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Abstract

Temporally weighted linear predictive methods have rdgent
been successfully used for robust feature extraction iedpe
and speaker recognition. This paper introduces their géner
formulation, where various efficient temporal weightingidu
tions can be included in the optimization of the all-pole co-
efficients of a linear predictive model. Temporal weightiag
imposed by multiplying elements of instantaneous autetarr
tion “snapshot” matrices computed from speech data. With th
novel autocorrelation-snapshot formulation of weightieedr
prediction, it is demonstrated that different temporalezsp of
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perspective of resistance against simple corruptions asictul-
ditive white noise. Instead, it would be very beneficial tedna
more generic spectrum analysis framework that can be adjust
according to the degradations encountered.

Earlier studies have noted that MFCCs based on linear pre-
dictive all-pole models tend to be more robust in the presefic
additive noise corruption than conventional MFCCs usirg th
Fourier spectrum analysis [4]-[7]. In recent years, member
of the weighted linear predictiorfamily of spectrum analysis
methods have been studied by the present authors in terms of
their noise and channel robustness as part of the MFCC fea-

speech can be emphasized in order to enhance robustness ofture extraction procedure in automatic speech recogn[édn

feature extraction in speech emotion recognition.
Index Terms: linear prediction, spectrum analysis, speech
emotion recognition

1. Introduction

Accurate parametrization of the short-time magnitude tspet

is central in speech processing applications. Frame-feeel
ture extraction in automatic recognizers, including awbm
speech recognition (ASR), speaker recognition and payaika

tic analysis systems, is often based on representationseof t
short-time magnitude spectrum such as the widely used mel-
frequency cepstral coefficients (MFCCs).

Degradations such as additive noise or a poor acoustic chan-
nel affect the quality of the magnitude spectrum model. &hil
this problem affects all speech processing systems, it ean b
considered to be particularly relevant for a recognitios-sy
tem: even if the feature extraction module manages, despite
the noise, to capture the characteristic information thadlas
otherwise be sufficient for class discrimination, there wiill
exist amismatchbetween the training and recognition condi-
tions. Other sources of mismatch are related to speakers, e.
with respect to variable vocal effort or fundamental freagye

While additive noise corruption and channel mismatch can
be tackled in various stages of the recognition procesfydnc
ing speech enhancement preprocessing (e.g., spectraacubt
tion, Wiener filtering [1]), feature postprocessing (eagpstral
mean normalization [1]) and the recognition models (e.ig- d
criminative training [2]), a combination of mutually conepl
mentary techniques in different stages is often employest. F
instance, feature extraction based on robust spectrum Inode
can be successfully combined with speech enhancement pre-
processing [3]. Therefore, and also because of being irapbrt
in other speech processing applications, robust spectnah a
ysis is an important area of study. However, because thesrang
of potential degradations and mismatch conditions affigdtie
spectra is wide and varied, it is not sufficient to study infrthe

[5] and speaker verification [3] [6]. The weighted linear pre
dictive spectrum estimate has also recently been showrnvio ha
potential in formant estimation of high-pitched speech [8]

The originaltemporally weightedinear prediction [9] was
stabilized[10] and then generalized to lag-weighted linear pre-
diction [6], thereby expanding the applicability of the cept.

In the present study, thus far the most general formulatfon o
weighted linear prediction is introduced, incorporatifigtiae
previously discussed methods and also allowing for many new
potentially useful weighting schemes. Its main properéied

the effects of weighting applied to instantane@ugocorrela-
tion snapshotmatrices are discussed. Weighting schemes for
the method are, in this study, derived from additive-nose r
bustness considerations. The noise robustness of the dnistho
evaluated and compared to conventional methods in a riealist
application, the automatic recognition of emotion in sfpeec

2. Extended weighted linear prediction
2.1. Snapshot Formulation of Weighted Linear Prediction

In linear prediction (LP), the short-time magnitude spactiof

a signal is parametrized as an all-pole filter witdomain trans-

fer functionH (2) = 1/(1 — 3P _, axz™*) = 1/A(z) [11]. In

the time domain, each sample is assumed to be predictable as
Sn = Zzzl arSn—k, 1.€., a linear combination of the coeffi-
cientsar, 1 < k < p, andp past signal samples, whepeis
referred to as the prediction order.

