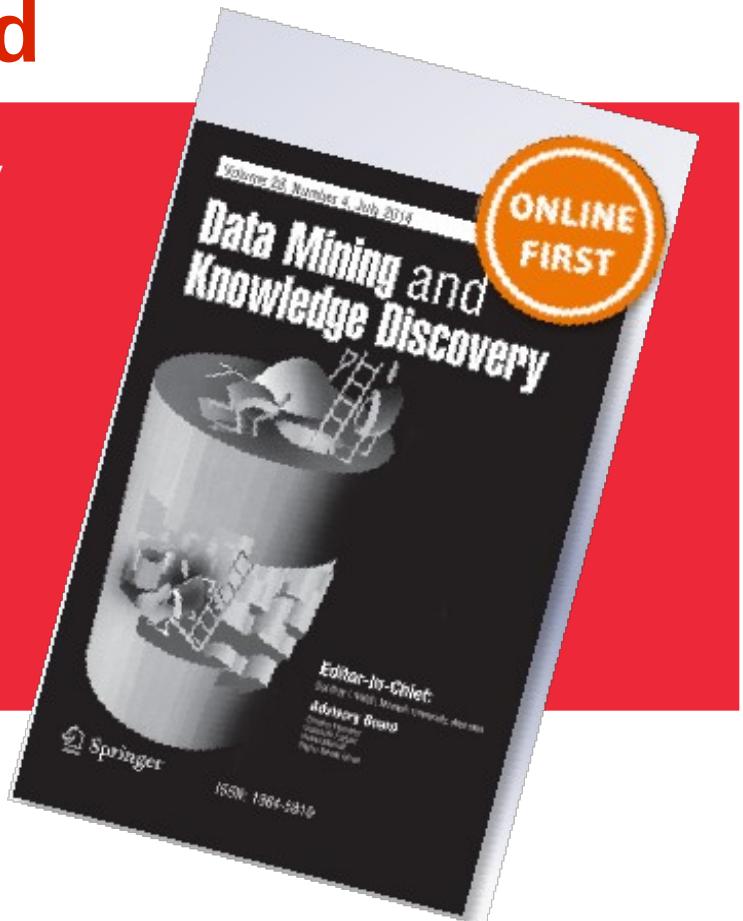


Seyda Ertekin, Cynthia Rudin & Haym Hirsh Approximating the crowd

In Data Mining and Knowledge Discovery
July 2014

Presented by Reima Karhila
November 12 2014



Motivation

- In tasks like image labelling for training of a recognition system, unreliable labellers can be ignored by using majority vote systems
- In tasks like
 - Question answering service,
 - Listening tests on speech processing techniques,
 - Developing a new, better running shoe or
 - Presidential elections,there is no single ground truth answer, but majority vote decides what is the “right” answer
- Economic motivation: How to determine the majority vote of a crowd for a task with minimal number of voters*?

*) Not recommended for presidential elections

Assumptions

- Traditional approach: Large enough sample should give us a reliable estimate, (& estimate of errors) if the crowd is uniform
- But the crowd consists of labelers/voters with a range of capabilities, motives, knowledge, views, personalities, etc.
 - Some people are more reliable/average than others
 - Can we benefit from this?

www.shutterstock.com · 102245575

Goals

- By biasing the more reliable/average votes we can improve the accuracy of the sampled opinion of the crowd
- And even better, let's do this on-line:
 - we can start by as few as three samples;
 - Bring in new samples one at a time:
 1. Update the reliability of workers
 2. Update the reliability of estimate
 3. Decide if another vote is needed

Mathematics

- We have M labellers
- For each task in $t=\{1, \dots, T\}$, we have vector of votes V_t drawn from a binary distribution (ie. “Yes vs no” or “head vs tails”): $V_t \sim \mu (\{-1, 1\}^M)$
- V_t represents the set of votes given by the labellers at time t
- Simple majority vote Y_t at time t :

$$Y_t = \begin{cases} 1 & \text{if } \sum_{i=1}^M V_{ti} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Mathematics cont.

