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 Abstract 
This work studies automatic recognition of paralinguistic 
properties of speech. The focus is on selection of the most 
useful acoustic features for three classification tasks: 1) 
recognition of autism spectrum developmental disorders from 
child speech, 2) classification of speech into different affective 
categories, and 3) recognizing the level of social conflict from 
speech. The feature selection is performed using a new variant 
of random subset sampling methods with k-nearest neighbors 
(kNN) as a classifier. The experiments show that the proposed 
system is able to learn a set of important features for each 
recognition task, clearly exceeding the performance of the 
same classifier using the original full feature set. However, 
some effects of overfitting the feature sets to finite data are 
also observed and discussed.   
Index Terms: paralinguistics, feature selection, pattern 
recognition, speaker traits, random sampling, classification 

1. Introduction 
Non-linguistic (aka. paralinguistic) aspects of speech are an 
important component in everyday communication. They 
provide complementary information to the literal verbal 
message, indicating, e.g., identity and emotional state of the 
talker. They also serve turn-taking behavior in dialogue and 
allow the placement of emphasis on different aspects of the 
spoken message. In addition, paralinguistic characteristics 
may serve clinical diagnostic purposes since they are often 
affected in pathologies and disorders related to the physiology 
of the mouth, throat, and lung areas, neural motor control, and 
speech-specific or generic cognitive development (e.g., [1-3]).   

Given the above, it is evident that the automatic analysis 
of paralinguistic characteristics of speech can be beneficial in 
various applications. In order to build such automated 
systems, it would be useful to find a set of descriptive acoustic 
features for each paralinguistic property of interest. The 
features can be obtained by either using domain expertise in 
the task at hand, e.g., by knowing how the affective state of 
the speaker is reflected in the parameters describing the speech 
production system (e.g., [4]), or by computing a huge number 
of different acoustic descriptors from the data and then using 
feature selection techniques to find those features that are 
actually relevant to the current problem. Note that the 
conventional ASR features such as short-term MFCCs may 
not necessarily be optimal for paralinguistic analyses since 
they are mainly tuned to the time-frequency constraints 
imposed by the linguistic units of speech. In contrast, the aim 
of the paralinguistic analysis is to characterize aspects of 
speech that are independent of the spoken linguistic content 
and may occur at different time-scales. 

In order to follow the feature selection strategy, this paper 
presents a novel variant of so-called random subsampling 
feature selection algorithms and studies its use on the selection 

of the most useful features from a huge pool of potential 
features. Unlike greedy heuristic algorithms, the proposed 
algorithm cannot converge to local minima in the objective 
function and provides a set of features that are statistically 
significantly better than any feature that is not beneficial to the 
classification performance. However, the algorithm is still 
susceptible to overfitting similarly to the majority of other 
approaches. Despite this, we show that the algorithm learns a 
good subset of features for a number of different paralinguistic 
classification tasks, demonstrating a reasonable performance 
on independent test sets held out from the selection process. 

This study is carried out in the context of 
Interspeech’2013 Computational Paralinguistics Challenge 
and all speech data and the respective baseline results are 
provided by the challenge organizers [1]. Before describing 
the approach and the experiments in detail, a short 
introduction to the problem of feature selection is first given.  

1.1. Automatic feature selection for data 
classification  

Selection of the most distinctive signal features for data 
classification is a central problem in many pattern recognition 
applications. Ideally, the best set of features contains only 
those features that provide complementary information 
regarding the data classes. Given such a set, addition of any 
new features should not improve the classification 
performance whereas removing any of the chosen features 
should cause the classification performance to degrade. In 
addition to improving classification accuracy, smaller sets of 
features are also faster to process, lead to simpler classifiers 
(with better generalization capability), and may allow better 
insight to the classification problem at hand when analyzed 
more closely [5,6].  

As simple as it may sound, there are two fundamental 
problems in finding the optimal subset of features: 1) the total 
number of possible subsets grows exponentially with the total 
number of features, making exhaustive search for the best 
subset almost always computationally impossible, and 2) 
objective measurement of the performance of a feature set is 
not easy due to the risk of overfitting, a process where a 
chosen set of features may provide the best performance on 
training data but still generalize poorly to novel data unseen 
during the optimization process. This problem is emphasized 
on datasets where the total number of features is large in 
comparison to the total number of available training data 
points (see, e.g., [7]).  