In conventional LP, the model parameters are obtained by
minimizing the sum of squares of the prediction erfarp
S (sn — X2 arPsn_i)? by setting its partial derivatives
with respect to each coefficient:” to zero. This results in
the LP normal equations [111°7_, ak® 3", sn_ksn—j =
>, Snsn—j, 1 < j < p, whose solution yields the LP model
{a¥P}. The range of summation of is chosen in this work
to correspond to the autocorrelation method, in which the en
ergy is minimized over a theoretically infinite interval tay is



considered to be zero outside the actual analysis windojv [11

The underlying motivation of weighted linear predictive
methods is temporal emphasis of those parts within the short
time signal frame which are deemed, using some heuristic
analysis function, to be the most reliable and least likely
to have been severely corrupted. Weighted linear predic-
tion (WLP), proposed by Ma et al. [9], is a generaliza-
tion of LP in which a time-dependent weighting function is
applied to the squared prediction error values so as to em-
phasize the correct prediction of selected samples and -down
weight others. In WLP, the quantity to be minimized is
Ewrp =3, (sn — 30 ap*"sp_i)*W, and the normal
equations thus becom@&r_, a)"""' 3" Wisp_rsn—; =
> n Wasnsn—j, 1 < j < p. LP is obtained as a special case
whenW,, = C, a constant that cancels out from both sides of
the equations.

A further generalization of both LP and WLP, termed ex-
tended weighted linear prediction (XLP), was recently pro-
posed [6]. In this formulation, the quantity to be minimized
FExLp Zn(ann70 — Z:l ai(LP.Sn,an,k)2, where the
partial weightsZ,, ; separately weight each lagged signal value
at each time instant, allowing more control over the focus of
the all-pole modeling. The resulting normal equations are

P

XLP
> ar T Zuwsn-kZngsn-g = Y ZnosnZngsn-j, (1)
k=1 n n

1<j5<p

WLP is obtained as a special case when; = /W, and,
similarly to the WLP case, LP is obtained wh&hp,; = C.

This study proposes a yet more generic formulation of the
XLP method which encompasses each of the above mentioned
methods for estimating LP all-pole models as special cases b
facilitates more versatile weighting schemes. The gemeal
mal equations of extended weighted linear prediction can be
written as

P
D ak Y QujkSn—ksn— = Y Qnj08nSn—j, 2
k=1 n n
1<ji<p,

where Q. ;1 is the weighting function. It can be seen that
WLP is obtained whe®,,,;,» = W, and LP is obtained when
Qn,j,. = C. The version of XLP originally formulated by Po-
hjalainen et al. [6] is obtained when

Qn,jk = Zn,j Zn.k, (3)

i.e., when the weighting function can be factorized as aycbd
of lag-specific partial weights. However, an interestingliad
tional property becomes evident by examining Eq. 2 in ma-
trix form: defining@Q,, = (Qn.jx), @ = (ai...a,)” and

Sn = (8n—1...5,—p)", the normal equations can be expressed
as

<Z Q, 0 (sns£)> a = Z Qn,5,05n5n, 4)

where® denotes element-by-element multiplication. Thex
p) matrix s, si is referred to as thautocorrelation snapshot
matrix at timen. Substituting@,,;» = C andQ,, = (C),

b)
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Figure 1: Short segments of speech, indicated with thick line
(top row), and their corresponding unweighted autocortielia
snapshot matrices (middle row; black corresponds to thgdar
positive value) and the same matrices weighted accorditigto
XLP-S2 scheme (bottom row), with columns a)-d) correspond-
ing to different locations of the snapshot.

