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Abstract

This paper investigates approaches to modeling the time evo-
lution of short-time spectral features in paralinguistic speech
type classification, where we focus on detection of speech in-
fluenced by physical exertion. The time series model consists
of autoregressive processes of multiple time scales and orders
and is trained to describe the long-term dynamics of a given tar-
get speech class. The model is applied in two ways in improving
long-term modeling in the detection task: 1) to perform predic-
tive filtering of the features and 2) to automatically selectinstan-
taneous classification subspaces. The spectrum analysis method
underlying the short-time features is also varied between the
standard discrete Fourier transform and a time-weighted linear
predictive method which yields smooth all-pole spectrum enve-
lope models. Configurations of the proposed methods are eval-
uated in the Physical Load task of the Interspeech 2014 Compu-
tational Paralinguistics Challenge and show improvement over
the baseline timbral classifier and the challenge baseline.Also
the interrelationships among the methods are discussed.
Index Terms: computational paralinguistics, physical load,
modulation filtering, spectrum analysis

1. Introduction
Automatic detection of speaking styles, speaker states and
speaker traits is a rapidly emerging field of study in speech tech-
nology. For detection of physical and emotional states, potential
applications arise in, e.g., context-aware speech interfaces, call
center service monitoring and in assisting speech and speaker
recognition systems to adapt their acoustic models according to
the speaking situation.

Modeling of temporal dynamics of speech is central in
many of the above mentioned applications of computational
paralinguistics. Often, the temporal dynamics are modeledby
using a large set of long-term functionals of short-term acoustic
parameters, and a machine learning system capable of tackling
high-dimensional feature spaces is applied for the classification.
This approach is demonstrated in, e.g., the baseline systemof
each Interspeech Computational Paralinguistics Challenge up to
date [1]. In other studies, systems targeted for a particular ap-
plication, such as emotion recognition, have used various cus-
tomized approaches to modeling the temporal information, e.g.,
[2] [3] [4].

The application under study in this paper is automatic de-
tection of physical stress, or physical load, according to the
Physical Load sub-challenge of the Interspeech 2014 Compu-
tational Paralinguistics Challenge (ComParE2014) [1]. The
goal is to combine robust short-time spectrum modeling with
a versatile long-term modeling approach in order to tackle this
complex detection task [5] [6] [7] [1], which is a challenge

even for human listeners [6]. Recently, autoregressive predic-
tive filtering of features using specifically tailored modulation
time scales was proposed for automatic detection of anger in
telephone speech [8] and for detecting broad emotional states
according to the activation and valence dimensions [9]. The
approach proposed was found to improve robustness in the
presence of noise mismatch as well as the modeling of clean
speech. In other recent studies, spectral envelope features based
on time-weighted linear predictive methods have been shown
to improve the robustness of classification systems [10] [11]
[12]. In this study, these two techniques are combined: multi-
scale autoregressive modeling of long-term feature dynamics
[9] is complemented with automatic selection of an instanta-
neous classification feature subspace, proposed in this paper, to
process spectral short-term feature vectors; to obtain theinitial
short-term spectral features, we use a recently proposed, robust
time-weighted linear predictive method [12].

Each method under study is applied as a straightforward
modification of a basic acoustic classifier using short-termtim-
bral features. Modulation filtering time scale parameters are
optimized for two types of spectral features: those based onthe
discrete Fourier transform and those based on the linear predic-
tive all-pole method. The experiments are evaluated by analyz-
ing the interrelationships of long-term autoregressive modeling
and the types of spectral features. The best results obtained
are evaluated against two baselines: that of the basic classi-
fier, without modifications, and the official baseline of Com-
ParE2014 obtained by a high-dimensional, feature-intensive
machine learning approach (support vector machine, SVM). Fi-
nally, the implications of the results obtained are discussed.

2. Detection System
2.1. Short-Term Feature Extraction

The speech signal, after pre-emphasis with filter1 − 0.97z−1,
is divided into Hamming-windowed frames of 25 ms with a 10
ms shift interval. For each such frame, 12 mel-frequency cep-
stral coefficients (MFCCs), excluding the zeroth one, are ob-
tained by the process chain of 1) magnitude spectrum analysis,
2) computation of mel-filterbank energies, 3) logarithm and4)
discrete cosine transform [15]. A 39-dimensional feature vector
is formed by concatenating the MFCCs with logarithmic frame
energy, whose value is mean- and variance-normalized over the
utterance, and∆ and∆∆ coefficients [15].