- Assuming a fixed unit cost:
How many votes should be “revealed” and in which order to “approximate the crowd” as cheap as possible?
- Cost of algorithm is $\text{cost}(\pi)$ and Accuracy of algorithm is defined as

$$\text{Reward}(\pi) = \frac{1}{T} \sum_{t=1}^T \mathbf{1}_{[\hat{Y}_t = Y_t]}$$

- The optimisation for approximating the crowd is defined as (for hard/soft constraints)

$$\max_{\pi} \mathbb{E}_{\{V_t\}_t: V_t \sim \mu} [\text{Reward} \mid \pi] \quad \text{s.t.} \quad \text{Cost}(\pi) \leq C_{\text{hard}}$$

$$\max_{\pi} \mathbb{E}_{\{V_t\}_t: V_t \sim \mu} [\text{Reward} - C_{\text{soft}} \cdot \text{Cost}(\pi) \mid \pi]$$

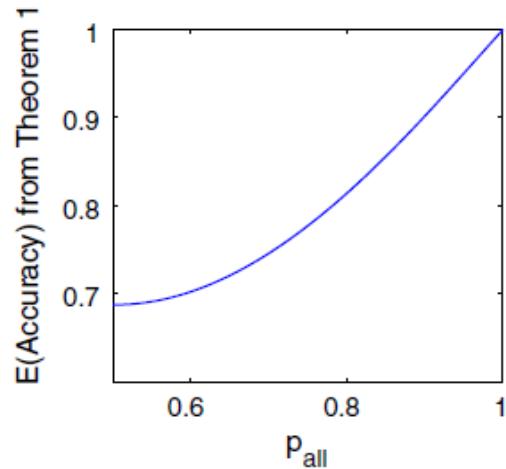
Mathematics still cont.

- These constraints define “***efficient frontier of solutions***”
- Examining a binary signal, where each labeler agrees with x_t^{signal} with a probability p_{all}
- Assume p_{all} is known and $p_{\text{all}} > 0.5$ (without loss of generality, due to symmetry)
- Allows analytic solving of
 - Expected accuracy for nontrivial policy that makes one vote per example, Cost= T^*u , where u is unit cost of one vote from one labeller
 - Expected cost for optimal policy achieving perfect accuracy

Mathematics: One vote per example

- Expected accuracy:

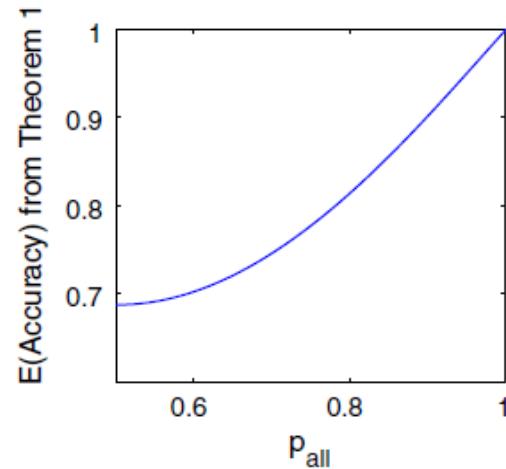
$$\begin{aligned}\mathbb{E}_{\{\mathbf{v}_1, \dots, \mathbf{v}_T \sim \mu(\{-1, 1\}^M)\}} &= p_{all} \cdot \left[\sum_{x=\frac{M-1}{2}}^{M-1} \text{Bin}(x, M-1, p_{all}) \right] \\ &+ (1 - p_{all}) \cdot \left[\sum_{x=\frac{M-1}{2}}^{M-1} \text{Bin}(x, M-1, 1 - p_{all}) \right]\end{aligned}$$



Mathematics: One vote per example

- Expected accuracy:

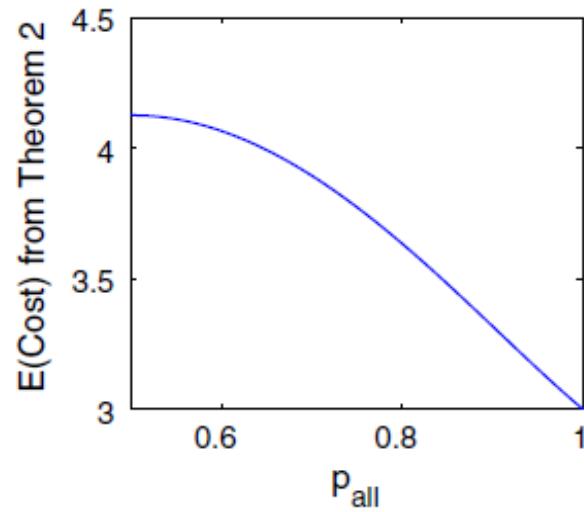
$$\mathbb{E}_{\{\mathbf{v}_1, \dots, \mathbf{v}_T \sim \mu(\{-1, 1\}^M)\}} = p_{all} \cdot \left[\sum_{x=\frac{M-1}{2}}^{M-1} \text{Bin}(x, M-1, p_{all}) \right] + (1 - p_{all}) \cdot \left[\sum_{x=\frac{M-1}{2}}^{M-1} \text{Bin}(x, M-1, 1 - p_{all}) \right]$$



