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Motivation

• In tasks like image labelling for training of a recognition system, 
unreliable labellers can be ignored by using majority vote 
systems

• In tasks like 
– Question answering service,
– Listening tests on speech processing techniques,
– Developing a new, better running shoe or
– Presidential elections,

there is no single ground truth answer, but majority vote decides 
what is the “right” answer

• Economic motivation: How to determine the majority vote of a 
crowd for a task with minimal number of voters*?

*) Not recommended for presidential elections



 

Assumptions

• Traditional approach: Large enough sample should give 
us a reliable estimate, (& estimate of errors) if the crowd is 
uniform

• But the crowd consists of labelers/
voters with a range of 
capabilities, motives, knowledge,
views, personalities, etc.

→ Some people are more 
     reliable/average than 
     others

→ Can we benefit from this?



 

Goals

• By biasing the more reliable/average votes we can 
improve the accuracy of the sampled opinion of the 
crowd

• And even better, let's do this on-line:
– we can start by as few as 

three samples;

– Bring in new samples 
one at a time:

1. Update the reliability of workers

2. Update the reliability of estimate

3. Decide if another vote is needed



 

Mathematics

• We have M labellers

• For each task in t={1,...,T}, we have vector of votes V
t
 

drawn from a binary distribution (ie. “Yes vs no” or “head 
vs tails”): V

t
 ~ μ ({-1,1}M)

• V
t
 represents the set of votes given by the labellers at 

time t

• Simple majority vote Y
t
 at time t:



 

Mathematics cont.

• Assuming a fixed unit cost:
How many votes should be “revealed” and in which 
order to “approximate the crowd” as cheap as possible?

• Cost of algorithm is cost(pi) and Accuracy of algorithm is 
defined as

• The optimisation for approximating the crowd is defined 
as (for hard/soft constraints)



 

Mathematics still cont.

• These constraints define “efficient frotier of solutions”

• Examining a binary signal, where each labeler agrees 
with x

t
signal with a probability p

all

• Assume p
all
 is known and p

all
 > 0.5 (without loss of 

generality, due to symmetry)
• Allows analytic solving of

– Expected accuracy for nontrivial policy that makes one vote per 
example, Cost= T*u, where u is unit cost of one vote from one 
labeller

– Expected cost for optimal policy achieving perfect accuracy



 

• Expected accuracy:

Mathematics:
One vote per example



 

• Expected accuracy:

Mathematics:
One vote per example



 

Mathematics:
Perfect accuracy
• Expected cost of the optimal policy that achieves perfect 

accuracy in predicting the crowd’s majority vote:



 

Mathematics:
Perfect accuracy
• Expected cost of the optimal policy that achieves perfect 

accuracy in predicting the crowd’s majority vote:



 

CrowdSense algorithm

• CrowdSense works between these limits:



 

CrowdSense algorithm:
Worker weighting
• Model the labelers' quality estimates as a measure of 

their agreement with the crowd majority:

• Labelers L={ l
1
, l

2
, … l

M
 }, X = { x

1
, x

2
, …, x

t
, …, x

n
 } 

sequence of examples, which can arrive one at a time

• v
it
=l

i
(x

t
) is l

i
's vote on x

t
 and S

t
 is the set of labelers 

selected on label x
t
.

• c
it
 is the number of times we've observed a label from l

i
 

so far



 

CrowdSense algorithm:
Worker weighting cont.
• Define a

it
 as how many of those labels were consistent 

with other labelers

• And finally get to the beef: Q
it
 is a smoothed estimate of 

the probability of labeler i agreeing with the crowd:

where K is a smoothing parameter



 

CrowdSense algorithm:
Confidence and online updates
• Start by selecting 2 labelers with highest Q

it
 and select 

one uniformly at random and put them into labeller set 
s

t

• Ask each of the 3 labelers in s
t
 to vote on an example

• Generate weighted majority vote of the labellers 
confidence score from votes v

it
 and labeler weights Q

it
:



 

CrowdSense algorithm:
Confidence and online updates cont.
• To check our confidence on the vote, we check if adding 

the labeler outside s
t
 with the highest Q

it
  would make us 

uncertain about the vote:

• Here epsilon represents acceptable level of uncertainty
• If equation is true, we keep adding new labelers until 

equation becomes untrue or we run out of labelers.



 

Tests and data sets

• Tested with 6 data sets
• All data sets transformed into {-1,1} tasks with thresholds
• Some noise added to some test sets 
• Comparison with other algorithms:

- IE Thresh
- Labeling Quality Uncertainty (LU)
- New label uncertainty(NLU)



 

Tests



 

Tests
cont.



 

CrowdSense variations

• Variations of the algorithm are also presented, based on 
2 different statistical assumptions:
– CrowdSense.ind where votes are assumed to be independent 

(for large crowds)
– CrowdSense.bin where the confidence score is sampled from 

the binomial distribution somehow (for small crowds)

• The mathematics looks serious, but these variations 
don't seem to improve the results on the test sets too 
dramatically



 

Thank you for your attention!
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