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Abstract

This paper investigates approaches to modeling the time evo
lution of short-time spectral features in paralinguistiesch
type classification, where we focus on detection of speech in
fluenced by physical exertion. The time series model cansist
of autoregressive processes of multiple time scales arerord
and is trained to describe the long-term dynamics of a gigen t
get speech class. The model is applied in two ways in impgpvin
long-term modeling in the detection task: 1) to perform pred
tive filtering of the features and 2) to automatically seilestan-
taneous classification subspaces. The spectrum analyisdne
underlying the short-time features is also varied betwden t
standard discrete Fourier transform and a time-weightezhli
predictive method which yields smooth all-pole spectruween
lope models. Configurations of the proposed methods are eval
uated in the Physical Load task of the Interspeech 2014 Cempu
tational Paralinguistics Challenge and show improvemeat o
the baseline timbral classifier and the challenge basehisn

the interrelationships among the methods are discussed.
Index Terms: computational paralinguistics, physical load,
modulation filtering, spectrum analysis

1. Introduction

Automatic detection of speaking styles, speaker states and
speaker traits is a rapidly emerging field of study in speech-t
nology. For detection of physical and emotional state sl
applications arise in, e.g., context-aware speech irgestacall
center service monitoring and in assisting speech and epeak
recognition systems to adapt their acoustic models acugtdi

the speaking situation.

Modeling of temporal dynamics of speech is central in
many of the above mentioned applications of computational
paralinguistics. Often, the temporal dynamics are modbied
using a large set of long-term functionals of short-ternmustio
parameters, and a machine learning system capable ofrtgckli
high-dimensional feature spaces is applied for the classidin.
This approach is demonstrated in, e.g., the baseline system
each Interspeech Computational Paralinguistics Chadlepgo
date [1]. In other studies, systems targeted for a partiapa
plication, such as emotion recognition, have used variogs ¢
tomized approaches to modeling the temporal informatia@n, e
(21 [3] [4].

The application under study in this paper is automatic de-
tection of physical stress, or physical load, accordingh® t
Physical Load sub-challenge of the Interspeech 2014 Compu-
tational Paralinguistics Challenge (ComParE2014) [1]. e Th
goal is to combine robust short-time spectrum modeling with
a versatile long-term modeling approach in order to tadkie t
complex detection task [5] [6] [7] [1], which is a challenge
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even for human listeners [6]. Recently, autoregressivdipre
tive filtering of features using specifically tailored moatibn
time scales was proposed for automatic detection of anger in
telephone speech [8] and for detecting broad emotionadsstat
according to the activation and valence dimensions [9]. The
approach proposed was found to improve robustness in the
presence of noise mismatch as well as the modeling of clean
speech. In other recent studies, spectral envelope fediased
on time-weighted linear predictive methods have been shown
to improve the robustness of classification systems [10] [11
[12]. In this study, these two techniques are combined: imult
scale autoregressive modeling of long-term feature dycsmi
[9] is complemented with automatic selection of an instanta
neous classification feature subspace, proposed in thes,gap
process spectral short-term feature vectors; to obtaiimttial
short-term spectral features, we use a recently proposbdst
time-weighted linear predictive method [12].

Each method under study is applied as a straightforward
modification of a basic acoustic classifier using short-ténm
bral features. Modulation filtering time scale parametees a
optimized for two types of spectral features: those baseti@n
discrete Fourier transform and those based on the linedigre
tive all-pole method. The experiments are evaluated byyanal
ing the interrelationships of long-term autoregressiveletiog
and the types of spectral features. The best results oltaine
are evaluated against two baselines: that of the basiciclass
fier, without modifications, and the official baseline of Com-
ParE2014 obtained by a high-dimensional, feature-intensi
machine learning approach (support vector machine, SVM). F
nally, the implications of the results obtained are disedss

2. Detection System
2.1. Short-Term Feature Extraction

The speech signal, after pre-emphasis with filter 0.97271,

is divided into Hamming-windowed frames of 25 ms with a 10
ms shift interval. For each such frame, 12 mel-frequency cep
stral coefficients (MFCCs), excluding the zeroth one, are ob
tained by the process chain of 1) magnitude spectrum asalysi
2) computation of mel-filterbank energies, 3) logarithm dhd
discrete cosine transform [15]. A 39-dimensional feat@etor

is formed by concatenating the MFCCs with logarithmic frame
energy, whose value is mean- and variance-normalized bger t
utterance, and\ and A A coefficients [15].