Typically, the initial spectrum analysis step in the MFCC
computation is performed using the discrete Fourier transform,
implemented by FFT (fast Fourier transform). In this study,
we also investigate an alternative method which belongs to
the family of spectrum analysis algorithms known as extended
weighted linear prediction (XLP) [10] [11] [12]. Specifically,



we employ a version of this general formulation which was,
in an earlier study on speech emotion recognition, observedto
result in smooth spectra and showed better noise robustnessbe-
havior than standard methods [12].

The most generic XLP formulation [12] solves the weighted
normal equations

p
∑

k=1

ak

∑

n

Qn,j,ksn−ksn−j =
∑

n

Qn,j,0snsn−j , (1)

1 ≤ j ≤ p,

where sn is a signal within the analysis interval andak

are the coefficients of an all-pole modelH(z) = 1/(1 −
∑p

k=1
akz

−k). Qn,j,k is a snapshot weighting functionas-
sociated with time instantn and the pair of autocorrela-
tion lags (j, k). The term “snapshot” is used because this
weighting is applied to instantaneous products of signal sam-
ples, of the formsn−isn−j , which, when summed over the
time index n, constitute autocorrelation estimatesRi−j =
∑

n
sn−isn−j . When the autocorrelation “snapshot” terms

are weighted byQn,j,i, the result is weighted autocorrelation
R̃i−j =

∑

n
Qn,j,isn−isn−j . SettingQn,j,i a constant for all

n, j andi results in conventional linear prediction (LP) [14]. In
[12], the weighting function was instead obtained recursively as

Qn,j,k =
m− 1

m
Qn−1,j,k +

1

m

(

s2n + |sn−j ||sn−k|
)

, (2)

with Qn,j,k initialized as zero outside the analysis interval.
This weighting scheme consists of first-order lowpass filter-
ing, using memory coefficient(m − 1)/m, of the quantity
s2n + |sn−j ||sn−k|. It therefore assigns most weight to the
snapshot terms when 1) the absolute value of the snapshot,
|sn−j ||sn−k|, maintains a high value over a sufficiently long
period and/or 2) the terms2n maintains a high value, meaning
that the short-time energy of the signal is large. This decreases
the instantaneous random variation of spectrum estimates and
results in smooth spectra whose time evolution follows smooth
trajectories, as demonstrated in Fig. 1, in comparison withcon-
ventional LP. Increasingm makes the spectra smoother. The
reduced spectral variability may contribute to robustness.

In previous studies on the detection of high vocal effort
[13], it has been found useful to combine LP and FFT spectra
in the following manner. First, the magnitude spectrum enve-
lope is computed using LP. Second, the spectral fine structure,
which comprises F0 and its harmonics, is obtained by elimi-
nating the spectrum envelope from the FFT magnitude spec-
trum using cepstral source-filter separation. Specifically, the
signal is transformed into the cepstral domain [15], liftered by
suppressing to zero the cepstral coefficients corresponding to
lags less than(Fs/500) + 1, whereFs is the sampling rate in
Hz, and then transformed back to the spectral domain. This
way, periodic excitation information up to 500 Hz is retained in
the liftered excitation spectrum. Finally, the all-pole envelope
and the cepstrally separated fine structure/excitation spectrum
are multiplied together. The resulting magnitude spectrumcan
be denoted as LP-CR (linear prediction with cepstral residual)
spectrum, or XLP-CR when based on an XLP spectrum enve-
lope.

2.2. Modeling of Feature Long-Term Dynamics

Long-term modeling is applied to the feature vector sequence
whereyi,t, 1 ≤ i ≤ d, constitute the feature vector describ-
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Figure 1:LP and XLP spectra (with varyingm) over one utter-
ance of the Training material resampled at 16 kHz.

ing thetth frame. In [9], a new approach was introduced which
extended the autoregressive modeling of feature modulation dy-
namics presented in [8]. In the new approach, multiple autore-
gressive filters, parametrized by filter-specific prediction orders
qi,j , intercept termsb0,i,j , autoregressive coefficientsbk,i,j and
frame skip parametersSi,j are used to generate predictions of
the features such that

ŷi,t,j = b0,i,j +

qi,j
∑

k=1

bk,i,jyi,t−kSi,j
(3)

is the predicted value ofyi,t according to thejth filter trained to
represent the time evolution of theith feature. The filter coef-
ficientsbk,i,j , 0 ≤ k ≤ qi,j , are obtained in the training phase
by least squares estimation of autoregressive prediction coeffi-
cients to model the behavior of theith feature across frames. In
the estimation as well as in prediction, only everySi,j th lagged
value is considered for the filterbk,i,j , 0 ≤ k ≤ qi,j . Varying
the frame skip parameterSi,j across the filter indexj, while the
order of the filters stays constant asqi,j = q, results in each fea-
ture being modeled in multiple different time resolutions,as in
[9], while another alternative is to fix the time scale asSi,j = S
and to instead vary the prediction orderqi,j .