In order to solve the first problem, typical feature selection 
methods attempt to find a good set of features using different 
types of heuristic approaches such as incrementally including 
the next best feature to the current feature set as in forward 
selection [8], removing the worst feature as in backward 
selection, or recursively doing both in order to avoid nesting 
of features (e.g., [9]; see also [5]). Another possibility is to 
find a correlate measure of feature usefulness that can be used 
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to rank and filter away features according to their usefulness 
(“filter approaches”) without iteratively testing different 
subsets on the actual classification problem [5]. 

As for the overfitting problem, a typical solution is to 
simply estimate the amount of overfitting by optimizing the 
set of features on a separate training (and development) set 
and then testing the quality of the chosen set of features on an 
independent test set (see, e.g., [6]). However, this only 
provides an estimate for the amount of overfitting in the 
feature selection, but it does not help in the actual selection of 
the best set of features. Further optimization on the test set 
naturally makes the approach again prone to overfitting, and a 
new independent test set is required. In practice, the risk of 
overfitting in the feature selection can be most easily reduced 
by using a more comprehensive dataset during the feature 
selection, or by using algorithms that can somehow avoid 
convergence to a “false” optimum that can be highly specific 
to the training data.     

In the current work, we utilize a feature selection method 
that avoids the selection of a single best subset of features with 
best classification performance on the training data. Instead, 
the method evaluates the relevance of each individual feature 
in the context of many other feature combinations and finally 
selects all features whose usefulness exceeds that of an 
average feature. 

2. Material and features  
The material consists of three major classification problems: 
recognition of developmental disorders, speaker emotions, and 
level of conflict from speech. Each problem is further divided 
into sub-tasks, yielding a total of 7 sub-tasks.  

The recognition of developmental disorders was 
performed on Child Pathological Speech Database (CPSD; 
[3]), that contains two sub-tasks: binary classification of 
speech into typical and atypical (disorder-related) classes 
(from now on, referred to as the TY task), and four-way 
classification into categories of control group, autism disorder, 
pervasive development disorder – not otherwise specified, and 
specific language impairment (diagnosis, or from now on: DI).  

Emotion recognition was performed on Geneva 
Multimodal Emotion Portrayals corpus (GEMEP; [10]) and 
contains two binary tasks: level of valence (VA) and arousal 
(AR), both graded as low or high, and a 12-way classification 
task with 12 emotion categories (EM).  

Finally, the level of conflict was measured using the 
SSPNET Conflict Corpus [11] that contains two sub-tasks: a 
binary classification into low vs. high level of conflict (CL), 
and a regression task with a continuous target function: the 
level of verbal conflict in the range of [-10,10] (SC). 

Each corpus was divided into training, development, and 
test sets as reported in [1]. Only the training and development 
sections were used for feature selection and classifier training. 
Instead of computing our own set of signal features, the 
corpora were accompanied with a readily available long-term 
features computed over each signal using the openSMILE 
feature extractor [12]. These features include a number of low-
level descriptors (LLDs) such as energy, spectral and cepstral 
features, harmonicity and sharpness measures. In addition, a 
number of functionals have been computed from the LLDs, 
yielding a total set of 6373 features. In the current 
experiments, the full feature set was always used as a starting 
point for feature selection with the aim of finding a useful 
subset of the features for each task. A more detailed 
description of the feature set can be found in [1].  

3. Methods 

3.1. Pre-processing 

Before further processing, all features were standardized to 
have a zero mean and unit standard deviation: 

      

€ 

) x i = ( xi − µi ) /σ i    (1) 
where xi is the original value of feature i and µi and σi are the 
mean and standard deviation of the feature i values measured 
across the respective set (training, development, and test sets 
were normalized separately as this was found to improve 
performance). 

3.2. Random subset feature selection 

The basic goal of Random Subset Feature Selection (RSFS) is 
to find a subset of features that are beneficial in the given 
classification problem. These features are obtained by 
repetitively classifying the data with a kNN classifier while 
using randomly chosen subsets of all possible features and 
adjusting the relevance of each feature according to the 
classification performance of the subset that the feature 
participates in. Unlike greedy methods such as sequential 
forward selection [8] or their improved variants like sequential 
floating forward selection [9] where the gain of a feature is 
directly computed by including or excluding it from an 
existing set of features, each feature is evaluated in RSFS in 
terms of its average usefulness in the context of many other 
feature combinations. Therefore RSFS is also less prone to 
converge to a locally optimal solution dictated by the temporal 
order of selections. 

