training phase. Given
that EM is a hill-climbing method guaranteed to converge
on at least a local, if not global, maximum of the likeli-
hood function [4], this method favors features for which
the solution that discriminates between the two classes is
close in likelihood to a local maximum or saddle point of
a natural clustering solution.

Classifications are obtained using both of the above
methods, i.e. by supervised and unsupervised learning.
For both cases, we construct matrices where rows corre-
spond to audio clips, columns correspond to features, and
the value is1 if the clip in question was correctly classi-
fied by the feature in question and0 otherwise.

We make the following observation. Our goal to se-
lect a subset of features can be formulated as an Inte-
ger Linear Programming (ILP) problem. In particular,
we map our problem to the well-known Set Covering
Problem (SCP). In the SCP problem, we are given a fi-
nite setS := {1, ...,m} of items, and a familyF =
{S1, ..., Sn ⊆ S} of subsets of S, and a cost function
c : F → R+. The objective is to find a subsetC ⊆ F
such that

∑
Si∈C c(Si) is minimized. In our formulation,

the family of sets corresponds to individual features and
the set of items are audio clips. For each feature we at-
tribute a cost of one, that is, we are dealing with the so-
called unicost SCP. Finally, our objective is tocoverall
clips using minimum number of features.

As explained above, before solving this ILP, each fea-
ture has been evaluated on each clip, and it has been noted
whether the clip can be classified correctly using that fea-
ture. This yields knowledge about which items (clips) are
covered in which sets (features). Then, our formulation
can be written as:

Minimize
∑

s∈F x
∑

s∈F :e∈s xs ≥ 1 ∀ e ∈ S

xs ∈ {0, 1} ∀ s ∈ F (1)

The decision variablesxs denote whether the feature
s is selected while the first constraint ensures that we
consider every clip. Our goal is to select the minimum
number of such features. This observation has an im-
mediate bearing on our problem. We can leverage gen-
eral techniques for solving ILP’s; namely using a branch-
and-bound algorithm based on the linear relaxation of
the original problem where the integer decision variables
xs ∈ {0, 1} are replaced withxs ∈ [0, 1]. While this al-
gorithm solves the problem to optimality, in general, the
SCP is NP-hard [6].

In case optimal solutions cannot be computed effi-
ciently, it is possible to trade optimality with efficiency.
One alternative is to use a simple and fast greedy algo-
rithm to obtain an approximate solution. The greedy al-
gorithm selects a set that covers the most items using
the least cost at each step until all items are covered.

In fact, this algorithm achieves anHn factor approxima-
tion algorithm for the minimum set cover problem, where
Hn = 1+1/2+ ...+1/n. Another approach would be to
solve the linear relaxation to optimality, and then to use
the rounding up technique to obtain an integral solution
[7]. In this work, we consider the rounding-up technique.

Depending on whether the SCP was based on classi-
fications using GMMs trained in a completely supervised
or a partially unsupervised manner, the feature selection
method is termed supervised or unsupervised classifica-
tion set covering problem (SSCP or USCP, respectively).

2.2. Feature selection based on statistical dependence

In this feature selection method, each feature is dis-
cretized by quantizing it to one ofN = 65 levels, where
the quantization scale is adjusted such that each bin will
contain an equal amount of samples. The statistical de-
pendence between the discretized featurey and the class
labelingz is evaluated according to the formula

D =
∑

y∈Y

∑

z∈Z

p(y, z)
p(y, z)

p(y)p(z)
. (2)

We have found this formulation preferable to the con-
ventional mutual information (MI) measure in assessing
statistical dependence in problems like the present one.
A previously specified number of features having the
highestD value will be selected. This feature selection
method is termed the statistical dependence method (SD).

2.3. Classification

We applyk nearest neighbors (kNN) as the classifica-
tion method [2]. Prior tokNN classification, each fea-
ture is normalized to have zero mean and unit variance.
While making a decision on an input vector based on its
k nearest neighbors according to the Euclidean distance,
the counts of different classes are scaled by dividing them
by the frequencies of occurrence of the same classes in
the training data.