For each frame and feature, the most accurate prediction
over all filters is used as the final prediction. That is, the pre-
dicted value for theith feature at thetth frame is chosen as

ŷi,t = arg min
ŷi,t,j

(yi,t − ŷi,t,j)
2, (4)

i.e., as the output of the filter that results in the lowest squared
prediction error. These predictionŝyi,t are used either tore-
place the original featuresyi,t (filtering) in both training and
classification phase, as done in [8] [9], or to select an instanta-
neous classification subspace by examining the prediction error
(residual)ei,t = yi,t − ŷi,t, as described in Section 2.3.1. Both
techniques emphasize time behavior typical to the target signal.

2.3. Classification Rule

The approach chosen is to detect one class of speech as opposed
to another class. In practice, this is equivalent to binary classifi-
cation, which is the goal of the evaluation task. In theory, how-
ever, the detector is trying to separate a target class, denoted as



1, from another class, denoted as 0, using a logarithmic likeli-
hood ratio statistic in accordance with the Bayes rule.

The feature distributions of class 1 and class 0 are
both modeled with 64-component Gaussian mixture models
(GMMs) having a diagonal covariance structure [16]. They
are trained using 10 iterations of the expectation-maximization
(EM) principle [17] for GMMs [18] after initializing the com-
ponent mean vectors by utilizing a vector selection algorithm
intended for the initialization of iterative cluster-seeking algo-
rithms [19]. The classification system and its training are simi-
lar to our previous studies on emotion recognition [8] [12].

Detection is done one utterance at a time. Frame-averaged
log likelihoods of the feature vectors having been producedby
each GMM are computed and denoted asL1 andL0, for classes
1 and 0, respectively. WithT denoting the decision threshold,
the detection rule for the logarithmic likelihood ratio is

L = L1 − L0 > T. (5)

2.3.1. Instantaneous Classification Subspace Selection

In addition to comparing conventional and smoothed spectrum
analysis in long-term modeling of spectral feature dynamics,
this study also investigates an approach to utilize the long-term
models in performing classification decisions. The principle is
to use the long-term prediction residual (Section 2.2)ei,t (of
the ith feature in thetth frame) in selecting a set of features
It for the decision for thetth frame. To accomplish this, the
likelihoodsL1 andL0 in Eq. 5 are determined by using frame-
specific diagonal-covariance multivariate Gaussian mixture dis-
tributions, with dimensionality|It|, to parametrize the joint dis-
tribution of the featuresi ∈ It by meansµi and variancesσ2

i .
To summarize, only the features that were well predicted by the
long-term modulation filter for thetth frame participate in the
classification decision of that frame.

The frame-specific feature setsIt are selected by a simple
approach that divides the feature values into two clusters:one
with a low prediction error and one with a high prediction er-
ror. The squared long-term prediction residualse2i,t are clus-
tered using k-means by initializing the mean of one cluster with
mini,t e

2

i,t and the mean of the other cluster withmaxi,t e
2

i,t.
After 10 iterations, the frame-specific instantaneous feature
subsets are chosen asi ∈ It if e2i,t was assigned to the for-
mer, low-value cluster initialized withmini,t e

2

i,t. The means
in one-dimensional k-means can not cross each other and this
approach is guaranteed to divide a set of values into a “high”
and a “low” cluster. Other approaches such as thresholding or
comparing the squared prediction residual against a distribution
learned in the training phase were experimented with, but of
these, the proposed approach showed the best results in instan-
taneous classification subspace selection. This may be due to its
ability to exploit any possible natural, bimodal clustering struc-
tures that may be present in the squared magnitude of the pre-
diction error of the autoregressive modulation-frequencyfilters.