Mathematics: Perfect accuracy

- Expected cost of the optimal policy that achieves perfect accuracy in predicting the crowd's majority vote:

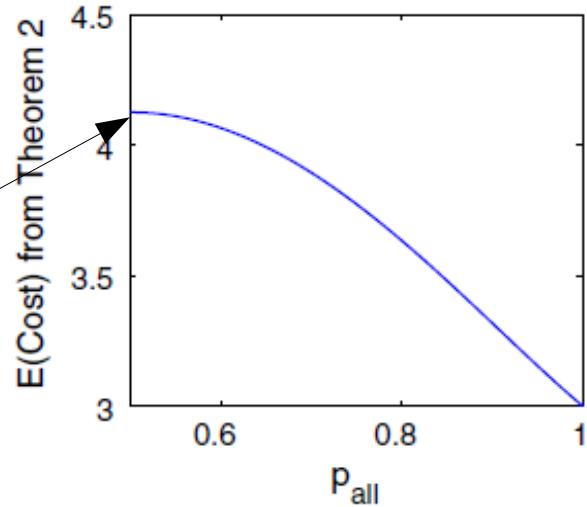
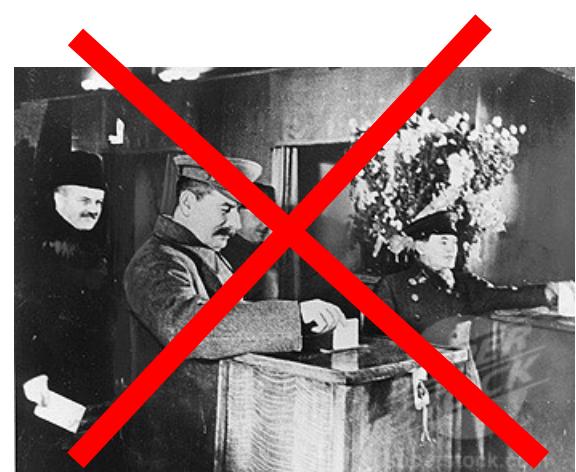
$$\Omega = T \sum_{j=\binom{M+1}{2}}^M \binom{j-1}{\frac{M-1}{2}} \left[p_{all}^{\frac{M+1}{2}} (1-p_{all})^{j-\frac{M+1}{2}} + (1-p_{all})^{\frac{M+1}{2}} p_{all}^{j-\frac{M+1}{2}} \right] \times j$$



Mathematics: Perfect accuracy

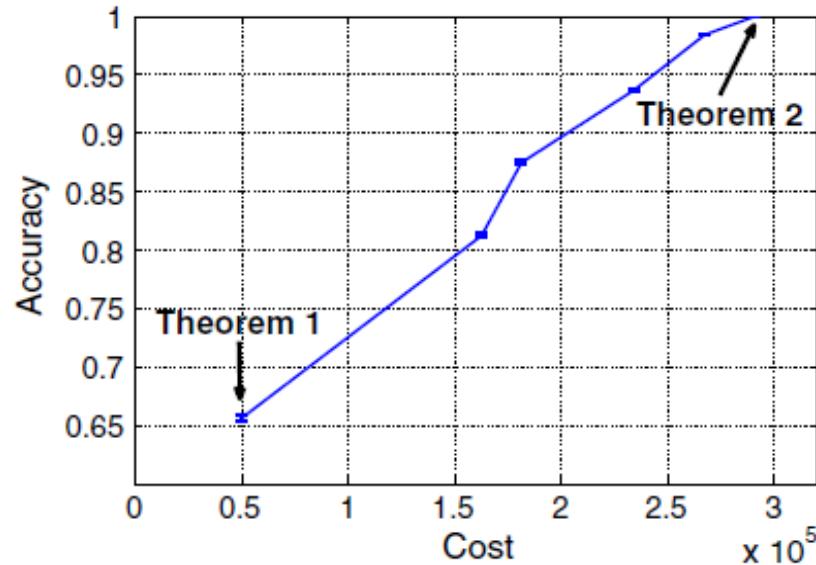
- Expected cost of the optimal policy that achieves perfect accuracy in predicting the crowd's majority vote:

$$\Omega = T \sum_{j=\binom{M+1}{2}}^M \binom{j-1}{\frac{M-1}{2}} \left[p_{all}^{\frac{M+1}{2}} (1-p_{all})^{j-\frac{M+1}{2}} + (1-p_{all})^{\frac{M+1}{2}} p_{all}^{j-\frac{M+1}{2}} \right] \times j$$



