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Abstract
Temporally weighted linear predictive methods have recently
been successfully used for robust feature extraction in speech
and speaker recognition. This paper introduces their general
formulation, where various efficient temporal weighting func-
tions can be included in the optimization of the all-pole co-
efficients of a linear predictive model. Temporal weightingis
imposed by multiplying elements of instantaneous autocorrela-
tion “snapshot” matrices computed from speech data. With this
novel autocorrelation-snapshot formulation of weighted linear
prediction, it is demonstrated that different temporal aspects of
speech can be emphasized in order to enhance robustness of
feature extraction in speech emotion recognition.
Index Terms: linear prediction, spectrum analysis, speech
emotion recognition

1. Introduction
Accurate parametrization of the short-time magnitude spectrum
is central in speech processing applications. Frame-levelfea-
ture extraction in automatic recognizers, including automatic
speech recognition (ASR), speaker recognition and paralinguis-
tic analysis systems, is often based on representations of the
short-time magnitude spectrum such as the widely used mel-
frequency cepstral coefficients (MFCCs).

Degradations such as additive noise or a poor acoustic chan-
nel affect the quality of the magnitude spectrum model. While
this problem affects all speech processing systems, it can be
considered to be particularly relevant for a recognition sys-
tem: even if the feature extraction module manages, despite
the noise, to capture the characteristic information that would
otherwise be sufficient for class discrimination, there will still
exist amismatchbetween the training and recognition condi-
tions. Other sources of mismatch are related to speakers, e.g.,
with respect to variable vocal effort or fundamental frequency.

While additive noise corruption and channel mismatch can
be tackled in various stages of the recognition process, includ-
ing speech enhancement preprocessing (e.g., spectral subtrac-
tion, Wiener filtering [1]), feature postprocessing (e.g.,cepstral
mean normalization [1]) and the recognition models (e.g., dis-
criminative training [2]), a combination of mutually comple-
mentary techniques in different stages is often employed. For
instance, feature extraction based on robust spectrum models
can be successfully combined with speech enhancement pre-
processing [3]. Therefore, and also because of being important
in other speech processing applications, robust spectrum anal-
ysis is an important area of study. However, because the range
of potential degradations and mismatch conditions affecting the
spectra is wide and varied, it is not sufficient to study it from the

perspective of resistance against simple corruptions suchas ad-
ditive white noise. Instead, it would be very beneficial to have a
more generic spectrum analysis framework that can be adjusted
according to the degradations encountered.

Earlier studies have noted that MFCCs based on linear pre-
dictive all-pole models tend to be more robust in the presence of
additive noise corruption than conventional MFCCs using the
Fourier spectrum analysis [4]-[7]. In recent years, members
of the weighted linear predictionfamily of spectrum analysis
methods have been studied by the present authors in terms of
their noise and channel robustness as part of the MFCC fea-
ture extraction procedure in automatic speech recognition[4]
[5] and speaker verification [3] [6]. The weighted linear pre-
dictive spectrum estimate has also recently been shown to have
potential in formant estimation of high-pitched speech [8].

The originaltemporally weightedlinear prediction [9] was
stabilized[10] and then generalized to lag-weighted linear pre-
diction [6], thereby expanding the applicability of the concept.
In the present study, thus far the most general formulation of
weighted linear prediction is introduced, incorporating all the
previously discussed methods and also allowing for many new,
potentially useful weighting schemes. Its main propertiesand
the effects of weighting applied to instantaneousautocorrela-
tion snapshotmatrices are discussed. Weighting schemes for
the method are, in this study, derived from additive-noise ro-
bustness considerations. The noise robustness of the method is
evaluated and compared to conventional methods in a realistic
application, the automatic recognition of emotion in speech.

2. Extended weighted linear prediction
2.1. Snapshot Formulation of Weighted Linear Prediction

In linear prediction (LP), the short-time magnitude spectrum of
a signal is parametrized as an all-pole filter withz-domain trans-
fer functionH(z) = 1/(1−∑p

k=1
akz

−k) = 1/A(z) [11]. In
the time domain, each sample is assumed to be predictable as
ŝn =

∑p

k=1
aksn−k, i.e., a linear combination of the coeffi-

cientsak, 1 ≤ k ≤ p, andp past signal samples, wherep is
referred to as the prediction order.