Typically, the initial spectrum analysis step in the MFCC
computation is performed using the discrete Fourier tansf
implemented by FFT (fast Fourier transform). In this study,
we also investigate an alternative method which belongs to
the family of spectrum analysis algorithms known as extdnde
weighted linear prediction (XLP) [10] [11] [12]. Specifitgl



we employ a version of this general formulation which was,
in an earlier study on speech emotion recognition, obsetved
result in smooth spectra and showed better noise robusteess
havior than standard methods [12].

The most generic XLP formulation [12] solves the weighted
normal equations
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where s,, is a signal within the analysis interval ang.
are the coefficients of an all-pole modé&f(z) = 1/(1 —
SP_Lawz™*). Qnk is asnapshot weighting functioas-
sociated with time instant: and the pair of autocorrela-
tion lags (7, k). The term “snapshot” is used because this
weighting is applied to instantaneous products of signal-sa
ples, of the forms,—_;s,—;, which, when summed over the
time indexn, constitute autocorrelation estimatés_; =
>, Sn—iSn—j. When the autocorrelation “snapshot” terms
are weighted byQ, ;,:, the result is weighted autocorrelation
Rij = D on @n,jiSn—iSn—j. Setting@y,;,; a constant for all
n, j and: results in conventional linear prediction (LP) [14]. In
[12], the weighting function was instead obtained reclyias

m—1
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with @, ;. initialized as zero outside the analysis interval.
This weighting scheme consists of first-order lowpass filter
ing, using memory coefficientm — 1)/m, of the quantity

82 4 |$n—j||sn—k|. It therefore assigns most weight to the

snapshot terms when 1) the absolute value of the snapshot,

|sn—j|lsn—r|, Maintains a high value over a sufficiently long
period and/or 2) the terrs2 maintains a high value, meaning
that the short-time energy of the signal is large. This ds®e
the instantaneous random variation of spectrum estimaitgs a
results in smooth spectra whose time evolution follows simoo
trajectories, as demonstrated in Fig. 1, in comparison edath
ventional LP. Increasingn makes the spectra smoother. The
reduced spectral variability may contribute to robustness

In previous studies on the detection of high vocal effort
[13], it has been found useful to combine LP and FFT spectra
in the following manner. First, the magnitude spectrum enve
lope is computed using LP. Second, the spectral fine strictur
which comprises FO and its harmonics, is obtained by elimi-
nating the spectrum envelope from the FFT magnitude spec-
trum using cepstral source-filter separation. Specificalig
signal is transformed into the cepstral domain [15], |getby
suppressing to zero the cepstral coefficients correspgridin
lags less tharfF /500) + 1, whereF is the sampling rate in
Hz, and then transformed back to the spectral domain. This
way, periodic excitation information up to 500 Hz is retaine
the liftered excitation spectrum. Finally, the all-polevelope
and the cepstrally separated fine structure/excitationtgpa
are multiplied together. The resulting magnitude spectcam
be denoted as LP-CR (linear prediction with cepstral reg)du
spectrum, or XLP-CR when based on an XLP spectrum enve-
lope.

2.2. Modeling of Feature Long-Term Dynamics

Long-term modeling is applied to the feature vector segelenc
wherey; +, 1 < i < d, constitute the feature vector describ-
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Figure 1:LP and XLP spectra (with varying:) over one utter-
ance of the Training material resampled at 16 kHz.

ing thetth frame. In [9], a new approach was introduced which
extended the autoregressive modeling of feature moduldtie
namics presented in [8]. In the new approach, multiple &dtor
gressive filters, parametrized by filter-specific predittioders
qi,j, intercept termsy ;, ;, autoregressive coefficiertis ; ; and
frame skip parameterS; ; are used to generate predictions of
the features such that