CrowdSense algorithm

- CrowdSense works between these limits:



CrowdSense algorithm: Worker weighting

- Model the labelers' quality estimates as a measure of their agreement with the crowd majority:
- Labelers $L = \{l_1, l_2, \dots, l_M\}$, $X = \{x_1, x_2, \dots, x_t, \dots, x_n\}$ sequence of examples, which can arrive one at a time
- $v_{it} = l_i(x_t)$ is l_i 's vote on x_t and S_t is the set of labelers selected on label x_t .
- c_{it} is the number of times we've observed a label from l_i so far

$$c_{it} := \sum_{\tilde{t}=1}^t \mathbf{1}_{[i \in S_{\tilde{t}}]}$$

CrowdSense algorithm: Worker weighting cont.

- Define a_{it} as how many of those labels were consistent with other labelers

$$a_{it} := \sum_{\tilde{t}=1}^t \mathbf{1}_{[i \in S_{\tilde{t}}, v_{i\tilde{t}} = v_{S_{\tilde{t}}\tilde{t}}]}$$

- And finally get to the beef: Q_{it} is a smoothed estimate of the probability of labeler i agreeing with the crowd:

$$Q_{it} := \frac{a_{it} + K}{c_{it} + 2K}$$

where K is a smoothing parameter

CrowdSense algorithm: Confidence and online updates

- Start by selecting 2 labelers with highest Q_{it} and select one ***uniformly at random*** and put them into labeller set S_t
- Ask each of the 3 labelers in S_t to vote on an example
- Generate weighted majority vote of the labellers ***confidence score*** from votes v_{it} and labeler weights Q_{it} :

$$\text{Score}(S_t) = \sum_{i \in S_t} v_{it} Q_{it}$$

CrowdSense algorithm: Confidence and online updates cont.

- To check our confidence on the vote, we check if adding the labeler outside s_t with the highest Q_{it} would make us uncertain about the vote:

$$\frac{|\text{Score}(S_t)| - Q_{l_{\text{candidate}}, t}}{|S_t| + 1} < \varepsilon \quad , 0 < \varepsilon \leq 1$$

- Here epsilon represents acceptable level of uncertainty
- If equation is true, we keep adding new labelers until equation becomes untrue or we run out of labelers.

Tests and data sets

- Tested with 6 data sets
- All data sets transformed into $\{-1,1\}$ tasks with thresholds
- Some noise added to some test sets
- Comparison with other algorithms:
 - IE Thresh
 - Labeling Quality Uncertainty (LU)
 - New label uncertainty(NLU)

MovieLens	ChemIR	Reuters	Adult	SpamBase	MTurk
<i>Number of examples</i>					
137	1,165	6,904	32,561	2,300	673
<i>Labeler accuracies</i>					
48.17(L1)	50.72(L1)	80.76(L1)	81.22(L1)	86.30(L1)	52.60(L1)
89.78(L2)	46.78(L2)	83.00(L2)	80.59(L2)	86.35(L2)	63.30(L2)
93.43(L3)	84.46(L3)	89.70(L3)	86.22(L3)	91.22(L3)	54.98(L3)
48.90(L4)	88.41(L4)	82.98(L4)	87.63(L4)	94.04(L4)	79.64(L4)
59.12(L5)	86.69(L5)	88.12(L5)	91.12(L5)	75.91(L5)	61.52(L5)
96.35(L6)	87.46(L6)	87.04(L6)	94.11(L6)	82.04(L6)	72.22(L6)
87.59(L7)	49.52(L7)	95.42(L7)	56.68(L7)	68.39(L7)	74.00(L7)
54.01(L8)	78.62(L8)	80.21(L8)	85.51(L8)	90.83(L8)	
47.44(L9)	82.06(L9)	78.68(L9)	81.32(L9)	94.35(L9)	
94.16(L10)	50.12(L10)	95.06(L10)	85.54(L10)		
95.62(L11)	50.98(L11)	82.88(L11)	79.74(L11)		
		71.57(L12)	84.86(L12)		
		87.54(L13)	96.71(L13)		