In conventional LP, the model parameters are obtained by
minimizing the sum of squares of the prediction errorELP =
∑

n
(sn − ∑p

k=1
aLP

k sn−k)
2 by setting its partial derivatives

with respect to each coefficientaLP

k to zero. This results in
the LP normal equations [11]

∑p

k=1
aLP

k

∑

n sn−ksn−j =
∑

n
snsn−j , 1 ≤ j ≤ p, whose solution yields the LP model

{aLP

j }. The range of summation ofn is chosen in this work
to correspond to the autocorrelation method, in which the en-
ergy is minimized over a theoretically infinite interval, but sn is



considered to be zero outside the actual analysis window [11].
The underlying motivation of weighted linear predictive

methods is temporal emphasis of those parts within the short-
time signal frame which are deemed, using some heuristic
analysis function, to be the most reliable and least likely
to have been severely corrupted. Weighted linear predic-
tion (WLP), proposed by Ma et al. [9], is a generaliza-
tion of LP in which a time-dependent weighting function is
applied to the squared prediction error values so as to em-
phasize the correct prediction of selected samples and down-
weight others. In WLP, the quantity to be minimized is
EWLP =

∑

n
(sn −∑p

k=1
aWLP

k sn−k)
2Wn and the normal

equations thus become
∑p

k=1
aWLP

k

∑

n
Wnsn−ksn−j =

∑

n Wnsnsn−j , 1 ≤ j ≤ p. LP is obtained as a special case
whenWn = C, a constant that cancels out from both sides of
the equations.

A further generalization of both LP and WLP, termed ex-
tended weighted linear prediction (XLP), was recently pro-
posed [6]. In this formulation, the quantity to be minimizedis
EXLP =

∑

n
(snZn,0 −∑p

k=1
aXLP
k sn−kZn,k)

2, where the
partial weightsZn,j separately weight each lagged signal value
at each time instantn, allowing more control over the focus of
the all-pole modeling. The resulting normal equations are

p
∑

k=1

aXLP
k

∑

n

Zn,ksn−kZn,jsn−j =
∑

n

Zn,0snZn,jsn−j , (1)

1 ≤ j ≤ p.

WLP is obtained as a special case whenZn,j =
√
Wn and,

similarly to the WLP case, LP is obtained whenZn,j = C.
This study proposes a yet more generic formulation of the

XLP method which encompasses each of the above mentioned
methods for estimating LP all-pole models as special cases but
facilitates more versatile weighting schemes. The generalnor-
mal equations of extended weighted linear prediction can be
written as

p
∑

k=1

ak

∑

n

Qn,j,ksn−ksn−j =
∑

n

Qn,j,0snsn−j , (2)

1 ≤ j ≤ p,

whereQn,j,k is the weighting function. It can be seen that
WLP is obtained whenQn,j,k = Wn and LP is obtained when
Qn,j,k = C. The version of XLP originally formulated by Po-
hjalainen et al. [6] is obtained when

Qn,j,k = Zn,jZn,k, (3)

i.e., when the weighting function can be factorized as a product
of lag-specific partial weights. However, an interesting addi-
tional property becomes evident by examining Eq. 2 in ma-
trix form: definingQn = (Qn,j,k), a = (a1 . . . ap)

T and
sn = (sn−1 . . . sn−p)

T , the normal equations can be expressed
as

(

∑

n

Qn ⊙
(

sns
T
n

)

)

a =
∑

n

Qn,j,0snsn, (4)

where⊙ denotes element-by-element multiplication. The(p×
p) matrix sns

T
n is referred to as theautocorrelation snapshot

matrix at timen. SubstitutingQn,j,k = C andQn = (C),

TIME

A
M

P
LI

T
U

D
E

a)

5 10 15 20

5
10
15
20

LAG

LA
G

5 10 15 20

5
10
15
20

b)

5 10 15 20

5
10
15
20

5 10 15 20

5
10
15
20

c)

5 10 15 20

5
10
15
20

5 10 15 20

5
10
15
20

d)