2.4. Evaluation

Evaluation of classification results is carried out accord-
ing to the guidelines of the Interspeech 2012 Speaker
Trait Challenge [1]. In particular, the evaluation is based
on three data sets, namely the training, development and
evaluation sets. Moreover, the unweighted average recall
(UA) is used as the primary measure of performance. An-
other measure is the weighted average recall (WA).

3. Results
3.1. Dimensionalities

In order to determine the proper size of the feature set
(dimensionality of the feature space), SSCP and USCP
feature selection were first performed. The size of these



feature sets ranged from 273 to 423. Each possible size of
subset of the initial feature set was analyzed. Seven ran-
dom subsets of each size were generated and evaluated
in classification (k = 40) according to the UA measure.
The results were averaged across the seven random sets.
In addition, the SD feature selection method was used to
obtain a subset of each size and classified with optimal
k ∈ {5, 10, . . . , 150}. Both sequences were smoothed
using a 3-tap moving average filter and then averaged to-
gether for each subset size. The number of features giv-
ing the highest such score was chosen for each case where
SCP- and SD-based feature selection methods were used
in succession. In the evaluation on development sets, SD
by itself used the same dimensionality as the better of
SSCP+SD and USCP+SD configured as above.

3.2. Values of k

The value ofk, i.e., the number of nearest neighbors
based on which the class decisions are made, was cho-
sen in training of each task so as to maximize devel-
opment set classification performance such thatk ∈
{5, 10, . . . , 150}. For the joint training by training and
development set data in order to classify the test data,
these values were scaled in proportion of the increased
training data size.

3.3. Likability sub-challenge

The results are shown in Table 1. Combined with the SD
method, both the SSCP and the USCP methods outper-
form the development set baseline, and the SSCP method
combined with the SD method outperforms the test set
baseline. In order to better respond to classification of
the test sets of each subtask, the SSCP and USCP have
been cross-optimized between the training and develop-
ment sets (classification of the development set is trained
on the training set and vice versa). Whether this has a no-
ticeable effect on the development set scores is unknown.
The SD and MI methods only analyze the training data
set.

Table 1:Results obtained for the likability sub-challenge.
The WA scores are shown for the test set only.

Method of Number
feature of

Data selection features k UA WA

Devel Baseline (SVM) 6125 58.5
Devel SSCP 406 60 57.4
Devel USCP 423 35 59.8
Devel SD 349 65 55.3
Devel SSCP+SD 349 90 62.0
Devel USCP+SD 411 40 60.0
Devel SSCP+MI 349 90 58.6
Test Baseline (RF) 6125 59.0 59.2
Test USCP+SD 411 58 53.3 53.9
Test SSCP+SD 349 131 61.3 61.3

3.4. Pathology sub-challenge

As shown in Table 2, several methods exceed the devel-
opment set baseline. In terms of the UA measure, the
test set baseline is not exceeded, but in terms of WA, the
proposed methods exceed the test set baseline score.

Table 2: Results obtained for the pathology sub-
challenge. WA scores are shown for the test set only.

Method of Number
feature of

Data selection features k UA WA

Devel Baseline (RF) 6125 65.1
Devel SSCP 318 115 67.2
Devel USCP 347 85 61.8
Devel SD 300 30 66.2
Devel SSCP+SD 299 75 68.3
Devel USCP+SD 172 125 63.8
Test Baseline (RF) 6125 68.9 67.5
Test USCP 347 155 65.5 72.4
Test USCP+SD 300 137 65.6 72.4
Test SSCP+SD 299 137 66.3 69.8

3.5. Personality sub-challenge

The results are shown in Table 3. Each development set
baseline is outperformed by at least one of the proposed
feature selection methods using dimensionality selection
(Section 3.1). The best of these methods were used for
the test set. In addition, for the test set, the USCP was
used followed by the SD method using a threshold of
1.15 on the statistic of Eq. 2, leading to differently sized
feature sets. Comparison of, e.g., the two versions of
USCP+SD in the “C” task shows potential effect of mis-
informative features. The test set baseline of the openness
task is exceeded by the proposed methods. USCP+SD
comes close to the test set baseline of the conscientious-
ness task. The test set baseline of the neuroticism task is
approximately reached by the SSCP+SD method and the
WA score of the baseline method is exceeded.