the summation on the left-hand side of Eq. 4 yields the (sale
autocorrelation matrilR = C )", (sns};). Similarly, the sum-
mation of theautocorrelation snapshot vectors, s, on the
right-hand side of the equation yields the (scaled) autecor
lation vectorr = C'>"  sns,, making Eq. 4 equivalent to
the matrix formulations of conventional LP [12]. In commgi
the autocorrelations in WLP case, i.e., wh@n ; . = W, and
Q,, = (W,), the snapshots are weighted differently from each
other according to the time instants they are observed at. As
a novel idea, this paper proposes weighting the snapshtts wi
anunconstrainedveighting function@.,,; », based on the mu-
tual dependencies of the data constituting each snapshdt, a
thus removing the original XLP constraint given by Eq. 3. The
proposed snapshot approach to specifying the weights,hwhic
further extends the definition of XLP and is also referredyo b
that name in the present paper, is able to completely canside
the instantaneous mutual dependencies between laggeal sign
samples involved in each snapshot and should thus allows new
potent data weighting schemes.

Figure 1 illustrates different snapshot matricgss’, as
well as their weighted versions, related to different pafts
short-time speech analysis frame.

2.2. Weighting Schemes

The weighting function typically used in WLP is the shoré
energy (STEW, = >%_, s2_,, i.e., the energy of pagtsig-

nal samples. This weighting scheme has good theoretica mot
vations, as emphasizing the energetic segments focusestton b
the glottal closed phase in voiced speech, where the val tr
resonances are most evident [10], and, in the case of stayion
background noise, on different parts of the analysis framre-
lation to their local signal-to-noise ratio (SNR). WLP wBTE
weighting is thus theoretically appropriate for additiveise ro-
bustness and has, indeed, been found to improve the robastne
in both large-vocabulary continuous speech recognitipafdi
text-independent speaker verification [3]. Incidentathg STE
weighting function is the Frobenius norm, as well as theeyac
of the autocorrelation snapshot matrix appearing on the lef



hand side of Eq. 4.

With the original partial-weight formulation of XLP, satis
fying Eg. 3, the absolute value sum (AVS) weighting, which
can be viewed as an adaptation of the STE scheme to partial
weights, has led to improved noise and channel robustness in
both speaker verification [6] and speech recognition [5]isTh
weighting is given by the recursion

p—1 1
Zny =2 Zn 154 =(I5n] + |50y
== i p(l |+ [sn—31)

®)
with Z,, ; = 0 for all j before the beginning of the frame. In
the experimental part of this paper, this method is refeivets
XLP-P to denote the property that the weighting is obtained a
a product of partial weights according to Eqg. 3.

It is not immediately clear how to extend the idea of the
previously successful AVS weighting scheme (Eq. 5) to snap-
shot XLP. Therefore, we evaluate two different options Whic
involve recursive low-pass filtering of sums and productalnf
solute values of lagged samples:

p—1

1
Q”Lajak: = TQ'rLfl,j,k'l'; (|STL| + |Sn*j| + |S"*k|) ) (6)

which will be referred to as XLP-S1 in this paper, and

p—1

1
Qn,j,k - TQ'rLfl,j,k + 5 (Si + |3n7j||snfk|) 3 (7)

referred to as XLP-S2.

2.3. Spectral smoothing

All-pole filter stability is especially important in appétons
where they will be used to synthesize signals. However, the
stabilized versions of WLP and XLP-P, which typically pragu
smoother spectra than the original weighted linear prizgict

methods they are based on, have shown improved robustness

also in feature extraction, especially for speaker vetificg[3]
[6].

As originally proven by Magi et al. [10], the all-pole filter
produced by WLP becomes stable if, according to the partial-
weight XLP notation in Eq. 1 witt¥,, ; = /W, [4], the con-
dition

Zng < Zn-1,j-1 (8)

is satisfied for alk andj. The same condition was subsequently
adopted for stabilizing general partial-weight XLP (Equ&jng
arbitrary Z,, ;. Model stabilization is thereby performed by re-
placing these weights with;, ; = max(Z, j, Zn—1,5-1) With
Zn,; = 0for j < 0[6]. With snapshot XLP, assuming that the
weight matrixQ,, = (Qx,;,%x) can be factorized as a product of
two partial-weight vectors according to Eq. 3, Eq. 8 yields