5 10 15 20

5
10
15
20

5 10 15 20

5
10
15
20

Figure 1: Short segments of speech, indicated with thick line
(top row), and their corresponding unweighted autocorrelation
snapshot matrices (middle row; black corresponds to the largest
positive value) and the same matrices weighted according tothe
XLP-S2 scheme (bottom row), with columns a)-d) correspond-
ing to different locations of the snapshot.

the summation on the left-hand side of Eq. 4 yields the (scaled)
autocorrelation matrixR = C

∑

n
(sns

T
n ). Similarly, the sum-

mation of theautocorrelation snapshot vectorssnsn on the
right-hand side of the equation yields the (scaled) autocorre-
lation vectorr = C

∑

n
snsn, making Eq. 4 equivalent to

the matrix formulations of conventional LP [12]. In computing
the autocorrelations in WLP case, i.e., whenQn,j,k = Wn and
Qn = (Wn), the snapshots are weighted differently from each
other according to the time instants they are observed at. As
a novel idea, this paper proposes weighting the snapshots with
anunconstrainedweighting functionQn,j,k, based on the mu-
tual dependencies of the data constituting each snapshot, and
thus removing the original XLP constraint given by Eq. 3. The
proposed snapshot approach to specifying the weights, which
further extends the definition of XLP and is also referred to by
that name in the present paper, is able to completely consider
the instantaneous mutual dependencies between lagged signal
samples involved in each snapshot and should thus allows new,
potent data weighting schemes.

Figure 1 illustrates different snapshot matricessns
T
n , as

well as their weighted versions, related to different partsof a
short-time speech analysis frame.

2.2. Weighting Schemes

The weighting function typically used in WLP is the short-time
energy (STE)Wn =

∑p

i=1
s2n−i, i.e., the energy of pastp sig-

nal samples. This weighting scheme has good theoretical moti-
vations, as emphasizing the energetic segments focuses on both
the glottal closed phase in voiced speech, where the vocal tract
resonances are most evident [10], and, in the case of stationary
background noise, on different parts of the analysis frame in re-
lation to their local signal-to-noise ratio (SNR). WLP withSTE
weighting is thus theoretically appropriate for additive-noise ro-
bustness and has, indeed, been found to improve the robustness
in both large-vocabulary continuous speech recognition [4] and
text-independent speaker verification [3]. Incidentally,the STE
weighting function is the Frobenius norm, as well as the trace,
of the autocorrelation snapshot matrix appearing on the left-



hand side of Eq. 4.
With the original partial-weight formulation of XLP, satis-

fying Eq. 3, the absolute value sum (AVS) weighting, which
can be viewed as an adaptation of the STE scheme to partial
weights, has led to improved noise and channel robustness in
both speaker verification [6] and speech recognition [5]. This
weighting is given by the recursion

Zn,j =
p− 1

p
Zn−1,j +

1

p
(|sn|+ |sn−j |) (5)

with Zn,j = 0 for all j before the beginning of the frame. In
the experimental part of this paper, this method is referredto as
XLP-P to denote the property that the weighting is obtained as
a product of partial weights according to Eq. 3.

It is not immediately clear how to extend the idea of the
previously successful AVS weighting scheme (Eq. 5) to snap-
shot XLP. Therefore, we evaluate two different options which
involve recursive low-pass filtering of sums and products ofab-
solute values of lagged samples:

Qn,j,k =
p− 1

p
Qn−1,j,k+

1

p
(|sn|+ |sn−j |+ |sn−k|) , (6)

which will be referred to as XLP-S1 in this paper, and

Qn,j,k =
p− 1

p
Qn−1,j,k +

1

p

(

s2n + |sn−j ||sn−k|
)

, (7)

referred to as XLP-S2.

2.3. Spectral smoothing

All-pole filter stability is especially important in applications
where they will be used to synthesize signals. However, the
stabilized versions of WLP and XLP-P, which typically produce
smoother spectra than the original weighted linear predictive
methods they are based on, have shown improved robustness
also in feature extraction, especially for speaker verification [3]
[6].