4. Conclusions

This study focused on problems of binary classification
of speaker characteristics. Given a large number of initial
features but a limited amount of labeled data, the prob-
lems were approached from the perspective of feature
subset selection. The underlying assumption was that
among the vast amount of feature spaces obtainable by
selecting a subset of the available 6125 features, there
would exist feature spaces in which the class separation
is both easy (relative to the general difficulty of the prob-
lem at hand) and generalizable. The challenge was to find
some of such feature spaces using feature selection ap-
proaches that would not overemphasize the performance
of particular algorithms on particular datasets, i.e. over-
learn the training data.



Two different approaches to feature selection, work-
ing on different assumptions, were combined: one based
on covering all of the data in terms of correct classifi-
cations using Gaussian mixtures, and another based on
selecting features whose quantized versions displayed
the highest statistical dependence with the labeling. By
combining the two different approaches, we were able
to discover feature spaces in which high classification
accuracy, comparable to state-of-the-art classification
methods [1], was obtained using a conceptually sim-
ple nearest-neighbor classifier. Moreover, the promising
classification performance using the discovered feature
sets carried over from the development sets to the test
sets, meaning that the feature selection results using the
proposed approach are generalizable. The results of the
feature selection can conceivably be used in other, similar
paralinguistic analysis tasks. The features selected by the
methods are available online [8].

Outside the context of the present challenge, we
consider high-dimensional pattern recognition problems,
similar to the present ones, in which a large and com-
prehensive set of features is readily available. Instead of
focusing on classification methods, the results suggest an
alternative approach. Our results demonstrate the poten-
tial of tackling these problems as feature selection prob-
lems as long as care is taken to avoid overlearning the
training data, e.g., by combining different feature selec-
tion objectives. Future research directions include further
development of the feature selection methodology as well
as the application of the proposed feature selection meth-
ods to new problems in pattern recognition.
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Table 3: Results obtained for the personality sub-
challenge. WA scores are shown for the test set only.

Method of Number
feature of

Data selection features k UA WA

Devel Baseline (SVM) 6125 60.4
Devel SSCP 297 50 67.6
Devel USCP 314 125 65.4
Devel SD 277 135 66.8

O Devel SSCP+SD 277 50 72.3
Devel USCP+SD 93 105 67.6
Test Baseline (RF) 6125 59.0 63.7
Test USCP+SD 149 135 60.4 57.7
Test SSCP+SD 277 86 62.3 58.2
Devel Baseline (RF) 6125 74.9
Devel SSCP 287 35 71.9
Devel USCP 293 110 74.4
Devel SD 285 10 73.5

C Devel SSCP+SD 239 40 74.8
Devel USCP+SD 285 40 75.8
Test Baseline (SVM) 6125 80.1 80.1
Test USCP+SD 176 70 79.7 79.6
Test USCP+SD 285 69 76.8 76.6
Devel Baseline (RF) 6125 82.8
Devel SSCP 273 30 76.9
Devel USCP 291 70 85.8
Devel SD 291 15 81.4

E Devel SSCP+SD 75 130 81.9
Devel USCP+SD 291 70 85.8
Test Baseline (SVM) 6125 76.2 76.6
Test USCP+SD 197 15 71.9 72.6
Test USCP+SD 291 120 71.6 72.6
Devel Baseline (SVM) 6125 67.6
Devel SSCP 322 50 65.3
Devel USCP 337 50 66.4
Devel SD 217 15 66.1

A Devel SSCP+SD 217 15 72.1
Devel USCP+SD 246 15 69.2
Test Baseline (RF) 6125 64.2 64.2
Test USCP+SD 199 50 55.9 56.2
Test SSCP+SD 217 26 59.7 60.2
Devel Baseline (RF) 6125 68.9
Devel SSCP 312 10 67.9
Devel USCP 320 5 67.9
Devel SD 124 15 69.1

N Devel SSCP+SD 124 40 74.8
Devel USCP+SD 149 35 73.0
Test Baseline (SVM) 6125 65.9 65.7
Test USCP+SD 200 25 62.4 63.2
Test SSCP+SD 124 69 65.3 67.6


