
Seyda Ertekin, Cynthia Rudin & Haym Hirsh

Approximating the crowd

In Data Mining and Knowledge Discovery

July 2014

Presented by Reima Karhila
November 12 2014

Motivation

• In tasks like image labelling for training of a recognition system,
unreliable labellers can be ignored by using majority vote
systems

• In tasks like
– Question answering service,
– Listening tests on speech processing techniques,
– Developing a new, better running shoe or
– Presidential elections,

there is no single ground truth answer, but majority vote decides
what is the “right” answer

• Economic motivation: How to determine the majority vote of a
crowd for a task with minimal number of voters*?

*) Not recommended for presidential elections

Assumptions

• Traditional approach: Large enough sample should give
us a reliable estimate, (& estimate of errors) if the crowd is
uniform

• But the crowd consists of labelers/
voters with a range of
capabilities, motives, knowledge,
views, personalities, etc.

→ Some people are more
 reliable/average than
 others

→ Can we benefit from this?

Goals

• By biasing the more reliable/average votes we can
improve the accuracy of the sampled opinion of the
crowd

• And even better, let's do this on-line:
– we can start by as few as

three samples;

– Bring in new samples
one at a time:

1. Update the reliability of workers

2. Update the reliability of estimate

3. Decide if another vote is needed

Mathematics

• We have M labellers

• For each task in t={1,...,T}, we have vector of votes V
t

drawn from a binary distribution (ie. “Yes vs no” or “head
vs tails”): V

t
 ~ μ ({-1,1}M)

• V
t
 represents the set of votes given by the labellers at

time t

• Simple majority vote Y
t
 at time t:

Mathematics cont.

• Assuming a fixed unit cost:
How many votes should be “revealed” and in which
order to “approximate the crowd” as cheap as possible?

• Cost of algorithm is cost(pi) and Accuracy of algorithm is
defined as

• The optimisation for approximating the crowd is defined
as (for hard/soft constraints)

Mathematics still cont.

• These constraints define “efficient frotier of solutions”

• Examining a binary signal, where each labeler agrees
with x

t
signal with a probability p

all

• Assume p
all
 is known and p

all
 > 0.5 (without loss of

generality, due to symmetry)
• Allows analytic solving of

– Expected accuracy for nontrivial policy that makes one vote per
example, Cost= T*u, where u is unit cost of one vote from one
labeller

– Expected cost for optimal policy achieving perfect accuracy

• Expected accuracy:

Mathematics:
One vote per example

• Expected accuracy:

Mathematics:
One vote per example

Mathematics:
Perfect accuracy
• Expected cost of the optimal policy that achieves perfect

accuracy in predicting the crowd’s majority vote:

Mathematics:
Perfect accuracy
• Expected cost of the optimal policy that achieves perfect

accuracy in predicting the crowd’s majority vote:

CrowdSense algorithm

• CrowdSense works between these limits:

CrowdSense algorithm:
Worker weighting
• Model the labelers' quality estimates as a measure of

their agreement with the crowd majority:

• Labelers L={ l
1
, l

2
, … l

M
 }, X = { x

1
, x

2
, …, x

t
, …, x

n
 }

sequence of examples, which can arrive one at a time

• v
it
=l

i
(x

t
) is l

i
's vote on x

t
 and S

t
 is the set of labelers

selected on label x
t
.

• c
it
 is the number of times we've observed a label from l

i

so far

CrowdSense algorithm:
Worker weighting cont.
• Define a

it
 as how many of those labels were consistent

with other labelers

• And finally get to the beef: Q
it
 is a smoothed estimate of

the probability of labeler i agreeing with the crowd:

where K is a smoothing parameter

CrowdSense algorithm:
Confidence and online updates
• Start by selecting 2 labelers with highest Q

it
 and select

one uniformly at random and put them into labeller set
s

t

• Ask each of the 3 labelers in s
t
 to vote on an example

• Generate weighted majority vote of the labellers
confidence score from votes v

it
 and labeler weights Q

it
:

CrowdSense algorithm:
Confidence and online updates cont.
• To check our confidence on the vote, we check if adding

the labeler outside s
t
 with the highest Q

it
 would make us

uncertain about the vote:

• Here epsilon represents acceptable level of uncertainty
• If equation is true, we keep adding new labelers until

equation becomes untrue or we run out of labelers.

Tests and data sets

• Tested with 6 data sets
• All data sets transformed into {-1,1} tasks with thresholds
• Some noise added to some test sets
• Comparison with other algorithms:

- IE Thresh
- Labeling Quality Uncertainty (LU)
- New label uncertainty(NLU)

Tests

Tests
cont.

CrowdSense variations

• Variations of the algorithm are also presented, based on
2 different statistical assumptions:
– CrowdSense.ind where votes are assumed to be independent

(for large crowds)
– CrowdSense.bin where the confidence score is sampled from

the binomial distribution somehow (for small crowds)

• The mathematics looks serious, but these variations
don't seem to improve the results on the test sets too
dramatically

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