As originally proven by Magi et al. [10], the all-pole filter
produced by WLP becomes stable if, according to the partial-
weight XLP notation in Eq. 1 withZn,j =

√
Wn [4], the con-

dition

Zn,j ≤ Zn−1,j−1 (8)

is satisfied for alln andj. The same condition was subsequently
adopted for stabilizing general partial-weight XLP (Eq. 1)using
arbitraryZn,j . Model stabilization is thereby performed by re-
placing these weights withZ′

n,j = max(Zn,j , Zn−1,j−1) with
Zn,j = 0 for j < 0 [6]. With snapshot XLP, assuming that the
weight matrixQn = (Qn,j,k) can be factorized as a product of
two partial-weight vectors according to Eq. 3, Eq. 8 yields

Qn,j,k ≤ Qn−1,j−1,k−1. (9)

While this condition for stability apparently does not gen-
eralize to weights that can not be factorized according to Eq.
3, it has been found that enforcing it nevertheless typically
leads to generally smoother spectral models as well as a re-
duced number of unstable filters. Therefore, we also proposean
optional spectral smoothing operation for snapshot XLP which
is performed by replacing the original weightsQn,j,k with
Q′

n,j,k = max(Qn,j,k, Qn−1,j−1,k−1), whereQn,j,k = 0 for
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Figure 2:Example spectra of LP, XLP-P and XLP-S1 over one
utterance of the anger emotion category. Upper panels: clean
speech. Lower panels: the same utterance with noise corrup-
tion by factory noise at SNR 0 dB.

j < 0 or k < 0. In our evaluations, we apply the smooth-
ing operation to XLP-S1 because it was observed to improve
the quality of the spectral estimate and the classification perfor-
mance. The operation is not applied to XLP-S2, which already
results in smooth spectra, or XLP-P, which has been observed
to produce few unstable filters.

Figure 2 shows examples of LP and XLP spectra in clean
and noisy conditions. XLP-S1 arguably shows less degradation
between the clean and noisy case than LP. While XLP-S1 is
smoother than LP or XLP-P in the clean case, it does not show
a noticeable loss in modeling of the spectral detail under either
noise condition.

3. Experiments
3.1. Test material

Speech emotion recognition evaluation was conducted usingthe
Berlin database of emotional speech as evaluation material[13].
The database has been widely adopted in emotion classification
studies, also including earlier studies on robustness, e.g., [14]
[15] [16]. In total, it consists of 535 utterances of German sen-
tences spoken in seven different emotional styles by five male
and five female actors. The emotion categories contained in this
database areanger, disgust, fear, joy, sadness, boredomand
neutral. The whole database was used for the evaluation, which
was carried out in a speaker-independent manner as leave-one-
speaker-out cross validation [14] [17], i.e., one speaker at at a
time was chosen as the test speaker and the material from the
other nine was used for training. Unfortunately, a vast array
of different ways of using the Berlin database for evaluation
can be encountered in the literature: sometimes only subsets of
the data are used, for example, by leaving out one of the emo-
tion categories; cross validation is sometimes performed with-
out regard to speaker identity and sometimes with it; different
evaluation metrics are used including the total recognition rate,
cross-validation-averaged recognition rate, etc. Therefore, a di-
rect large-scale comparison of the results with other approaches
in the literature will not be possible in the context of the present
study.

In order to study the noise performance, the speech material



was analyzed in the clean form and also artificially corrupted
by two types of noise from the NOISEX-92 database with three
segmental (frame-averaged) signal-to-noise ratios (SNRs): 20
dB, 0 dB and -20 dB, resulting in seven different noise condi-
tions. The noise types used werefactory1, which is mechanical
noise recorded inside a factory andbabble, which consists of the
simultaneous speech of many speakers. The clean case and each
of the six noise cases were used for test material, while classifier
training was always conducted using clean speech data only.

3.2. Speech emotion recognition

3.2.1. Overview

In order to evaluate the performance of different features in a
realistic application, an emotion recognition system was con-
structed. The MFCC-based feature extraction and the GMM-
based classification are briefly described.

3.2.2. Feature extraction

After pre-emphasis withHp(z) = 1−0.97z−1 , the signal is ar-
ranged into overlapping Hamming-windowed frames of 25 ms
with a shift interval of 10 ms. For each frame, mel-frequency
cepstral coefficients (MFCCs) are obtained using the processing
chain: 1) compute squared magnitude spectrum by either FFT
(the conventional method), LP, XLP-P, XLP-S1 or XLP-S2, 2)
apply a mel filterbank to the squared magnitude spectrum, 3)
take the logarithm of filtered band energies and 4) perform dis-
crete cosine transform [1]. The mel filterbank has 40 triangular
filters with center frequencies spaced evenly on the mel scale.
The zeroth MFCC is excluded and the subsequent 12 MFCCs
are complemented with logarithmic frame energy which has
been mean- and variance-normalized over the complete utter-
ance. Finally, delta and double-delta coefficients of the MFCCs
and log energy are appended, resulting in a 39-dimensional fea-
ture vector.