Tests

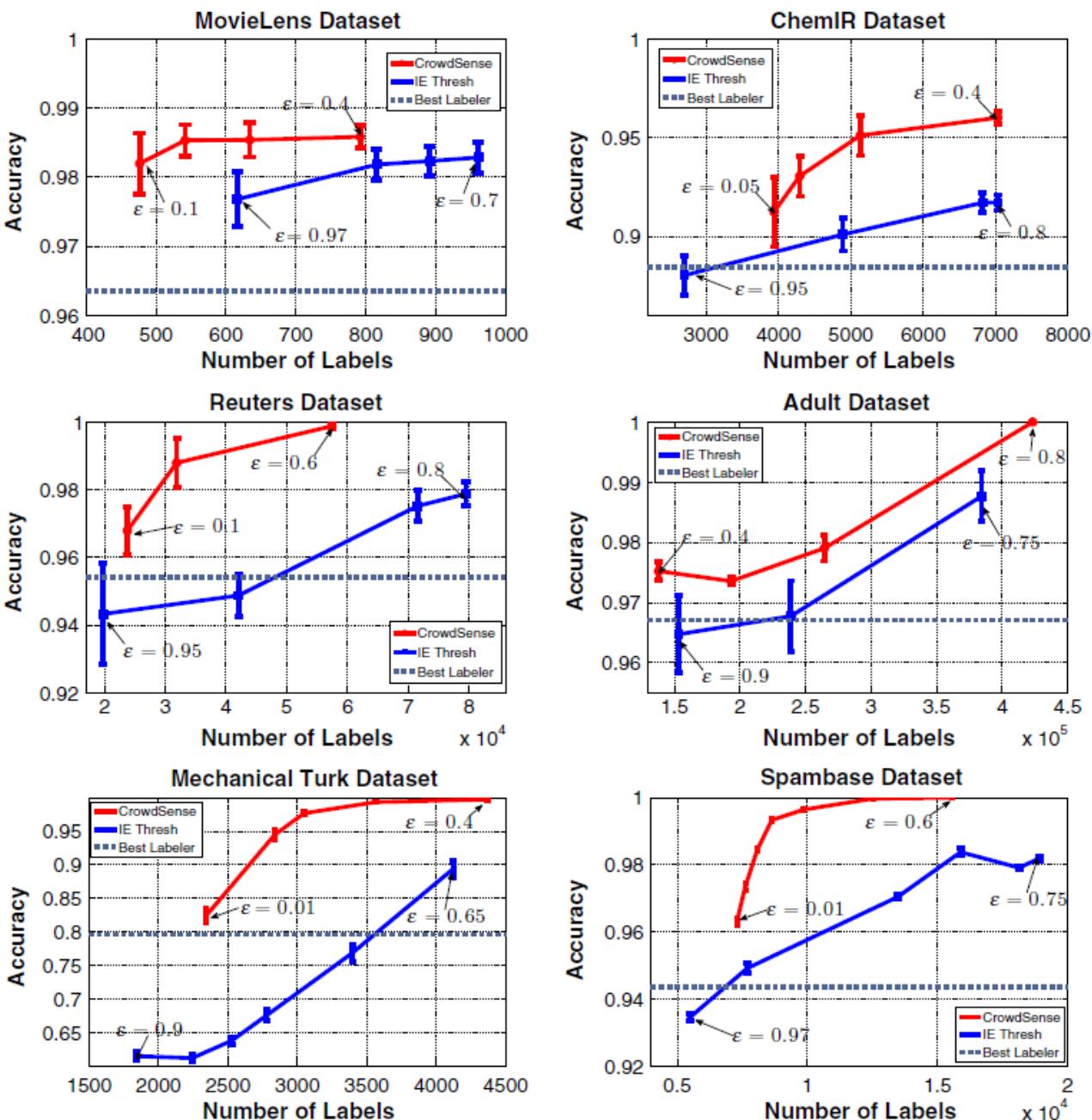


Fig. 3 Tradeoff curves for CrowdSense, baseline (b), and IEThresh, averaged over 100 runs. The x-axis is the total number of votes (the total cost) used by the algorithm to label the entire dataset. The y-axis indicates the accuracy on the full dataset

Tests cont.

