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Blizzard 2014: Spoke Task

• Task: To sythesize dual-language utterances, primarily a 
native language (Indian) intersperced with words from a 
non-native language (English)

• Training data
– Single speaker data only in Indian language (a few hundred 

utterances)
• Example: "प्रसिसिद्द कबीर अध्येता, पुरुषोत्तम अग्रवाल का यह शोध आलेख, उसि रामानंद की 

खोज करता ह ै“
– Audio data (16kHz, 16 bits) along with text in Indian script (UTF-8)

• Test data
• Example: “Under 19 cricket world cup मे सिोमवार को अफ़गािनस्तान ने ऑस्टर ेिलया 

को हराकर, बड़ा उलटफेर िकया ह”ै
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Label generation - Method 1: Eng-to-Ind 
transcription
• Transcribe all English words in the target Indian 

langauge script and use the OSSIAN front-end (FE)
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Issues with Method 1: Eng-to-Ind 
transcription
• Works best for Telugu

– Telugu script most phonetic

• Worst for Tamil
– Context dependent phonemes in Tamil
– Eg: single phoneme [k] represents both phones /k/ and /g/

• Not so good for Hin, Guj, Raj, and Asm.
– Schwa insertion an isuue in Hin, Guj, and Raj.
– Not able to assess Assamese



 

Label generation - Method 2: Dual front-
end with filler words
• Use independent front-ends for English and the Ind. 

Lang., with filler words and merge the labels
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Acoustic model training 1:
Indian language speaker dependent HTS
• Speaker dependent models for 3 different Indian 

languages – Hindi, Rajasthani and Telugu

• Training data (audio + UTF-8 text)
– No. of uterrances - Hindi: 875, Rajasthani: 1369, Telugu: 1470

• GlottHMM acoustic modeling with Ossian front-end
• Features – LSFs:30, LSFsource:10, HNR:5, Gain:1, 

F0:1
• Trained with modified UEDIN Blizzard 2010 scripts.

– Number of reclusterings = 3



 

Acoustic model training 2:
Cross-lingual adaptation 0/4
• We want to create an English model set for each of the 

Indian language speakers:

• We'll use the Arctic KSP speaker's
 Indian accented English data as 
a starting point



 

Acoustic model training 2: (Ind-Eng HTS)
Cross-lingual adaptation 1/4
• English speaker-dependent model trained with Matt 

Gibson's code for two-pass decision tree generation:
• Top part of tree is populated 

by ASR-style questions 
related to triphone contexts – 
No leaf nodes!

• Bottom part of tree contains 
TTS style questions about 
quinphone context, stress, 
position in phrase etc... and 
leaf nodes with Gaussians



 

Acoustic model training 2:
Cross-lingual adaptation 2/4
• After training, the Gaussians 

of the TTS model are 
collected based on the 
triphone contexts to make an 
ASR style model set

• This model set can be used 
to decode audio 



 

Acoustic model training 2:
Cross-lingual adaptation 3/4

• A simple phoneme loop is used as 
the language model

• Triphone labels are then aligned 
using the different associated full-
context TTS-models as alternative 
pronunciations for each triphone.

• This gives a mapping between 
Indian language audio and English 
TTS-models and allows adaptation 
to be carried out normally.

• Indian language speakers' utterances are decoded using 
the triphone set



 

Acoustic model training 2:
Cross-lingual adaptation 4/4
• Potential trouble

– Lack of data for an average voice
– We're adapting a speaker-dependent voice

• But at least we have a fair amount of training data for 
adaptation

• Could complete only 3 out of 6 Indian languages
– Hindi, Rajasthani and Telugu completed. Stay tuned for 

samples!
– Tamil: Lack of an Indian-English female voice
– Gujarathi: Bad cross-lingual adaptation
– Assamese: Bad speaker dep. voice for Indian lang.



 

Merging model sets

• Unseen models need to be 
synthesised using the decision 
trees, independently for both 
languages.

• The required models from both 
language model sets are 
concatenated:
– Macros are renamed to retain 

uniqueness
– Duplicate headers are removed

• Otherwise synthesis is done in a 
normal way

~o
<STREAMINFO> 6 93 30 15 1 1 1
<MSDINFO> 6 0 0 0 1 1 1
<VECSIZE> 141<NULLD><USER><DIAGC>
~t "TrP_10"
<TRANSP> 7
...
~p "hnr_s4_1440"
<STREAM> 3
<MEAN> 15
...
~h "­
s+/0:v/1:ee/2:s/3:u/4:k/5:15/6:11/7:35/8:25/9:23/10:61/11:56
/12:65/13:4/14:66/15:64/16:57/17:64/18:8/19:5/20:1/21:3/22:2
/23:2/24:2/25:2/26:5/27:0/28:0/29:15/30:0/31:10/32:0/33:11/3
4:3/35:15/36:7/37:10/38:0/39:0/40:1/41:0/42:5/43:0/44:0/45:3
6/46:0/47:26/48:0/49:4/50:0/51:29/52:4/53:0/54:8/55:0/56:0/5
7:38/58:5/59:1/"
<BEGINHMM>
<NUMSTATES> 7
...
<ENDHMM>
~t "enTrP_10"
<TRANSP> 7
...
~p "en(flow_s2_301)169"
<STREAM> 2
<MEAN> 30
...
~h "e~n­t^+@=n:4_1/A/0_0_2/B/1­1­4:3­2&4­8#1­2$2­2>0­2<2­7|
e/C/0+0+3/D/content_1/E/content+4:2+6&2+5#1+1/F/content_2/G/
0_0/H/11=7:1=1&L­L%/I/0_0/J/11+7­1"
<BEGINHMM>
...



 

Demo page

http://research.ics.aalto.fi/speech/demos/COIN_blizzard14/

http://research.ics.aalto.fi/speech/demos/COIN_blizzard14/


 

Issues to Ponder Over?

• How can a simple thing like this work?

• Role of filler words in label generation 
– for smooth transition
– word count, accurate phone/context at boundaries
– what else?

• How significant is syllable and stress related information 
for Indian languages?
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