In RSFS, the quality of the feature set gradually improves 
as more estimation iterations are performed. The algorithm is 
similar to the idea of random forests [13] and random kNN 
(RKNN; [7]) where the classification task is split into a set of 
classifiers that use random subsets of features, and where the 
quality of each individual feature can be evaluated according 
to its participation in correct classifications. The main 
difference of RSFS to the RKNN is that the final feature 
selection process in RSFS is based on a statistical comparison 
against random walk statistics. RKNN performs two 
subsequent stages with the first stage computing the relevance 
of each feature using a fixed number of random subset 
classifiers and the second stage performing backward 
elimination of the least relevant features in order to find the 
feature set with the best classification performance [7]. In 
RSFS, the random subset classification is performed as many 
times as it is necessary in order to distinguish good features 
from features that simply appear useful due to the random 
components of the process. 

In order to describe RSFS in more detail, we use the 
following notation: each true feature fx from a full set of 
features F has a relevance value rx ∈ [-∞,∞] associated with it. 
In addition, a set of dummy features dy ∈ D with related 
relevancies gy is also defined.  

During each iteration i, the RSFS algorithm performs the 
following steps: 

1)	  Randomly	  pick	  a	  subset	  Si	  of	  n	  features	  fx	  (|Si|	  =	  n,	  x	  ∈	  [1,|F|])	  
from	  the	  full	  set	  F	  by	  sampling	  from	  a	  uniform	  distribution.	  	  
2)	  Perform	  kNN	  classification	  on	  the	  given	  data	  set	  using	  Si	  and	  
measure	  the	  value	  of	  a	  desired	  criterion	  function	  ci.	  
3)	  Update	  relevancies	  rx	  of	  all	  used	  features	  fx	  according	  to	  	  

    

€ 

rx ← rx + ci − E{c}	  	   	   	   (2)	  
where	   ci	   is	   the	   value	   of	   the	   criterion	   function	   for	   the	   current	  
iteration	  i	  and	  E{c}	  is	  the	  expected	  value	  of	  the	  criterion	  function	  
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(in	  the	  current	  work	  this	  corresponds	  to	  the	  arithmetic	  mean	  of	  c	  
across	  all	  previous	  trials).	  	  
4)	  Repeat	  the	  process	  from	  1)	  with	  a	  new	  random	  subset.	  	   

In parallel, a similar process is repeated for the dummy 
features by always selecting a random subset of m dummy 
features and then updating the relevance values of these 
features according to Eq. (2) but using the criterion function 
value of the true features. The dummy features are never used 
in the actual classification process but their relevance is still 
accumulated across trials. In this manner, the relevance gy of 
any dummy feature dy essentially becomes a random walk 
process with no correspondence to the actual classification 
performance. Therefore, the relevance of the dummy features 
provides a baseline level rrand that should be exceeded by a true 
feature in order to be considered as useful in the task. Then the 
final goal is to find a “best” subset of features B ⊆ F that 
satisfies  

    

€ 

p(r j > rrand ) ≥δ , ∀f j ∈B,F   (3) 
where rrand is the relevance of a non-useful feature and δ is a 
user set threshold for probability. The random baseline level 
rrand is modeled as a normal distribution of the dummy 
relevancies gy: 

    

€ 

p(r j > rrand ) =
1

σg 2π
exp(−( x − µg )2 /(2σg

2 ))dx
−∞

r j

∫   (4) 

where µg and σg are the mean and standard deviation of the 
dummy feature relevancies gy across all dummy features.  

In this study, the unweighted average recall was used as 
the criterion function c in Eq. (2) and the probability threshold 
was set to δ = 0.99. The number of features used in 
classification was set to     

€ 

n = round( | F | ) = 80  according to [7, 
14]. In a similar vein, a total of 50 dummy features were 
created and the relevance of     

€ 

m = round( | D | ) = 7  random 
features were updated at each iteration. The sampling process 
was repeated for 300 000 iterations before selecting the final 
set of features according to Eq. (4). As for the kNN used as the 
criterion function, the number of neighbors k in the voting was 
always fixed to k = 2 (see [7]). 