Qnjk < Qn-t1,j-1k-1- 9)

While this condition for stability apparently does not gen-
eralize to weights that can not be factorized according to Eq
3, it has been found that enforcing it nevertheless typicall
leads to generally smoother spectral models as well as a re-
duced number of unstable filters. Therefore, we also prognse
optional spectral smoothing operation for snapshot XLRctvhi
is performed by replacing the original weightg, ;. with
Qn ke = max(Qnjk, @n-1,j—1,k—1), WhereQy ; , = 0 for
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Figure 2:Example spectra of LP, XLP-P and XLP-S1 over one
utterance of the anger emotion category. Upper panels:rclea
speech. Lower panels: the same utterance with noise corrup-
tion by factory noise at SNR 0 dB.

j < 0ork < 0. Inour evaluations, we apply the smooth-
ing operation to XLP-S1 because it was observed to improve
the quality of the spectral estimate and the classificatefop-
mance. The operation is not applied to XLP-S2, which already
results in smooth spectra, or XLP-P, which has been observed
to produce few unstable filters.

Figure 2 shows examples of LP and XLP spectra in clean
and noisy conditions. XLP-S1 arguably shows less degraualati
between the clean and noisy case than LP. While XLP-S1 is
smoother than LP or XLP-P in the clean case, it does not show
a noticeable loss in modeling of the spectral detail undéeei
noise condition.

3. Experiments
3.1. Test material

Speech emotion recognition evaluation was conducted tising
Berlin database of emotional speech as evaluation mafeghl
The database has been widely adopted in emotion classificati
studies, also including earlier studies on robustness, [d.4]
[15] [16]. In total, it consists of 535 utterances of German-s
tences spoken in seven different emotional styles by fivemal
and five female actors. The emotion categories containdtdsn t
database aranger, disgust fear, joy, sadnessboredomand
neutral The whole database was used for the evaluation, which
was carried out in a speaker-independent manner as le@ve-on
speaker-out cross validation [14] [17], i.e., one speaket @
time was chosen as the test speaker and the material from the
other nine was used for training. Unfortunately, a vastyarra
of different ways of using the Berlin database for evaluatio
can be encountered in the literature: sometimes only ssilo$et
the data are used, for example, by leaving out one of the emo-
tion categories; cross validation is sometimes performigd-w
out regard to speaker identity and sometimes with it; diffier
evaluation metrics are used including the total recognitade,
cross-validation-averaged recognition rate, etc. Tleesfa di-
rect large-scale comparison of the results with other egares
in the literature will not be possible in the context of thegent
study.

In order to study the noise performance, the speech material



was analyzed in the clean form and also artificially corrdpte ~ methods becomes evident. In the case of factory noise and SNR
by two types of noise from the NOISEX-92 database with three 0 dB, the performance advantage of newly formulated XLP
segmental (frame-averaged) signal-to-noise ratios ($NEG methods over the conventional FFT is particularly clear.

dB, 0 dB and -20 dB, resulting in seven different noise condi-

tions. The noise types used weaetoryl, which is mechanical

noise recorded inside a factory aoabble which consists ofthe ~ Table 1: Emotion recognition performance (correct %) under
simultaneous speech of many speakers. The clean case &nd eac factory noise with MFCC features obtained using five speatru
of the six noise cases were used for test material, whilsifias analysis methods. The best score for each classifier and nois

training was a|Ways conducted using clean Speech data on|y_ level is shown in boldface. The results pertain to utterance
of seven emotion categories in the Berlin database and were

3.2. Speech emotion recognition obtained using leave-one-speaker-out cross validation.
] Signal-

3.2.1. Overview to-noise Spectrum analysis method

In order to evaluate the performance of different featurea i ratio(dB) | FFT LP  XLP-P XLP-S1 XLP-S2

realistic application, an emotion recognition system wais-c clean 740 703 718 712 71.2

structed. The MFCC-based feature extraction and the GMM- 20 55.9  54.0 54.4 57.0 4.6

based classification are briefly described. 0 27.5 353 37.6 39.4 434
-20 16.5 16.3 15.9 17.8 20.0