9,5
Git,s = bo,i,j + Zbk,i,jyi,tfks,;)j
k=1
is the predicted value af; ; according to thgth filter trained to
represent the time evolution of thith feature. The filter coef-
ficientsby,;,;, 0 < k < ¢;,;, are obtained in the training phase
by least squares estimation of autoregressive predicteffic
cients to model the behavior of thith feature across frames. In
the estimation as well as in prediction, only evéky;th lagged
value is considered for the filtéy, ; ;, 0 < k < ¢;,;. Varying
the frame skip parameté; ; across the filter index, while the
order of the filters stays constant@s = ¢, results in each fea-
ture being modeled in multiple different time resolutioas,in
[9], while another alternative is to fix the time scaleag = S
and to instead vary the prediction ordgy;.
For each frame and feature, the most accurate prediction
over all filters is used as the final prediction. That is, the-pr
dicted value for theth feature at theth frame is chosen as
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i.e., as the output of the filter that results in the lowesiesgd
prediction error. These predictiorfs,, are used either tee-
placethe original featureg; . (filtering) in both training and
classification phase, as done in [8] [9], or to select an imMata
neous classification subspace by examining the prediction e
(residual)e; : = yi.+ — 9.+, as described in Section 2.3.1. Both
technigues emphasize time behavior typical to the targetsi

2.3. Classification Rule

The approach chosen is to detect one class of speech as dppose
to another class. In practice, this is equivalent to bindagsifi-
cation, which is the goal of the evaluation task. In theoowh
ever, the detector is trying to separate a target classjedrs



1, from another class, denoted as 0, using a logarithmidi-like
hood ratio statistic in accordance with the Bayes rule.

The feature distributions of class 1 and class 0 are
both modeled with 64-component Gaussian mixture models
(GMMs) having a diagonal covariance structure [16]. They
are trained using 10 iterations of the expectation-maation
(EM) principle [17] for GMMs [18] after initializing the com
ponent mean vectors by utilizing a vector selection alpanrit
intended for the initialization of iterative cluster-séek algo-
rithms [19]. The classification system and its training aneis
lar to our previous studies on emotion recognition [8] [12].

Detection is done one utterance at a time. Frame-averaged
log likelihoods of the feature vectors having been produmned
each GMM are computed and denoted.asand Lo, for classes
1 and 0, respectively. Witfi’ denoting the decision threshold,
the detection rule for the logarithmic likelihood ratio is

L=L1—Lo>T. )

2.3.1. Instantaneous Classification Subspace Selection

In addition to comparing conventional and smoothed spettru
analysis in long-term modeling of spectral feature dynamic
this study also investigates an approach to utilize the-teng
models in performing classification decisions. The pritecip

to use the long-term prediction residual (Section 2.2) (of
the ith feature in thetith frame) in selecting a set of features
1, for the decision for theéth frame. To accomplish this, the
likelihoods L1 and Ly in Eq. 5 are determined by using frame-
specific diagonal-covariance multivariate Gaussian méxtlis-
tributions, with dimensionalityZ; |, to parametrize the joint dis-
tribution of the features € I; by means; and variances?.
To summarize, only the features that were well predictecby t
long-term modulation filter for théth frame participate in the
classification decision of that frame.

The frame-specific feature sefsare selected by a simple
approach that divides the feature values into two clustens:
with a low prediction error and one with a high prediction er-
ror. The squared long-term prediction residue@;; are clus-
tered using k-means by initializing the mean of one clusiér w
min;; e, and the mean of the other cluster wittax; ; e; .
After 10 iterations, the frame-specific instantaneous ufeat
subsets are chosen asc I if ef,t was assigned to the for-
mer, low-value cluster initialized witinin; ; e?,t. The means
in one-dimensional k-means can not cross each other and this
approach is guaranteed to divide a set of values into a “high”
and a “low” cluster. Other approaches such as thresholding o
comparing the squared prediction residual against a bligion
learned in the training phase were experimented with, but of
these, the proposed approach showed the best resultsan-inst
taneous classification subspace selection. This may bedilise t
ability to exploit any possible natural, bimodal clusterstruc-
tures that may be present in the squared magnitude of the pre-
diction error of the autoregressive modulation-frequeiiltsrs.

3. Experimental Results

The plan of the experiments is to first use cross-validatier o
the Training set of the ComParE challenge [1] to 1) adjust the
time-scale parameters of the long-term modulation filgeaind

2) choose the parameters of short-term spectrum analysis (S
tion 3.1). In this stage, the performance is measured asrthe u
weighted average recall (UAR) at two operating points corre
sponding to different threshold valu@sin Eq. 5. Different

values ofT" give rise to different miss rai@.iss and false alarm
rateps,. The UAR at equal error rate (UAR-E) corresponds to
Pmiss = Dfa, IN Which case the UAR-E is given equivalently by
100% X (1 — pmiss) @and100% X (1 — pga). The other measure
is UAR at minimum half-total error rate (UAR-M) [20], which
is the maximum value of00% x (1 — 0.5pmiss — 0.5psa) Ob-
tainable by adjusting the threshold.