A variant of the RSFS was also tested in which the feature 
subsets were not sampled from a uniform distribution but from 
a distribution defined by the current relevance values. This 
approach leads to a faster convergence of the feature set, but 
due to the enormous size of the used feature space, this runs to 
a risk of neglecting some of important features that do not 
achieve sufficiently high relevance in the early phase of the 
learning. In practice, this approach achieved relatively good 
classification accuracies on the training data but the obtained 
feature sets had only 30-40% overlap between different runs 
of the feature selection algorithm. We also experimented on 
weighting each feature according to its relevance value during 
the kNN classification. However, together with the 
probabilistic sampling, the additional degrees of freedom 
associated with the weighting scheme led to significant 
problems with overfitting and to poor results on held-out data. 

3.3. Classifiers 

A standard kNN classifier was used for all tests except the task 
of predicting the continuous valued grade of conflict level 
(task SC). In SC, the grade of conflict was estimated as the 
mean of the conflict levels associated with k nearest data 
points. In standard tasks, the counts of different class labels in 
the neighborhood of k samples were also normalized 

according to the inverse of the relative frequency of the class 
in the training set in order to account for uneven distributions.  

4. Experiments 

4.1. Procedure and evaluation 

Feature selection with the RSFS was always performed by 
using the samples in the training set as the basis for the kNN 
classifier and testing the accuracy on the development set. 
Subsequently, the optimal value of k (number of neighbors) in 
the kNN for the chosen feature set was searched using two 
different approaches: 1) Optimizing k for the best possible 
development set performance using the training set for 
training, referred to as standard (S) condition. 2) Optimizing k 
using combined training and development sets with 50-fold 
evaluation, referred to as n-fold (N) condition. In both cases, a 
search for the best performance was performed across all 
possible values of k. The motivation for the use of the two 
different approaches was to study the effects of over-fitting the 
value of k to the given data in these two conditions, ultimately 
estimated in terms of performance on the held-out test set. 

The final values of k were scaled for test set evaluation 
according to the relative sizes of the optimization training set 
and the combined training and development set, i.e., 

ktest = kopt*(Ntrain+Ndev)/Nopt    (5) 
where kopt is the optimal k in condition (S) or (N), Ntrain and 
Ndev are the number of samples in the training and 
development sets, respectively, and Nopt is the number of 
samples in the training set of the kNN classifier used in 
optimization (i.e., Nopt = Ntrain for (S)). The idea of the scaling 
was to maintain the estimated sizes of the neighborhoods (in 
terms of Euclidean distance) despite the increased sample 
density in the combined training and development sets. 
Results for the development set and test set are reported using 
both approaches for the k optimization.  

Performance was measured according to unweighted 
average recall (UAR) and weighted average recall (WAR), 
where UAR is simply the mean of classification accuracies of 
individual classes whereas WAR is the proportion of correctly 
classified samples divided by the total number of samples in 
the test set. In the continuous regression task SC, the Pearson 
correlation coefficient (CC) was computed between the 
estimated and true conflict levels. The reference baseline 
results are provided in [1] and were computed using linear 
kernel Support Vector Machines (SVMs).  

4.2. Feature selection results 

After running the RSFS for 300 000 iterations, the sizes of 
obtained feature sets were 430 (DI), 304 (TY), 757 (EM), 361 
(VA), 162 (AR), and 349 (CL & SC) features, corresponding 
to an average of 6.2% of the original feature set size. Fig. 1 
shows an example of the evolution of the relevance values for 
a number of features as a function of the iteration number 
(task AR). Also, the number of features does not fully stabilize 
at 300 000 iterations in all of the sub-tasks. However, the 
experiments on the development set revealed that the use of 
additional iterations beyond 300 000 did not have notable 
effect on the development set classification performance, 
suggesting that the most important features were already 
included at 300 000 iterations. Note that the time complexity 
of the RSFS is only a fraction of that of the forward selection 
where the number of computations increases exponentially 
with increasing size of the feature pool. 
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Figure 1: An example of the development of the relevance 
values rj as a function of iteration number for four true 
features (black lines) and three dummy features (noisy green 
lines). The relevance threshold for feature selection, computed 
from the dummy features, is denoted with red dashed line. 
Only the topmost true feature is chosen to the final feature set 
after all 300000 iterations. 

 
If the selection process was repeated several times, the 
proportion of the same features occurring in different runs was 
around 70-92% for different sub-tasks. The selected sets of 
features and their relative relevance values for each sub-
challenge are available for download at 
http://www.acoustics.hut.fi/~orasanen/ComParE2013/.  