3. Experimental Results
The plan of the experiments is to first use cross-validation over
the Training set of the ComParE challenge [1] to 1) adjust the
time-scale parameters of the long-term modulation filtering and
2) choose the parameters of short-term spectrum analysis (Sec-
tion 3.1). In this stage, the performance is measured as the un-
weighted average recall (UAR) at two operating points corre-
sponding to different threshold valuesT in Eq. 5. Different

values ofT give rise to different miss ratepmiss and false alarm
ratepfa. The UAR at equal error rate (UAR-E) corresponds to
pmiss = pfa, in which case the UAR-E is given equivalently by
100%× (1− pmiss) and100%× (1− pfa). The other measure
is UAR at minimum half-total error rate (UAR-M) [20], which
is the maximum value of100% × (1− 0.5pmiss − 0.5pfa) ob-
tainable by adjusting the threshold.

As the second step, selected modulation filter structures are
used for filtering and subspace selection with features obtained
using different spectrum analysis methods and these combina-
tions are evaluated on both the Development and Test data of
the Challenge (Section 3.2). In this stage, the goal is to setthe
UAR to its optimum value using the available information.

The speech material of the experiments comes from the
Munich Bio-voice Corpus [21] according to the specifications
of the ComParE2014 challenge [1]. The speech material was
observed by listening to contain somewhat variable audible
noise, motivating the use of noise-robust processing methods
from [12] and [9]. The original speech material was downsam-
pled to 16 kHz. The speech clips of the corpus are labeled as
representing either ’low’ or ’high’ physical load. The detection
system of Section 2.3 is set to detect the ’low’ class as its target.
The choice of the target class is irrelevant according to Eq.5,
but it affects the long-term dynamic modeling component as the
modulation filter is trained to represent the target class.

3.1. Parameter Optimization

In the first part of the experiments, leave-one-speaker-outcross
validation over the Training data set is used to examine the spec-
trum estimation methods for short-time acoustic feature extrac-
tion and the time scales for autoregressive modeling of these
features. First, the autoregression (AR) orderq and frame skip
S in the single-AR filtering method from [8] (i.e.,j is con-
strained to a single value in Eqs. 3 and 4) are optimized. Tables
1 and 2 show the results for 39-dimensional MFCC feature vec-
tors obtained with FFT and LP (p = 20) spectrum analysis,
respectively. Major differences in the optimal time scalesbe-
tween FFT- and LP-based short-time features are not observed,
but the LP-based features appear to favor somewhat lowerS
values, especiallyS = 1 andS = 2, according to the UAR-E
criterion. In the remainder of this study, we focus on frame skip
rangeS = 1, 2, 3 and prediction ordersq = 4, 8, 12.

Table 1: UAR-M (%; UAR-E in parentheses) for single-
autoregression filtering of FFT-based MFCCs.

S q = 4 q = 8 q = 12

1 69.2 (63.4) 65.6 (61.6) 67.4 (62.3)
2 66.8 (64.9) 65.3 (62.9) 64.9 (63.9)
3 67.3 (63.4) 64.7 (61.8) 66.2 (63.9)
4 64.4 (61.0) 63.4 (62.3) 65.8 (60.5)
5 63.7 (59.5) 62.8 (57.4) 64.1 (60.0)

Table 3 compares FFT, LP and LP-CR spectrum analyses
without any long-term processing. As the “CR” features out-
perform FFT and LP at the equal error rate operating point,
they are included in further evaluations. The performance boost
obtained by the CR spectra can be predicted by previous stud-
ies. It is known that high vocal effort impacts F0 and associ-
ated harmonics, and CR-spectral features have shown improved
robustness performance in detection of high vocal effort, e.g.,
[13]. Because, e.g., the periodic glottal waveform, which is re-



Table 2: UAR-M (%; UAR-E in parentheses) for single-
autoregression filtering of LP-based MFCCs.

S q = 4 q = 8 q = 12

1 66.1 (63.4) 67.9 (61.8) 65.5 (62.3)
2 66.1 (60.5) 66.4 (62.3) 65.3 (62.9)
3 66.1 (62.9) 62.8 (59.5) 64.3 (59.5)
4 65.2 (62.9) 64.9 (59.5) 62.8 (61.8)
5 63.3 (60.5) 60.2 (58.4) 61.0 (56.4)

flected in the spectral fine structure, is known to be affectedby
physical stress [5] [6], CR features can potentially improve the
performance also in this detection task.

Table 3:Effect of applying an all-pole model as the short-time
spectrum analysis (cross validation over Training set).

Short-time spectrum UAR-M (UAR-E), %

FFT 67.3 (65.5)
LP 64.8 (62.3)

LP-CR 67.2 (66.5)

3.2. Classification Results

After initial parameter optimization by the cross-validated
Training set, the best detection system configurations are cho-
sen using the Development set while using the Training set for
training. Table 4 shows predictive, multiple-time-scale modula-
tion filtering applied to three types of short-time features, each
based on a different spectrum analysis method.