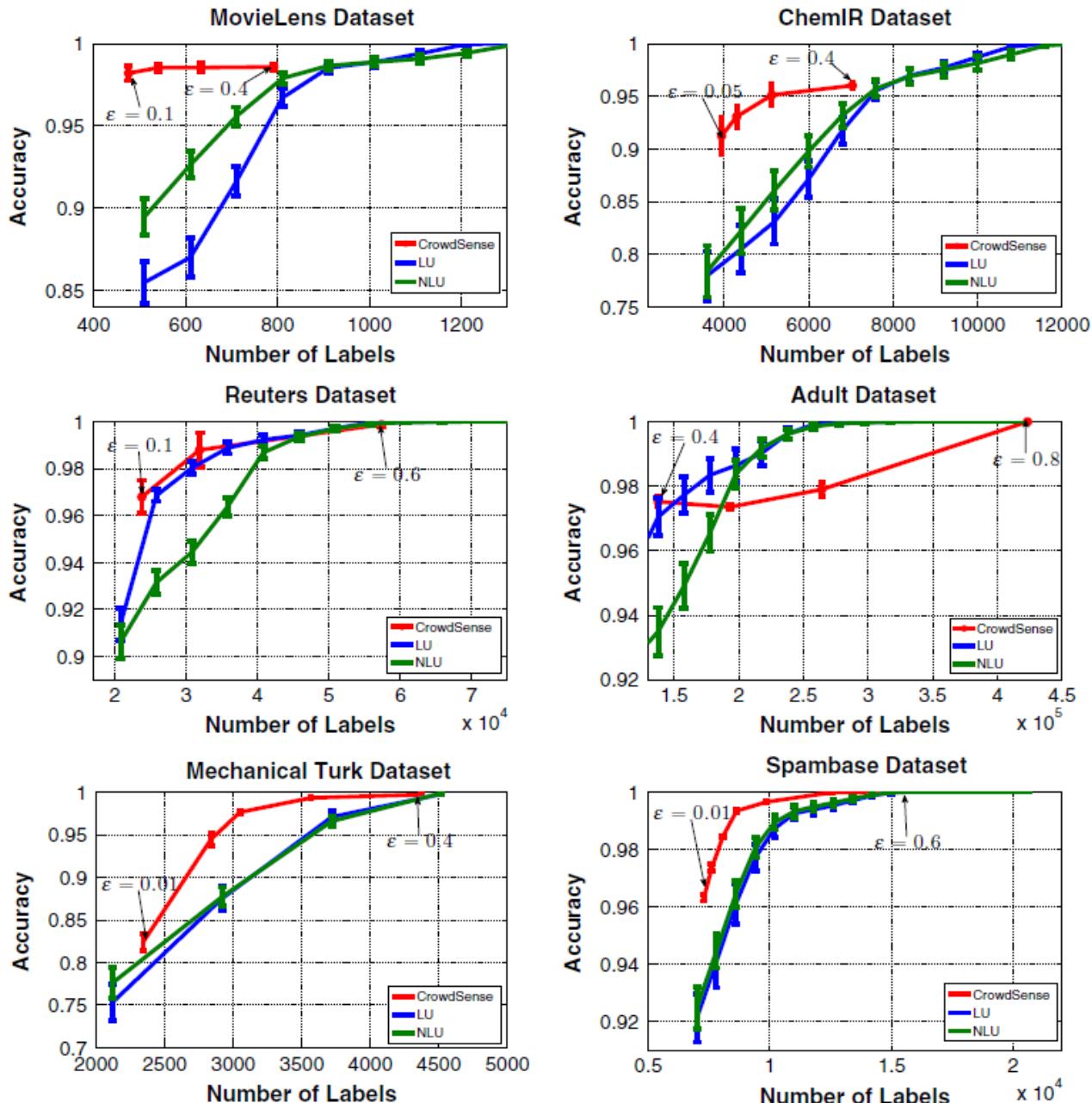


Fig. 4 Tradeoff curves for CrowdSense, LU and NLU, averaged over 100 runs. The x-axis is the total number of votes (the total cost) used by the algorithm to label the entire dataset. The y-axis indicates the accuracy on the full dataset

CrowdSense variations

- Variations of the algorithm are also presented, based on 2 different statistical assumptions:
 - CrowdSense.ind where votes are assumed to be independent (for large crowds)
 - CrowdSense.bin where the confidence score is sampled from the binomial distribution somehow (for small crowds)
- The mathematics looks serious, but these variations don't seem to improve the results on the test sets too dramatically

Thank you for your attention!