4.3. Classification results 

Table 1: Classification accuracies for all sub-challenges. (B) 
denotes the baseline results reported in [1], (S) is the result 
obtained using a value of k optimized in a standard 
training/development set split, and (N) is the result using a 
value of k obtained in cross-validation using combined 
training and development set with 50 folds. UAR denotes 
unweighted average recall and WAR weighted average recall. 

  
Devel 

(B) 
Devel 

(S) 
Devel 

(N) 
Test 
(B) 

Test 
(S) 

Test 
(N) 

UAR 52.4 63.7 61.4 67.1 57.3 61.9 DI 
WAR N/A 72.0 70.1 N/A 73.1 73.7 

UAR 92.8 93.2 91.3 90.7 92 92.2 TY 
WAR N/A 93.0 90.4 N/A 91.3 92.0 

UAR 40.1 42.8 42.4 40.9 31.7 25.9 EM 
WAR N/A 40.3 41.2 N/A 31.5 25.6 

UAR 77.9 85.6 80.8 61.6 64.4 58.3 VA 
WAR N/A 85.6 80.8 N/A 64.4 58.4 

UAR 82.4 88.3 87.8 75.0 70.2 70.5 AR 
WAR 82.2 88.5 88.0 N/A 70 70.2 

UAR 79.1 85.6 82.8 80.8 81.6 83.9 CL 
WAR N/A 85.8 83.3 N/A 82.1 84.6 

SC CC 0.8 0.842 N/A 0.826 0.826 0.826 
 
Table 2: The number of nearest neighbors k used on the test 
when estimated in (S) and (N) conditions and scaled 
according to Eq. (5). 

  DI TY EM VA AR CL SC 

(S) 8 46 64 14 10 8 214 

(N) 24 9 1 2 7 46 N/A 

 
Table 1 shows the classification results for all sub-tasks and 
Table 2 shows the respective values of k used in the test set 
experiments. As can be seen from the table, the accuracy on 
the development set is above the baseline level for all sub-
tasks. In comparison, the kNN accuracy without any feature 
selection (all 6373 features; (S) optimization) always led to 
UAR below the SVM baseline on the development set:  47.3% 
(DI), 88.0% (TY), 25.6% (EM), 70.2% (VA), 79.9% (AR), 
77.7% (CL), and CC = 0.77 (SC). 

As for the test set, improvement from the SVM baseline 
[1] is not obtained for all sub-tasks. Performance in some sub-
tasks such as the speech typicality (TY), level of conflict (CL), 
and level of valence (VA) improves notably from the baseline, 
whereas the 12-class emotion recognition (EM) accuracy is 
notably below the baseline. The general trend seems to be that 
the current approach outperforms the baselines in binary 
classification tasks (except for the arousal level AR) whereas 
SVM with full feature set performs better on multiclass 
problems. The fact that the multi-class tasks have less training 
samples per each class suggests that overfitting of the feature 
sets or the values of k might have occurred.  

Interestingly, the kNN performance in the social conflict 
(SC) task with a continuous target function is also comparable 
to the baseline performance despite the discrete nature of the 
kNN classifier. This suggests that the exemplar based discrete 
estimator for continuously valued target functions may be 
useful also in other applications where topology and sparsity 
of the sample space are problematic for continuous valued 
mapping functions and regression models. 

As for the two different strategies for optimizing the value 
of k, it seems that neither standard training/development split 
(S) or cross-validation (N) performs unanimously better across 
all sub-tasks (see Table 2). Instead, it seems that the two tasks 
where (N) is notably worse are the tasks where the optimal k 
in (N) is very small in comparison to (S) condition. This again 
suggests that the emotion task has especially pronounced risk 
of overfitting to the training data, and this is emphasized if 
speech with identical linguistic content ends up in the training 
and testing data during a cross-validation procedure.   

5. Conclusions 
The results from the experiments in the recognition of 
paralinguistic characteristics of speech show that the RSFS 
algorithm is capable of selecting a useful subset of features 
from a large array of possible features, despite the fact that the 
number of training samples is smaller than the overall number 
of features. However, further work is needed in order to 
understand RSFS behavior in different types of feature 
selection tasks and in order to compare it against other 
standard feature selection approaches.  

This study also shows that despite the relative simplicity 
of the kNN classifier, it can still achieve relatively good 
classification performance in paralinguistic recognition tasks 
when paired with a carefully chosen set of features, and 
achieves performance comparable to, or better than, the SVM-
based baseline results reported in [1] (see [15] for similar 
findings).  
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