Table 4: UAR-M (%; UAR-E in parentheses) for Development
set showing the effect of multi-scale filtering on MFCC features
based on FFT, XLP (p = 20, m = 50) and XLP-CR (m = 40).

Filter FFT XLP XLP-CR

none 63.7 (60.4) 68.5 (68.0) 65.2 (62.0)
S = 1, p ∈ {4, 8, 12} 61.6 (59.9) 60.8 (58.3) 67.4 (62.5)
S = 2, q ∈ {4, 8, 12} 64.0 (60.4) 65.8 (64.8) 67.2 (65.9)
S = 3, q ∈ {4, 8, 12} 59.8 (56.5) 67.3 (64.8) 67.9 (64.3)
q = 4, S ∈ {1, 2, 3} 62.9 (57.8) 64.0 (62.0) 64.8 (60.9)
q = 8, S ∈ {1, 2, 3} 61.4 (58.3) 64.5 (62.5) 65.0 (64.1)
q = 12, S ∈ {1, 2, 3} 63.1 (59.4) 66.9 (66.4) 64.4 (63.6)

Based mainly on Table 4, a modulation filter structure is
chosen for each spectrum analysis method. The filter is applied
in three modes: predictive filtering as in [8] [9], classification
subspace selection based on the prediction residual (Section
2.3.1) and both the filtering and the subspace selection com-
bined. These results are shown in Table 5. The most promising
configurations are evaluated also on the Test set with limited
classification trials. Table 6 shows the results obtained for the
Development and Test sets together with the baselines.

4. Conclusions
Automatic detection of physical stress in speech was studied. In
initial short-time feature extraction, conventional FFT spectrum
analysis was substituted with a form of extended weighted lin-
ear prediction (XLP) which produces smooth spectra by focus-
ing on the most salient spectral cues. Short-time MFCC features

Table 5: Comparison of long-term processing for three spec-
trum estimation methods on the Development set. For each
spectrum analysis method, the MFCCs are modeled with a
multi-scale autoregressive filter chosen according to Table 4.
The filter is applied in three different ways: for predictivefilter-
ing, for subspace selection or for combined filtering and sub-
space selection. The Challenge baseline UAR is 67.2 %.

Spectrum analysis Long-term
and long-term filter operations UAR-M (UAR-E), %

filtering 64.0 (60.4)
FFT subspace 63.4 (59.4)

S = 2, q ∈ {4, 8, 12} filt.&subsp. 63.2 (59.9)
filtering 65.8 (64.8)

XLP subspace 69.7 (68.0)
S = 2, q ∈ {4, 8, 12} filt.&subsp. 65.7 (64.8)

filtering 67.9 (64.3)
XLP-CR subspace 64.9 (62.5)

S = 3,q ∈ {4, 8, 12} filt.&subsp. 68.2 (64.3)

Table 6:Main results: UAR (%) for the Development (Dev) and
Test sets using the best methods found in this study. The scores
that exceed the ComParE baseline [1] are marked in boldface.

Method Dev Test

FFT
S = 2,q ∈ {4, 8, 12} 64.0 69.9

filtering
FFT

S = 2,q ∈ {4, 8, 12} 63.2 69.9
filtering & subspace

XLP
S = 2,q ∈ {4, 8, 12} 69.7 68.6

subspace
XLP-CR

S = 3,q ∈ {4, 8, 12} 67.9 68.6
filtering

FFT-MFCC/GMM baseline 63.7 n/a
SVM (official) baseline [1] 67.2 71.9

obtained by both FFT and XLP were processed with a multi-
scale long-term autoregressive filter in order to model the tem-
poral characteristics of the target speech class. The short-time
XLP approach, which was recently proposed as a robust method
to focus on relevant spectral cues in emotion detection [12],
and the multi-scale autoregressive approach, which has also re-
cently been successfully applied to robust emotion detection [8]
[9], were combined in order to investigate how well their per-
formance in the detection of mental states will carry over to
physical states. The results show that XLP spectrum analysis is
effective in distinguishing physical stress from speech and gets
further benefit from long-term modeling by applying the model-
ing residual to dynamic GMM classification subspace selection,
a new method proposed in this study. In agreement with previ-
ous studies, Fourier-based features were enhanced by predictive
filtering/smoothing with the same long-term model. The pro-
posed configurations outperformed the basic timbral classifier
and also reached the performance level of the Challenge base-
lines. The methods studied thus hold potential for future use in
similar applications.
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