3.2.2. Feature extraction

After pre-emphasis withf,, (z) = 1—0.972~", the signal is ar-
ranged into overlapping Hamming-windowed frames of 25 ms  Taple 2: Emotion recognition performance (correct %) under
with a shift interval of 10 ms. For each frame, mel-frequency  pabble noise. See caption of Table 1 for additional details.

cepstral coefficients (MFCCs) are obtained using the peicgs Signal-

chain: 1) compute squared magnitude spectrum by either FFT | tg-noise Spectrum analysis method

(the conventional method), LP, XLP-P, XLP-S1 or XLP-S2, 2) ratio(dB) | FFT LP  XLP-P XLP-S1 XLP-S2
apply a mel filterbank to the squared magnitude spectrum, 3) [Gjean 740 705 718 71.2 71.2
take the logarithm of filtered band energies and 4) perfosn di 20 641 604 619 61.7 62.4
crete cosine transform [1]. The mel filterbank has 40 trigaxgu 0 389 398 394 41.3 a1
filters with center frequencies spaced evenly on the mekscal -20 165 17.9 16.3 16.8 18.7

The zeroth MFCC is excluded and the subsequent 12 MFCCs
are complemented with logarithmic frame energy which has
been mean- and variance-normalized over the complete utter

ance. Finally, delta and double-delta coefficients of theO@B 4. Conclusions

and log energy are appended, resulting in a 39-dimensieaal f |, this study, a new and thus far the most generic formulation

ture vector. (temporally) weighted linear predictive methods was pméssd
o This framework generalizes both original weighted lineda-p

3.2.3. Classification diction (WLP) [9], which only allows one-dimensional, teaap

ral weighting functions, and the previously proposed \ersif
extended weighted linear prediction (XLP) [6]. At each time
instant, the new model allows for unconstrained element-by
element weighting of the autocorrelation snapshot matnik a
vector, new concepts introduced in this study. Two new XLP
methods, facilitated by the new formulation and with weiigdyt
schemes designed to improve robustness against degralatio
approach intended for the initialization of the cluster mem like additive noise, were evaluated as the basis of the MFCC

EM-style cluster-seeking algorithms [20]. This procedsrap- feature representation in the recognition of vocal ematiasr

plied to the 12 base MFCCs while the other 27 elements of the N9 the Berlin database of emotional speech. The new speech
feature vector are initialized by averaging within theiadiclus- spectrum analysis methods outperformed the standard F&T an

ters. The component weights are initialized with uniforra-di also linear prediction (LP), which itself is known to freatly
tributions and the variances withl times the global variances. ~ Nave arobustness advantage over FFT. Thus, the methods show
In the classification phase, the class decision for eachanite promise to be used as a basis for different types of robust fea
is determined by the identity of the GMM giving the highest tures in speech emotion recognition. Code can be found ht [21

average likelihood, averaged over each frame of the uiteran For the future, the newly proposed formulation of tempo-
rally weighted linear prediction allows for many more infaa-

33. Results tion weighting strategies in speech spectrum analysis itisan

- predecessors. These weighting schemes can be designed ac-
Tables 1 and 2 show the classification accuracy for the utter- cording to different considerations in various applicatiand
ances in the Berlin database. For the clean condition, it can targeted on different aspects of the speech signal.
be observed that while FFT shows the best performance (which
is comparable to other published approaches using leage-on 5. Acknowledgements
speaker-out cross validation on the Berlin database [17])[1
the proposed XLP methods are already competitive with con-  This work was supported by Academy of Finland (256961) and
ventional LP. As noise is increased, the robustness of the XL  the EC FP7 project Simple4All (287678).

For the purpose of classification according to the Bayes rule
[18], a Gaussian mixture model (GMM) with 64 components
and a diagonal covariance structure is trained separately f
each of the seven emotion classes in the Berlin databasg usin
10 iterations of the expectation-maximization (EM) algfom

for GMM training [19]. Before training each GMM, the mean
vectors of the components are initialized by applying actiele
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