3.2.3. Classification

For the purpose of classification according to the Bayes rule
[18], a Gaussian mixture model (GMM) with 64 components
and a diagonal covariance structure is trained separately for
each of the seven emotion classes in the Berlin database using
10 iterations of the expectation-maximization (EM) algorithm
for GMM training [19]. Before training each GMM, the mean
vectors of the components are initialized by applying a selection
approach intended for the initialization of the cluster means in
EM-style cluster-seeking algorithms [20]. This procedureis ap-
plied to the 12 base MFCCs while the other 27 elements of the
feature vector are initialized by averaging within the initial clus-
ters. The component weights are initialized with uniform dis-
tributions and the variances with0.1 times the global variances.
In the classification phase, the class decision for each utterance
is determined by the identity of the GMM giving the highest
average likelihood, averaged over each frame of the utterance.

3.3. Results

Tables 1 and 2 show the classification accuracy for the utter-
ances in the Berlin database. For the clean condition, it can
be observed that while FFT shows the best performance (which
is comparable to other published approaches using leave-one-
speaker-out cross validation on the Berlin database [14] [17]),
the proposed XLP methods are already competitive with con-
ventional LP. As noise is increased, the robustness of the XLP

methods becomes evident. In the case of factory noise and SNR
0 dB, the performance advantage of newly formulated XLP
methods over the conventional FFT is particularly clear.

Table 1: Emotion recognition performance (correct %) under
factory noise with MFCC features obtained using five spectrum
analysis methods. The best score for each classifier and noise
level is shown in boldface. The results pertain to utterances
of seven emotion categories in the Berlin database and were
obtained using leave-one-speaker-out cross validation.

Signal-
to-noise Spectrum analysis method
ratio (dB) FFT LP XLP-P XLP-S1 XLP-S2
clean 74.0 70.3 71.8 71.2 71.2
20 55.9 54.0 54.4 57.0 54.6
0 27.5 35.3 37.6 39.4 43.4
-20 16.5 16.3 15.9 17.8 20.0

Table 2: Emotion recognition performance (correct %) under
babble noise. See caption of Table 1 for additional details.

Signal-
to-noise Spectrum analysis method
ratio (dB) FFT LP XLP-P XLP-S1 XLP-S2
clean 74.0 70.5 71.8 71.2 71.2
20 64.1 60.4 61.9 61.7 62.4
0 38.9 39.8 39.4 41.3 42.1
-20 16.5 17.9 16.3 16.8 18.7

4. Conclusions
In this study, a new and thus far the most generic formulationof
(temporally) weighted linear predictive methods was presented.
This framework generalizes both original weighted linear pre-
diction (WLP) [9], which only allows one-dimensional, tempo-
ral weighting functions, and the previously proposed version of
extended weighted linear prediction (XLP) [6]. At each time
instant, the new model allows for unconstrained element-by-
element weighting of the autocorrelation snapshot matrix and
vector, new concepts introduced in this study. Two new XLP
methods, facilitated by the new formulation and with weighting
schemes designed to improve robustness against degradations
like additive noise, were evaluated as the basis of the MFCC
feature representation in the recognition of vocal emotions us-
ing the Berlin database of emotional speech. The new speech
spectrum analysis methods outperformed the standard FFT and
also linear prediction (LP), which itself is known to frequently
have a robustness advantage over FFT. Thus, the methods show
promise to be used as a basis for different types of robust fea-
tures in speech emotion recognition. Code can be found at [21].

For the future, the newly proposed formulation of tempo-
rally weighted linear prediction allows for many more informa-
tion weighting strategies in speech spectrum analysis thanits
predecessors. These weighting schemes can be designed ac-
cording to different considerations in various applications and
targeted on different aspects of the speech signal.
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