As the second step, selected modulation filter structuees ar
used for filtering and subspace selection with featuresrodxda
using different spectrum analysis methods and these cambin
tions are evaluated on both the Development and Test data of
the Challenge (Section 3.2). In this stage, the goal is ttheet
UAR to its optimum value using the available information.

The speech material of the experiments comes from the
Munich Bio-voice Corpus [21] according to the specification
of the ComParE2014 challenge [1]. The speech material was
observed by listening to contain somewhat variable audible
noise, motivating the use of noise-robust processing nastho
from [12] and [9]. The original speech material was downsam-
pled to 16 kHz. The speech clips of the corpus are labeled as
representing either 'low’ or ’high’ physical load. The detien
system of Section 2.3 is set to detect the 'low’ class asiiteta
The choice of the target class is irrelevant according to &q.
but it affects the long-term dynamic modeling componenhas t
modulation filter is trained to represent the target class.

3.1. Parameter Optimization

In the first part of the experiments, leave-one-speakecmss
validation over the Training data set is used to examinefibe-s
trum estimation methods for short-time acoustic featuteaex
tion and the time scales for autoregressive modeling ofethes
features. First, the autoregression (AR) orgend frame skip

S in the single-AR filtering method from [8] (i.ej is con-
strained to a single value in Egs. 3 and 4) are optimized.egabl
1 and 2 show the results for 39-dimensional MFCC feature vec-
tors obtained with FFT and LPy(= 20) spectrum analysis,
respectively. Major differences in the optimal time scdles
tween FFT- and LP-based short-time features are not olikerve
but the LP-based features appear to favor somewhat I&wver
values, especially = 1 andS = 2, according to the UAR-E
criterion. In the remainder of this study, we focus on frakip s
rangeS = 1, 2,3 and prediction orderg = 4, 8, 12.

Table 1: UAR-M (%; UAR-E in parentheses) for single-
autoregression filtering of FFT-based MFCCs.

S| ¢=4 | ¢=8 [ q¢=12 |
69.2 (63.4)] 656 (61.6)] 67.4 (62.9)
66.8 (64.9)| 65.3 (62.9)| 64.9 (63.9)
67.3 (63.4)| 64.7 (61.8)| 66.2 (63.9)
64.4 (61.0)| 63.4 (62.3)| 65.8 (60.5)
63.7 (59.5)| 62.8 (57.4)| 64.1 (60.0)
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Table 3 compares FFT, LP and LP-CR spectrum analyses
without any long-term processing. As the “CR” features out-
perform FFT and LP at the equal error rate operating point,
they are included in further evaluations. The performaraesb
obtained by the CR spectra can be predicted by previous stud-
ies. It is known that high vocal effort impacts FO and associ-
ated harmonics, and CR-spectral features have shown igrov
robustness performance in detection of high vocal effogd,, e
[13]. Because, e.qg., the periodic glottal waveform, whihe-



Table 2: UAR-M (%; UAR-E in parentheses) for single-
autoregression filtering of LP-based MFCCs.
[S] g¢=4 | ¢=8 | ¢=12 |
66.1 (63.4)| 67.9 (61.8)| 65.5(62.3)
66.1 (60.5)| 66.4 (62.3)| 65.3 (62.9)
66.1 (62.9)| 62.8 (59.5)| 64.3 (59.5)

65.2 (62.9)| 64.9 (59.5)| 62.8 (61.8)
63.3 (60.5)| 60.2 (58.4)| 61.0 (56.4)
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flected in the spectral fine structure, is known to be affebted
physical stress [5] [6], CR features can potentially impgrtive
performance also in this detection task.

Table 3:Effect of applying an all-pole model as the short-time
spectrum analysis (cross validation over Training set).

[ Short-time spectrun] UAR-M (UAR-E), % |

FFT 67.3 (65.5)
LP 64.8 (62.3)
LP-CR 67.2 (66.5)

3.2. Classification Results

After initial parameter optimization by the cross-valielat
Training set, the best detection system configurations lame c
sen using the Development set while using the Training set fo
training. Table 4 shows predictive, multiple-time-scaledula-
tion filtering applied to three types of short-time featyresch
based on a different spectrum analysis method.

Table 4: UAR-M (%; UAR-E in parentheses) for Development
set showing the effect of multi-scale filtering on MFCC fezgu
based on FFT, XLPy(= 20, m = 50) and XLP-CR {n = 40).

Filter [ FFT | XiP | XLP-CR |

none 63.7 (60.4)| 68.5 (68.0)] 65.2 (62.0)
S=1,pe {4,812} | 61.6(59.9)| 60.8 (58.3)| 67.4 (62.5)
S=2,q€ {4,812} | 64.0(60.4)| 65.8 (64.8)| 67.2 (65.9)
S =3,q€ {4,812} | 59.8 (56.5)| 67.3 (64.8)| 67.9 (64.3)
q=4,58€{1,2,3} | 62.9(57.8)| 64.0 (62.0)| 64.8 (60.9)
q=8S¢€{1,2,3} | 61.4(58.3)| 64.5(62.5)| 65.0 (64.1)
q=12,8 €{1,2,3} | 63.1(59.4)| 66.9 (66.4)| 64.4 (63.6)

Based mainly on Table 4, a modulation filter structure is
chosen for each spectrum analysis method. The filter isegppli
in three modes: predictive filtering as in [8] [9], classifica
subspace selection based on the prediction residual ¢Becti

Table 5: Comparison of long-term processing for three spec-
trum estimation methods on the Development set. For each
spectrum analysis method, the MFCCs are modeled with a
multi-scale autoregressive filter chosen according to @al
The filter is applied in three different ways: for predictiiléer-

ing, for subspace selection or for combined filtering and-sub
space selection. The Challenge baseline UAR is 67.2 %.

Spectrum analysis | Long-term

and long-term filter | operations | UAR-M (UAR-E), %

filtering 64.0 (60.4)

FFT subspace 63.4 (59.4)

S =2,q€{4,8,12} | filt.&subsp. 63.2 (59.9)

filtering 65.8 (64.8)

XLP subspace 69.7 (68.0)

S =2,q€{4,8,12} | filt.&subsp. 65.7 (64.8)

filtering 67.9 (64.3)

XLP-CR subspace 64.9 (62.5)

S =3, € {4,8,12} | filt.&subsp. 68.2 (64.3)

Table 6:Main results: UAR (%) for the Development (Dev) and
Test sets using the best methods found in this study. Thesscor
that exceed the ComParE baseline [1] are marked in boldface.

| Method | Dev [ Test|
FFT
S =2,q¢€{4,8,12} 64.0 | 69.9
filtering
FFT
S =2,q¢€{4,8,12} 63.2 | 69.9
filtering & subspace
XLP
S =2,q¢€{4,8,12} 69.7 | 68.6
subspace
XLP-CR
S =3,q€{4,8,12} 67.9 | 68.6
filtering
FFT-MFCC/GMM baseline| 63.7 | n/a
SVM (official) baseline [1] | 67.2 | 71.9

obtained by both FFT and XLP were processed with a multi-
scale long-term autoregressive filter in order to model ¢me-t
poral characteristics of the target speech class. The-Shwat
XLP approach, which was recently proposed as a robust method
to focus on relevant spectral cues in emotion detection, [12]
and the multi-scale autoregressive approach, which hasels
cently been successfully applied to robust emotion detedd]

[9], were combined in order to investigate how well their-per

2.3.1) and both the filtering and the subspace selection cOM- ¢,yance in the detection of mental states will carry over to

bined. These results are shown in Table 5. The most promising

configurations are evaluated also on the Test set with ldnite
classification trials. Table 6 shows the results obtainedtfe
Development and Test sets together with the baselines.

4. Conclusions

Automatic detection of physical stress in speech was siudine
initial short-time feature extraction, conventional FFpEstrum
analysis was substituted with a form of extended weighted li
ear prediction (XLP) which produces smooth spectra by focus
ing on the most salient spectral cues. Short-time MFCC featu

physical states. The results show that XLP spectrum asalysi
effective in distinguishing physical stress from speecth gets
further benefit from long-term modeling by applying the mlede
ing residual to dynamic GMM classification subspace salacti

a new method proposed in this study. In agreement with previ-
ous studies, Fourier-based features were enhanced bgtivedi
filtering/smoothing with the same long-term model. The pro-
posed configurations outperformed the basic timbral diassi
and also reached the performance level of the Challenge base
lines. The methods studied thus hold potential for futueeins
similar applications.
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